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We have summarized the solutions of the SAC (symmetry-adapted-cluster) and SAC CI theories for the study of electron
correlations in ground and excited states, respectively. Variational and non-variational solutions are considered for both theo-

ries and their features are discussed.

1. Introduction

For studies of accurate wavefunctions (electron cor-
relations) of ground and excited states, only the CI ex-
pansion has been a practical method which is intercon-
sistent for both states. Because of its linear variational
nature, the solutions constitute upper bounds for both
states [1]. The wavefunctions of the ground and ex-
cited states are mutually orthogonal and hamiltonian-
orthogonal [see, e.g., egs. (17) and (18)] . However,
another feature of the CI expansion lies in its slow con-
vergence. This becomes severe especially when we aim
at accurate wavefunctions of excited states. A choice
of a single reference wavefunction seems to be insuffi-
cient, and a large-scale multi-reference CI combined
with energy extrapolation procedure has been done by
Buenker, Peyerimhoff, and co-workers [2].

The cluster expansion theory gives, on the other
hand, a rapidly convergent method with inclusion of
the higher-order unlinked terms [3—10]. It also shows
the correct dependence on the number of particles in-
volved, in contrast to standard single and double exci-
tation CI [10,11]. Though the applications are still
very limited [7,12—14] including those to model sys-
tems [15,16], the results seem to show a promising
utility of the theory.

Previously, we have considered an extension of this
approach to open-shell systems, introducing a symme-

try-adapted-cluster (SAC) expansion [17]. Combining
the idea of this expansion with the Thouless theorem
[18], we have also proposed a pseudo-orbital theory
and applied it to the study of spin correlations in open-
shell atoms and molecules [19]. Further, a method for
excited states, called the SAC CI method, has been re-
ported on the basis of the SAC expansion [20]. It is
based on the fact that the SAC expansion combined
with the variational principle gives incidentally a set of
excited functions which satisfy the Brillouin theorem
with the ground state.

The purpose of this paper is to summarize solutions
of the SAC and SAC CI theories for ground and excited
states, respectively. The variational and non-variational
solutions are considered for both theories, and the fea-
tures of the solutions and the relations to other theo-
ries are discussed. Applications of these methods to rel-
atively small atoms and molecules will be given in the
succeeding paper [21].

2. SAC expansion for ground state
In the symmetry-adapted-cluster (SAC) expansion,

the ground state of a given spin—space symmetry is ex-
pressed by
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where $ is a sum of the essentially i-ple excitation op-
erator S(i) [17]. S]+ denotes a symmetry-adapted exci-
tation operator which produces a symmetry-adapted
configuration on applying the reference wavefunction
@), which is chosen as restricted HF wavefunction,

Bk - gl @)

In eq. (1) the symmetry projector O applies only to
the unlinked terms since the linked term .§<I>0 is sym-
metry adapted. The symmetry adaptation of the excita-
tion operator is necessary because of the non-linear
nature of the cluster expansion. Otherwise, a mixing
of different symmetry spaces may occur as discussed.
in detail previously [17].

We note that for singlet states the spin projector O
is unnecessary, since the products of singlet excitation
operators are singlet so that all the unlinked terms are
purely singlet without the projector O. Similarly the
space symmetry projector is unnecessary for a totally
symmetric ground state. Then, in this case, the SAC
wavefunction is written as

= exp[z; c,S ] 4)

(IJO = |0)= “8019_01 ¢q¢q¢q+1 .

2.1. Variational solution

Application of the variational principle to the SAC
wavefunction given by eq. (1) leads to the equation
+ =
<\I/gI(H - Eg)SKI \I/g.) 0, (5)

where

= exp[E C,S ] (©)
For totally symmetric singlet states we note
\I/g, = \I/g, @)

as seen from eq. (4). The energy of the system may be
calculated from
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Egs. (5) and (8) suffice to determine all the unknowns
{C;}and E . The features of the variational solution
are as follows. It gives an upper bound to the exact en-
ergy. It gives a basis for an analysis and extension of
various variational model theories (e.g., orbital theories
[22]), since formally it includes completely the self-
consistency in an expansion form. Based on what the
Thouless theorem [18] implies, we have proposed a
pseudo-orbital theory in the SAC expansion form [19],
and a modified spin-extended HF theory in a conven-
tional cluster expansion form [22]. On the other hand,
a computational problem of this procedure is that it in-
cludes matrix elements between unlinked terms. This
makes a complete solution of egs. (5) and (8) almost
prohibitive. In applications we shall introduce some ap-
proximations which express high-order terms in terms
of the lower-order ones.

2.2. Non-variational solution

If the SAC wavefunction were the exact wavefunc-
tion, the function (H — Eg)I\I'g) would be identically
zero. We require this condition in the space of the
linked configurations |0) and S§|0), that is

(OIH — E,|¥ =0, )

OISk (H — EDI¥,) = 0. (10)

These equations are sufficient to determine the un-
knowns {C;} and E,. We may also deem egs. (9) and
(10) as obtained from the CI secular equation by re-
placing the CI wavefunction WECT with the cluster wave-
function ¥, . For a closed-shell ground state, the solu-
tion of egs. (9) and (10) is equivalent to that of the
coupled-cluster many-electron theory (CC MET) by
Cizek and Paldus [6,9,23], though the latter was de-
rived in diagrammatic form. We may therefore call the
present solution SAC MET. It applies also to open-shell
systems. The features of the SAC MET are as follows.
Its energy does not have an upper bound nature. The
concept of self-consistency seems not to apply to the
non-variational solution. However, a remarkable merit
of this solution over the variational one is that the form-
er does not include matrix elements between unlinked
terms but includes at most elements between linked

- and unlinked terms. This is favorable in actual calcula-
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tions. We note that the matrices involved in egs. (9)
and (10) are non-symmetric.

3. SAC CI theory for excited states

We define a set of functions {®g} on the basis of
the SAC ground state \I'g: as

= R) p+
By =N PO )RK\I!g,, ¢1))
where P is a projector
P=1 =W NT,l, (12)

and R;'( is a symmetry-adapted excitation operator for
the symmetry of the excited state under consideration.
O®) is the projector for this symmetry. We may also
deal with ionized and electron attached states by tak-
ing as R;( the symmetry-adapted ionization (annihila-
tion) and electron attachment (creation) operators,
respectively.

We note that when the ground state is singlet (spin)
and totally symmetric (space), the symmetry projector
OW®) is unnecessary in eq. (11), that is

Oy = Ny PRYV,, (13)

where we have used eq. (7). This is because the prod-
ucts of operators like R} S7S7, etc. always belong to
the symmetry R of the excited state under considera-
tion.

We first consider excited states having the same
symmetry as the ground state. Then, the operators R}}
and O®) are actually S}; and O, respectively, defined
previously. When the SAC wavefunction ¥, for the
ground state satisfies the variational equation [eq. (5)],
the functions {diK} satisfy the relations,

(@g| W) =0, (14)

(@x|HI¥ =0, (15)

which is the Brillouin theorem in a generalized sense.
This relation means that the functions {®x} form a
basis for excited states. Then, we may express the ex-
cited states in a CI form as

Vo= 2iday. (16)

This is the SAC CI wavefunction for the excited states.
Under egs. (14) and (15), the excited states ¥, given
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by eq. (16) automatically satisfy the correct relation
with the ground state,

(W W) =0, 17)

(W |H|Wy) =0, (18)

On the other hand, when the SAC ground state \I!g
is solved by the non-variational procedure [e.g., egs.
(9) and (10)], the excited functions {®g} and ¥, no
longer satisfy relations (15) and (18). One way to re-
solve this problem is to add to eq. (16) the ground
state function as

Y, =dg +ZK7 dy @y (19)

and solve for ¥, by the variational procedure. In this
case, the ground state is no longer given by the \Ifg but
takes the form of eq. (19). However, so long as the
cluster expansion method is accurate enough for the
ground state, we may expect that the difference be-
tween the variational and non-variational solutions of
the SAC wavefunction ‘I!g should be small. Then, for
simplicity, we may use the above SAC CI formalism
even if the ¥  does not strictly satisfy the variational
equation (5).

When the symmetry of the excited state is different
from that of the ground state, the relations given by
egs. (14) and (15) hold automatically. Further, in such
a case, the projector P is actually unnecessary in egs.
(11) and (13). The ionized and electron-attached states
are dealt with similarly.

The SAC CI wavefunction for the excited state
seems to converge more rapidly to the exact solution
than the conventional CI wavefunction. The reasons
are as follows. (a) Theoretically the basis functions
{®x} alieady satisfy the necessary conditions (14)
and (15) for the excited state. (b) Since the basis func-
tions @ include the electron correlations in the
ground state through \Ilgr, the SAC CI method has
only to express the reorganizations in the electron cor-
relations in the excited state. The greater the similarity
of two correlations is, the faster the convergence.

3.1. Variational solution
Since the SAC CI wavefunction includes the un-
known coefficients d linearly, the variational equa-

tion becomes a secular equation
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L@y lH~E|9)d; =0, (20

which is also written as
(<I>K|H—Ee|\lle)=0. 21

This is solved by the method of diagonalization of sym-
metric matrices. For large dimensions, Davidson’s algo-
rithm [24] seems to be useful. When egs. (14) and (15)
are satisfied by the basis functions {®g}, the nth solu-
tion of eq. (20) gives an upper bound to the energy of
the nth excited state [1]. A problem of the variational
solution is, as in the ground state case, that it includes
matrix elements between unlinked terms. This is not
the case, however, in the following non-variational sol-
ution.

Recently, Paldus, CiZek, and co-workers [8,16] have
considered in a diagrammatic form a similar variational
theory for open-shell systems using the non-variational
CP MET solution for a closed-shell ground state. In
their formulation the relation given by egs. (14) and
(15) which is a key in the SAC CI formalism does not
arise.

3.2. Non-variational solution

If the SAC CI wavefunction were the exact wave-
function, it would satisfy the Schrédinger equation
(H - E )Y, = 0. In the SAC CI wavefunction, the in-
dependent variables are associated only to the linked
operators {Ry}. Therefore, the SAC CI wavefunction
may be determined by requiring the above identity in
the space of the linked configurations R}IO), that is,

(O| Ry (H — E)I¥,) =0, (22)

which is rewritten as
?(OIRK(H—Ee)Iq)L)dL = 0. (23)

This equation suffices to determine all the unknowns
involved in the SAC CI wavefunction. Eq. (22) may
also be regarded as obtained from the CI equation by
replacing the CI wavefunction WC! with the SAC CI
wavefunction W,

The non-variational equation (23) constitutes an
eigenvalue problem of a non-symmetric matrix. The
energies do not have an upper bound nature. Further,
the non-symmetric nature may result in non-orthogo-
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nality of the solutions corresponding to different ener-
gies, though the extent should be very small. However,
a computational advantage is that the method does
not include matrix elements between unlinked terms,
but includes at most elements between linked and un-
linked terms.

4. Summary and discussion

In table 1, we summarize the features of the varia-
tional and non-variational solutions of the SAC expan-
sion for ground states and of the SAC CI wavefunc-
tions for excited states. Theoretically, the variational
solutions for both states are consistent and superior to
the non-variational ones in that they give upper bounds
to the exact energies of both states. Especially, rela-
tion (15) has a key importance as a theoretical basis of
the SAC CI method. Computationally, the non-varia-
tional procedures are simpler than the variational ones
since the former include at most matrix elements be-
tween linked and unlinked terms.

In table 1 we have also considered a SAC CI like
procedure in which the CI wavefunction for the ground
state W is used in the definition of the excited func-
tions { ®x } in place of the SAC wavefunction ¥ in
eq. (11). Both variational and non-variational methods
may be applied as discussed above. However, in such a
method it would be difficult to assume the relation
(15) between the excited functions <I>1(gI and the CI

Table 1
Summary of results
Ground | SAC SAC CI
state variational  non-variational
Excited
state a), b), e) d) . a)
SACCI
variational a), b),c),e) ¢),e) c), €)
SAC CI
non-variational b), d) d) d)

a) Upper bound nature.

D (Wl we) = 0, (Wl HI W) = 0.

O (Wl We') = 0,( el H|Wen = 0.

d) Highest-order term, (linked| H| unlinked).
€) Highest-order term, (unlinked| H| unlinked).
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