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The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of
arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are in-
volved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the
matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC
theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory
is much more critical for excited states than for ground states.

1. Introduction

Cluster expansion theory is one of the most promis-
ing approaches for calculations of accurate wavefunc-
tions *. Though applications are still very limited, the
results show a promising utility of the theory *. In the
preceding paper [1], we have summarized variational
and non-variational solutions of the SAC (symmetry-
adapted-cluster) expansion of the closed- or open-shell
ground state, and of the SAC CI wavefunction of the
excited states. The SAC expansion has been considered
previously to extend the cluster expansion formalism
to open-shell systems [2]. It has been applied to the
study of spin correlations in open-shell atoms and
molecules [3]. The SAC CI theory has been considered
as a rapidly convergent method for excited states [4].

In this paper, we consider applications of these
theories to the study of electron correlations in singlet
ground and excited states. The results of test calcula-
tions for relatively small atoms and molecules will be
given and compared with the full CI or close-to-full
CI results. In the next section, we explain necessary
definitions and truncations of the SAC and SAC CI
wavefunctions. In sections 3 and 4, we summarize
formulas necessary for actual calculations. Approxima-

* See references cited in the preceding paper [1].
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tions are considered for the variational methods since
they include time-consuming terms. The results of
calculations for Be, BH;, H, 0, and Rydberg excited
states of H, O will be given. The conclusions will be
given in the last section.

2. Specifications

For a totally symmetric singlet ground state, the
SAC wavefunction is written as

\pg=exp[2;>c,s,"] o, . (1)

where we need not include the symmetry projector

[1]. Then, \Ilé in the preceding paper [1] is equal to V.
In the present calculation we truncate the expansion in
eq. (1) at second order

v, = [1+ %)c,sﬁ; IZJ)c,ch;s;]m). @)

The reference wavefunction |0) is calculated by the
Hartree—Fock theory:

10)=1111...77... Al , ®
Ey = OIH|0) . @
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For the symmetry-adapted excitation operator S;, we
have included single and double excitations. The un-
linked terms S;S}L then include double, triple, and
quadruple excitations. A single excitation from occu-
pied orbital i to virtual orbital a is given by

52 =22ty dlgag). ®)

Double, triple, and quadruple excitations are written
as products of sm% e excitation operators as S"S b
S,{’Sjb Sk»and S;/S/SES; 4 respectively. The 1ntegrals
were restricted to the types (linked|H|linked) and
(linked|H lunlinked), so that the integrals (singleX triple),
(double X triple), and {(double X quadruple) became
necessary additionally to those used in the single and
double excitation CI, (1+2)CI. Though the variational
methods include the terms composed of the integrals
between unlinked terms, we have considered approxima-
tions to calculate them from the lower order terms,
rather than to calculate them explicitly. A strong rea-
son for this is that the explicit calculations of such
terms are too time-consuming to plan calculations of
general utility.

The SAC CI wavefunction for the excited state is
given by

Vo= Ddgd, ©)
K

where a set of excited functions {<I>K} is defined by
Dg = Wy (Ry — Sg o)V, - (7)

Again the projector O®R) is unnecessary [1]. In eq.
), S defined by

Skg = (WGlRgW,) . ®)

It vanishes identically when the (spin—space) symmetry
of the excited state is different from that of the ground
state. Otherwise, it is of the order of Cy. For the v,
included in eq. (7) we have used the SAC wavefunctlon
obtained from the ground-state calculations. The SAC
CI wavefunction ¥, was truncated at the second order
for both the coefficients d and Cy, so that it is written
as

v, Z)dK [R + EC1S1R+ i| 10y — Z)deKg v,
©)
where dy = dg Ny . The last term of eq. (9) was not
modified for later convenience. For the excitation
operators R}}, we have included single and double exci-
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tations. The unlinked terms R}}S}L then include double,
triple, and quadruple excitations. The types of integrals
are limited to the same ones as in the ground state cal-
culations. An effective approximation is then introduced
in the SAC CI variational calculations. Thus, the inte-
grals required for the SAC CI calculations are of the
same types as those used in the SAC calculations.
Actually, we have used the same sequence of integrals
for both SAC and SAC CI calculations of the ground
and excited states of the same symmetry.

3. SAC calculation for ground state
3.1. Non-variational calculation (SAC MET)

We first consider the non-variational procedure since
it is simpler than the following variational one. Inserting
eq. (2) into eq. (I.10)*, we obtain

(O|HS}10)+ %) C;C0IS;(H — E,)S;F10)

+1 JZK) C/Ck OIS S (H—E,)SF10)=0,  (10)
which may be rewritten as
Hort ?CJ(GJI—EgTJI)=0’ (1)
where
Hy;=(0lHS;10), (12)
Gy~ EgTy = (OIS, (H — E,)S[10)

+1 ? C (OIS, S (H — E,)S}10) (13)

Note that the matrices G;; and T'j; are non-symmetric.
The energy is calculated from eq. (1.9) as

E,=Eq+ 41") C/(OIHS}'10)

+1 %) C;C{OIHS} S}10) . (14)

We have solved these equations iteratively as follows.

* We denote by eq. (1.10) the eq. (10) of the preceding paper
[1]. Similar abbreviations will be used hereafter.
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(i) Assume initial values for C© and E éo).

(ii) Construct G (0 and 7(0) matrices and solve the
simultaneous linear equation (11) to obtain C(1),

(iii) Calculate Eg(l) from eq. (14).

(iv) Repeat the steps (ii)—(iii) using the new quan-
tities C(1) and Eg(l).

(v} The above procedure is iterated until lEg(”) -
ESV < Ae.

We have used CI solutions as the initial quantities
CO® and £ though cruder initial guess seems also
to be all right. The iteration converged very smoothly
within 3—7 times with Ae = 0.1 X 1076 au.

3.2. Variational calculation (SAC V)

For the wavefunction given by eq. (2), the variation-
al equation given by (I.5) becomes

(OIHS}0)+ ‘JECJ (OIS, (H — E,)S}10) + 0L HS} 5710)]

+ JZK) CyCx [OIS,(H — E,)S}S%10)
+ 301 Sk (H—E,)S}10]

1 _ +o+
+1 121;2 CyCx Cp, OIS Sk (H ~ E,)SF S 105

+(01S,(H — E,)S;Sg S 10)]

J.
(15)
It is almost impossible to solve this equation completely.
In the present calculations, we have retained terms up
to second order in the coefficients. Then, we obtain

Hyy + ?CJ(GH—EgTH)=O, (16)
where
Hy;={0|HS]|0), (17)

Gy = EyTy = OIS, (H —E,)S[10) + Q| HS{S}10)

+ %) C OIS (H — E,)S} S}10)

+%(0|SJSK(H—Eg)S1+|0)]. (18)

Though the matrices G ;; and T, involved in eq. (18)
are not symmetric, they can also be made symmetric as
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Gy EyTy = OIS ;(H — E,)ST10) + (0| HS[ S} |0)
+1 %}cK{@ls,(H ~E,)SFS}10)

+(01S;(H — E)STSg10) + (OIS g (H — Eg)S;S(,‘EI(;)].
19
The energy of the SAC wavefunction (2) is calculated
from eq. (1.8) as

Ey=Eg+ ?c,<0|Hs,+|o>
—1 23 C,C,Ci(0IS;(H — E,)STSE10)
2IJK I~YJ%¥K I g/PIPK

+1 23 C;C;C, Cy {018, S J(H — E.)SESTI0)

4 I~J~K*L - g/ K°L ’

UKL 20)

where we have assumed that eq. (16) is satisfied. In
eq. (20) the last term includes the integrals between
unlinked terms. Since the calculation of this term is
time-consuming even for molecules of moderate size,
we have considered the following approximation. We
assume that the variational and non-variational solutions
for the SAC wavefunction are close. Then, using the
same values for {C;} and Eg in egs. (10) and (15), we
obtain

?CJ(OIHS;S}WO)

+J77<‘,CJCK<0|S HH—EQ)SFSEI0)

+1 25 C/CCLAO0IS Sy (H ~ E)S}SFI0)~ 0,

JKL (2 1)
where we have neglected the last two terms of eq. (i5),
the former being neglected because at least one of the
excitations S;; and SZ should be a single excitation
and the latter is neglected because it is higher by one
order. From egs. (20) and (21) we obtain

E,~E+ ]ECI<OIHSI+|0>
-1 %)c,c,mws;s}'lm

—I%( CLCrCk OIS (H ~ E)SISEIOY . (22)
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The set of equations (16)—(19) and (22) was solved _
iteratively by the same procedure as in the non-varia-
tional case.
4. SAC CI calculation for excited states
4.1. Non-variational calculation (SAC CINV)

The formula for the SAC CI non-variational calcu-
lation is obtained by inserting eq. (9) into eq. (1.22),

namely,

%) dj [<0|R (H—E)R}|0)
+ ;Q(OIR «(H—E)SFRE|0)

- cSLg<0|RK(H—Ee)|\IIg>] =0. (23)
The last term is non-zero only when both ground and
excited states have the same symmetry. It is rewritten

from eq. (1.10) as

?di Sy fOIRK(H — E,)1¥p)

~ ? d} Sy f(Eg— E) ORIy . (24)

This term is small since both of the integrals J; g and

(OR KI\I!g) are of the order of C; and Cy, respectively.

In the present rule of truncation (section 2) this term
may be neglected since the non-variational formula
includes the unlinked term only in “bra” or “ket”.
Then we obtain the working formula

where

Hyy —ETx =N, [(OIRK(H—Ee)RDO)

+ ? C{OIR K(H—Ee)s;R;jm)] . (26)

This equation constitutes an eigenvalue problem of a
non-symmetric matrix.
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4.2. Variational calculation (SAC CI V)

The secular equation for the variational calculation
is given by eq. (1.20), i.e.,

? (BylH—E,|®,d; =0. Q7)

The matrix element is calculated from eq. (7) as
(Bg|H~E @)= Mg Ny (TR (H — EQJRY ¥,
= I g Y IR(H —EQ) ¥y
— SV H—EJR] V)
+ Sg S Vgl H —E W] (28)
The first term of eq. (28) is transformed as
(W |Rg(H ~E)RT1¥,) = OIRg (H — E¢)R} |0}
+ ;} C;[OIR g S(H- E¢)R}10)
+(OIRg(H — E,)S;RL1 0]

+ 'IZJ) C/C(OIRg S (H — E)SJRF 10}, 9)

within the present truncation rules (section 2). With th
use of egs. (1.5)—(1.8), the last three terms of eq. (28)
can be summarised into

It is non-zero only when the symmetries of the ground
and excited states are the same. Thus, the matrix eleme
given by eq. (28) becomes

(PglH~E |®;)= NN, [(OIRK(H~E6)RZIO>

+ §c,[<0|R «Si(H ~E)R}|0)

+(O0|Rg (H — E,)S{ R |0}]

¥ ? C;CO0IR g S(H — E,)STR}I0),

—(Ey—E,) KgSLg] ; (30)

In this equation the term

| ?CICJ(OIRKSI(H—Ee)S‘}RHO) , G1)

337



Volume 67, number 2,3

is characteristic of the variational procedure so that an
explicit evaluation may be of interest. However, this
term is very time-comsuming even for molecules of
moderate size and therefore, an appropriate approxima-
tion may be hoped. In the present calculation we have
adopted the following approximation. In the CI
method, the equation

OI(H - Ep)Sy + IE C;S{H ~ E,)SN0)=0 (32)

holds exactly. We may use this equation to estimate
the order of magnitude of the term (32). We assume
that eq. (32) holds not only for |0} but also for R;}lO),
namely,

(OIRy [(H~ E)St+ 23 CSy(H - Eg)S}“} R0y~ 0.

! (33)
This approximation may be valid when the excitations
S; and Rk concern different pairs of (occupied and
virtual) orbitals, so that the present approximation
would be better for larger molecules. Multiplying C;
and summing up with respect to the index I, from eq.
(33) we obtain

%) C;COIR S (H ~ Ee)SFR}10)
~— ? C(OIR g (H— Eo)SIR10)

+(E,~ o) %7 CCAORSSIRKIO . (34)

We have also assumed the same relation for the off-
diagonal terms of eq. (31). Thus, the seqular equation
for the SAC CI V method is written as

where

Hyp = E.Tgp = Ng Ny, [<0|R xH—-E)DR]|0)

+1 Z:’ C,IOIR ¢ S{(H — E,)R}10)

+(OIRg (H ~ Eo)STRL |0 + (E,— Ey)

X (:L:J C;CHOIR kS SIR}I0Y— S, cng)} . (36)
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Eq. (35) is symmetric so that several algorithms are
available when the matrices are of large dimension [5].
In the present calculations, we have considered only
single excitations for the Ry’s in the term ZC;C; X
(OIRg S IS;RZIO), since it is still time-consuming and
since most excited states studied here are essentially
of single excitation nature.

5. Results of test calculations

The SAC and SAC CI methods have been applied to
the following systems for which the full CI or highly
accurate CI results are available for comparison. (i) 1S
states of the Be atom with a 58 basis [6]. The full CI
results were reported by Grein and Banerjee [7] for the
first 5 states. (ii) The BH3 molecule with minimal STO-
NG basis (N = 10 for 1s and 2s AO’s and 8 for 2p AQ’s)
[8]. The geometry and the scale factors of the STO’s
are the same as those in the full CI calculation for the
ground state by Pipano and Shavitt [9]. (iii) The ground
state of H,O with Huzinaga—Dunning’s [4s2p/2s] con-
tracted gaussian basis of double-zeta accuracy [10].
The geometry is Rgy; = 1.8111 bohr, LHOH = 104.45°
taken from Hosteny et al. [11] who gave very accurate
Clresults. The inner shell orbital was treated as frozen.
(iv) The ground and Rydberg excited states of H,O
with a STO-4G basis [12] plus 1G s- and p-type Rydbers
orbitals with & = 0.028. The geometry and the scale
factores are the same as those reported by Hausman et
al. [13] who have reported very accurate CI results by
their vector method. The excitations from the lowest
two orbitals 1a; and 2a; were not included.

In table 1, the present results for the Be atom are
compared with the results of different theories. The
MC SCF results were obtained by the optimization for
each state [7]. Two of the excited states (£, and Ey)
are essentially of the nature of two-electron excitation.
Values in parentheses are relative to the full CI results.
For both ground and excited states, the SAC and SAC
CI results are very close to the full CI results. They are
closer than the other theories by one or two orders
of magnitude. For ground state, the non-variational
solution (SAC MET) was —0.017488 au which is the
same as the SAC V result. For excited states, both
SAC CI'V and SAC CI NV results are also similar.

Note that the cluster effects (differences from the (1+2
CI) are larger for the excited states than for the ground
state.
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s § T 09 g In table 2, we have examined the effects of unlinked
§ E § g § E terms for the Be atom. The SAC V and SAC CIV
E = S S @ o methods were used. For the ground state almost all of
the cluster effects are due to the unlinked terms of
S @ _ four-electron excitations as products of two-electron
g § § E § excitations [14]. For excited states, the unlinked terms
S 22 8¢ of three-electron excitations as mainly the product
e L Il e g R(1)S 2y are important for the singly excited states £
E g § 5 § § and E'3, but for the doubly excited states £ yand By,
50 - S S I the unlinked terms of four-electron excitations as the
29 2 2 S a2 product R ;) S,y are important. This result is in ac-
v ! = cordance with the idea that for inclusion of electron
5 _ & 8 correlation, double excitations from the (multi-)
) § 2 § 3 g reference wavefunction for that state are important.
§ = § = S | E Table 3 shows the results for BH;. For the ground
s Jlelgec | & state, calculations due to the coupled-cluster many-
> g % § § g 2 electron theory (CC MET) were reported by Paldus
> 5 g § 5 § § g et al. [14]. Taylor etal. [15,16] also reported calcula-
QY S S S 2 a3 = tions due to the coupled pair approximation and many
33 ! o variants of it. The present result obtained by the SAC
2 V method is similar to the result obtained by Paldus
g § @ é‘ g _a‘g et al., the latter being identical with the SAC MET
§ g g 'é g g result. The cluster effects for the ground state are
s S o S o 3 almost entirely due to the quadruple excitations as
e § g E g § E the product S(Z)SQ). In table 3 we have also given the
© S 5 =z =% é results for the (calculated) lowest excited state, which
2 ; T2 a2 Z is a degenerate state corresponding to the transition
I CR from the B—H bonding MO (e-symmetry) to the vacant
o) § "L;) 7 MO. The unlinked cluster effect is very large and im-
e v@ @ ﬁ § a Q k) 4 portant for the excited state.
3 S g aeXa | g o= g Table 4 gives the result of the SAC calculations f
S S 8333 7.% ¢ he ground state of H,0 with a CUTO basis of double
S s S S o S 55 B the groun 2 a asis of double-
2 %u: l;;\ ‘E § g qg\ ;:5 g é) E zeta accuracy. fleie, we have included only the B-
_g 3 g § § 2 § 5 z -§ matrix [(O|HS;S7|0)in eq. (1‘8)1 ar}d the unlinked
3 % CI; T 2 o2 é 2 é S terms 0f.four-elecjtron‘excnatlons, since from tables 1
5 w175 and 3 this approximation seems to be very good. Fur-
E ] § g 2 ther, the unlinked effects are limited only to those ex-
o ) 5 ) 58 é _% citations which have coefficients larger than 0.005 in
5; g § ‘g E '§ 3 2 the (1+2) CI wavefunction; 130 excitations were in-
2| - S S = c2s % cluded within 223 possible ones. Both the SAC V and
g 5 = % S § 28 B SAC MET results are comparable to the more accurate
w| g § g g g ‘é’ % 2 CI results reported by Hosteny et al. [11], though the
3 = =S S § ‘% 2 B number of independent variables (size of the matrices
g § g § g invplved) is much smaller than that in the CI calculatio
2 & o gn = 6 _.5 Thls shows a rapid convergence of the cluster expansio:
_3 IR TOET: g=g=g in contrast to the CI expansion.
2 E| o 'g 2C Qoo 294 * Tables 5 and 6 give the results for the ground and
5 (‘_97 kS g S g SN ;;g g iy Rydberg excited states of H,O. The “wavefunction 2”

339



Volume 67, number 2,3

CHEMICAL PHYSICS LETTERS

15 November 1979

Table 2
Effects of unlinked terms for the ground and excited states of Be@)
State Full CI SACV SACV SAVYV SACV
(with all) (with B+4y) ®) (with all) (with all)
SACCIV SACCIV SACCIV SACCIV
(with all) (with all) (without 3y, 2y) (without 4y)
ground
Eo -0.017500 -0.017488 (0.00001) —-0.017487 (0.00001) —0.017488 (0.00001) —0.017488 (0.00001)
excited
E1(2-3) 0.424945  0.424644 (—0.00030)  0.424644 (—0.00030) 0.437290 (0.01234) 0.424694 (-0.00025)
E2(%:§) 0.788148  0.790760 (0.00261) 0.790761 (0.00261) 0.787524 (-0.00062) 0.801876 (0.01373)
E3(2-4) 3.094951 3.094659 (—0.00029)  3.094663 (—0.00029) 3.101553 (0.00660) 3.095048 (0.00010)
E4(§:2) 3.553543  3.560788 (0.00724) 3.560791 (0.00725) 3.561028 (0.00748) 3.567135 (0.01359)

a) See footnores to table 1.

b) B denotes the B-matrix (OIHSfS;IO) in eq. (19) and 4y denotes unlinked terms of four-electron excitations as products of two-

electron excitations.

(wf 2) and “wavefunction 4” (wf 4) of Hausman et al.
[13] are the CI wavefunctions defined by

wf 2 =@ + excitations through doubles ,
37
wi 4 = ¢, + excitations through sextuples , 37

where ¢ denotes the multi-reference configurations,
the number of which is four for 1A, one for 1A,,
three for 1B1 , and one for 1B2. A detailed comparison

Table 3

Ground and excited states of BH3
State Method Correlation
energy (au)
ground CI(1+2)¥ ~0.047180
day CIQ2+4)®) ~0.048050
Cl(1+2+3+4)d) ~0.048481
full C13) ~0.048491
CC MET(1+2+3y+4()? ~0.048079
SAC V(1+2+2y+3y+4y) D) ~0.048031
SAC V(B+4y)) ~0.048031
excited HF SECI 0.254200
(‘E)b) 1+2)Cl 0.210096
SACCIV 0.176684

3) These results are from Paldus et al. [14]. Their calculations
are based on the STO AO with the Hartree—Fock energy,
—26.338999 au.

b) present results are relative to the Hartree—Fock energy based
on STO-NG basis (—-26.338598 au). See also footnote b) to
table 2.
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between Hausman’s and the present results suggested
a small difference in the basis set used in the Hartree—
Fock calculations. Because of the lack of the Hartree—
Fock value in the literature, we have calculated the
values for wf2 and wf 4 of table 5 by equating the
ground state energy of wf 2 with that of the (1+2) CI,
neglecting the contribution of the limited number of
triple excitations included in wf 2.

As for the ground state energy, the SAC V method
gives a lower value than the SAC MET method. For the
excited states, the SAC CI method gives remarkable
improvements over (1+2) CI. Especially, the SACCI V
method gives excellent agreement with the accurate
CI results. The results of the SAC CI NV method are

Table 4
Ground state of H, O with CGTO basis

Method Number of Correlation

variables energy (au)
CI(1+2) 224 —0.126150
CI(1+2+3)b) 1558 —0.127225
CI(1+2+3+4)b) 6779 —0.132991
SAC V(B +4yy ) 224 —0.130494
SAC MET (B+4y) © 224 —0.131648

) All energies are relative to the Hartree—Fock energy,
—76.009265 au.

b) Ref. [11].

©) See footnote b) to table 2.
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Table §
Ground and Rydberg excited states of H,O compared with accurate wavefunctions a,b)
State HF SECI a+2)cl SACV SACV Hausman et al.©)
SAC CINV SACCIV
wf 2 wif 4
1Ay 6 59D (59 for G, 58 for E)d) 1051Hd (11149)D
1(G) 0.0 —~0.04225 —0.04257 —-0.04257 —-0.04225 —0.04461
2(E) 0.32171 0.24296 0.22509 0.22096 0.22090 0.21978
3 0.35063 0.26323 0.24403 0.23908 0.23918 0.23816
4 0.42588 0.34275 0.32657 0.32065 0.32090 0.31958
1A, 3) 41) 41) (516) (10952)
1 0.32060 0.22874 0.20932 0.20405 0.20266 0.20162
1p, 4) 43) 43) (1088) (11001)
1 0.24959 0.15946 0.13920 0.13534 0.13505 0.13396
2 0.33066 0.24661 0.22505 0.21981 0.21844 0.21754
3 0.39446 0.32494 0.30792 0.30424 0.30369 0.30306
B, (5) 47 47 (468) (11101)
1 0.39093 0.31496 0.30005 0.29452 0.29419 0.29342

3) The present results are relative to the Hartree—Fock energy, —75.52590 au.

b) SAC MET energy for the ground state is —0.04236 au.

<) The values for the wf 2 and wf 4 were calculated from the results of Hausman et al. [13]. For details, see eq. (37) and the suc-

ceeding sentences.

The integers in parentheses show the numbers of independent variables (sizes of the matrices) involved in the present calculation
and the numbers of Slater determinants involved in wf 2 and wf 4.

Table 6
Rydberg excitation energy of H, O compared with accurate calculations

State HF SECI (1+2)CI SACV SACV Hausman et al. [13]
SACCINV SACCIV
wf 2 wf 4
1A 1G) 0.0 0.0 0.0 0.0 0.0 0.0
2 0.32171 0.28521 0.26766 0.26353 0.26315 0.26439
3 0.35063 0.30548 0.28660 0.28166 0.28143 0.28277
4 0.42588 0.38500 0.36915 0.36323 0.36315 0.36420
‘Az 1 0.32060 0.27099 0.25189 0.24662 0.24491 0.24623
1, 1 0.24959 0.20171 0.18177 0.17791 0.17730 0.17857
2 0.33066 0.28885 0.26762 0.26239 0.26069 0.26215
3 0.39446 0.36719 0.35049 0.34681 0.34594 0.34767
‘Bg 1 0.39093 0.35720 0.34262 0.33709 0.33644 0.33803

also very good, though they are consistently higher

than the accurate values by about 0.004—0.006 au. It

is impressive that the present results with about 50

variables for each symmetry are quite comparable with
the CI results of much larger dimensions.

In table 6, the Rydberg excitation energies were
calculated from the energies given in table 5. The

values for wf 2 and wf 4 are independent of the Hartree—

Fock energy. Again, the results of the SAC CI V method
agree quite well with the accurate CI results. The SAC
CI NV results are consistently higher by about 0.005

au than the results of wf 2 and wf4. Thus, we see that
the SAC and SAC CI methods take into account the
correlations in the ground and excited states in a well
balanced way.
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6. Conclusion

In this paper, we have formulated the SAC and SAC
CI theories for actual calculations of electron correla-
tions in ground and excited states. The results of the
calculations show excellent agreement with the full CI
and close-to-full CI results, though the number of in-
dependent variables (size of the matrices involved) is
much smaller in the present calculations. It was seen
that the cluster effects are larger for the excited states
than for the ground state. These results show the utility
of the SAC method for ground states and especially of
the SAC CI method for excited states, since the slow
convergence of the CI method is much more critical
for excited states than for ground states. Thus, we may
conclude that the present results are quite encouraging
for the SAC and SAC CI approaches to the study of
electron correlations in ground and excited states.

Very recently, Saute et al. [17] reported a similar
calculation for m-electron model systems with the PPP
method. Their approach uses a variational method for
excited states on the basis of the non-variational (CP
MET) calculations for ground states. The formulation
is due to a diagrammatic method [18]. For excited
states, however, the agreement with the full CI results
seems to be worse in their calculations than in the pre-
sent calculations. A reason for this might be that they
did not include four-electron excitations as products
of two-electron excitations. On the other hand, for
ionized and electron attached states, their results were
encouraging, giving also a light on the utility of the
cluster expansion approach.
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