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We consider several generalizations of the exponential ansatz in a rather formal way, giving
several new wave functions which we call exponentially generated (EG) wave functions. There are
three distinct ways of the exponential-type generations of the wave functions, two of which are
new. They are named ESAC (extended symmetry-adapted-cluster) wave function and
exponentially generated CI (EGCI) wave function. The ESAC wave function is a simple extension
of the SAC wave function and is applicable even when the Hartree-Fock reference configuration
is not dominant. The EGCI wave function is a CI wave function constructed in the spirit of the
cluster expansion theory. Formally, it has the merits of both the CI theory and the cluster
expansion theory; for example, the upper bound nature, size consistency, and the applicability to
quasidegenerate states and excited states. We then introduce several new wave functions by a
multiple and mixed use of the exponential-type operators. We call such a class of wave functions
multiexponentially generated (MEG) wave functions. There are many possibilities for the MEG
wave functions, and the MR-SAC wave function proposed previously is one of them. When the
system involves several classes of electron correlations, the MEG wave function permits an
optimal (physically and practically) use of the exponential-type operators for the distinct classes of
electron correlations. We described the method of solution of the EG and MEG wave functions

and examined size consistency and some other properties.

I. INTRODUCTION

One of the important topics of modern quantum chem-
istry is to develop accurate and useful theories of molecular
excited states, especially for the studies of the dynamic pro-
cesses of molecular excited states. This is largely based on a
recent development in molecular spectroscopy experiments.
Reliable theoretical information on the potential surfaces
and electronic structures of excited and ground states is use-
ful for the design, analysis, and understanding of dynamic
processes in molecular spectroscopy. Theoretically, this re-
quires detailed and balanced inclusion of different kinds of
electron correlations, since they reorganize and transform
themselves along the reaction paths, specifically to each of
the excited states. Therefore, the theory should be accurate
and general, and yet should be efficient enough for a practi-
cal utility.

The structures an exact wave function should have are
an interesting theoretical subject. Requiring such structures
even to an approximate wave function, we will be able to.
obtain an accurate and yet practical theory. The cluster ex-
pansion of the wave function based on the exponential an-
satz'¢

¥ = exp(T')|0)

describes the electron correlation of a molecule quite well, if
the Hartree-Fock configuration |0) is a good zeroth order
wave function of the system. This property is essentially due
to an approximate “separability” in the electron correlation
of such a system. Sinanoglu described the physics of this
separability concept in detail in the field of molecular quan-
tum chemistry.> This wave function behaves well when a
system dissociates into some fragments, as in chemical reac-
tions. In such a process, the wave function of a system should
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approach a product of the wave functions of the fragments.
The exponential ansatz satisfies this condition because
exp(4 + B) = exp(4 Jexp(B ), aslong as the operators 4 and B
are commutative. Primas studied this separability property
of the wave function in some detail.* Pople et al.” called this
property size consistency and Bartlett et al.® size extensivity.
We note however that the exponential ansatz can be too re-
strictive when 4 and B are not separable but strongly inter-
acting. \

The desirable properties accurate wave functions should
have may be summarized as follows:>'! (1) upper-bound na-
ture; (2) orthogonality and Hamiltonian orthogonality
between different states; (3) exactness; (4) uniqueness; (5) ef-
fectiveness...rapid convergence; (6) applicability to quaside-
generate states; (7) applicability to open shells and excited
states; (8) size consistency; (9) self-consistency; (10) indepen-
dence from a practical choice in computations such as refer-
ence orbitals and reference configurations. Property (2) is
important when we study excited states and especially the
dynamic processes involving several states.'"'? Property (5)
is important for a practical utility of the theory. Properties
(6) and (7) are important when we study potential energy
surfaces of molecules in ground and excited states. For ex-
ample in the potential curves of the several lower states of the
CO molecule, there are no dominant configurations and the
weights of the important configurations change from state to
state and from distance to distance.'® Self-consistency is a
property most appropriately expressed by the Thouless
theorem.'* When the theory has this property, it satisfies a
part of property (10), namely, independence of the orbital
choice. Though property (10) is very important in actual ap-
plications, it is not a well-defined property. It is closely relat-
ed, for example, to properties (5), (8), and (9).

Two general approaches are now available for calcula-
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tions of accurate wave functions of molecular ground and
excited states. One is the CI approach and the other is the
cluster expansion approach. The former is a linear expansion
theory and the latter is a nonlinear expansion theory. The CI
theory is simple'® and has an upper-bound nature but con-
verges slowly and is not size consistent. The MR (multirefer-
ence) CI theory’®!” is important especially due to properties
(1), (6), and (7). The cluster expansion theory, like the CC-
MET (coupled-cluster many electron theory)® and the SAC
(symmetry adapted cluster) theory,'"'® is more rapidly con-
vergent, size consistent, and includes self-consistency, but
usually does not have an upper-bound nature. The single
reference theory sometimes fails for quasidegenerate states
and excited states.’®?° The SAC-CI theory’"?! for excited
states, which is a linear expansion theory within a subspace
of the SAC wave function, is important especially due to
properties 2, 5, 6, and 7 but depends critically on the exis-
tence of the SAC solution for the ground state (or for the
reference state).”? Recently, we have proposed a multirefer-
ence version of the SAC theory, called MR-SAC theory.”®
The theory has the merit of the cluster expansion theory and
yet is applicable to quasidegenerate states and excited states,
but the solution does not have an upper-bound nature be-
cause the nonvariational solution is easier than the variation-
al solution for a nonlinear expansion theory.'!

In this paper, we consider several generalizations of the
exponential ansatz in a rather formal way. We call such
classes of wave functions exponentially generated (EG) wave
functions. In the next section, we consider four exponential-
type expansion operators, three of which are new. We con-
struct new wave functions called ESAC (extended SAC) and
EG (exponentially generated) CI wave functions. We consid-
er the method of solution, size consistency, and some other
properties of the wave functions. In Sec. ITI, we consider the
wave functions constructed by a multiple use of the exponen-
tial-type operators. We call such wave functions multiex-
ponentially generated (MEG) wave functions. Many new
wave functions can be generated in this way and the MR-
SAC wave function® is one of them. This type of the wave
function is useful when the system involves several distinct
classes of electron correlations. It permits an optimal use of
each exponential-type operator for each distinct class of the
electron correlations. Summary and discussions are given in
the last section.

Il. EXPONENTIALLY GENERATED WAVE FUNCTIONS

We consider here the following four expansion opera-

tors:

mexp( S ax4 k)
K
=1+ aud}+— Y aga, A4l
K 2! K,L

1
+ = z aga ayAkALAL + -, (1)

3 kT

(Im) Exp(z axA ;)
K
1
=a,+ Y axdk +—Y aga, A}A]
I3 2 &1

1
+ = 2 aga ayAfALAL + -, (2)

3! kT

(III) e.z‘/z(z axA ','()
K .
1
=1 +20KAI< +—20KLAI<AI
I3 AN o4

1
+ = 2 agmAkALAL + -, 3)

3V KTm
wexZ? (z axA })
K
an"‘zaxf‘”( +—1—zaKLAI(AI.
K 2 i1

) .
+ ‘3T KgMaKLMA I(A I,A L + e (4)

The first one is an ordinary exponential operator and the
others are extensions of this operator. All of the expansion
operators are defined with the use of the “linked”” operators
3, axgA L with A} being an excitation operator as defined
below. The operator EXP in Eq. (2) may be defined alterna-
tively using an operator &,

EXP(; axA })E&(o exp(; agA }}), (5)

where &7, is the operator which makes the coefficient of the
identity operator to be a,. The operator & % was intro-
duced for the first time in a previous paper®’ in developing
the MR-SAC theory. We note that for a unique definition of
the EXP and & 2”7 operators, we need an additional con-
dition like a normalization condition. The normalization to
all orders or for the EXP operator the normalization to with-
in the linked operators will be a reccommended choice. In the
followings, we explain these four types of operators in detail.

The operator exp is an ordinary exponential expansion
operator. The SAC wave function’® is written as

yoAC = exp(; axd })|0), )

where 4 }, is a symmetry-adapted excitation operator. When
A} is a particle excitation operator, which is not generally
symmetry adapted, it is a coupled-cluster (CC) wave func-
tion.>® We note that the operators in the nonlinear expan-
sion theory should be symmetry adapted, because otherwise
some difficulties arise as we already showed before.'® For
simplicity in this paper, we consider only the ground and
excited states of the totally symmetric singlet state. The ref-
erence function |0) in Eq. (6) is a single determinant for
closed shells given by

0) = |lp,a@, B+ pia@; B+ pnapy B || (7)
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The operators {4  } are defined by the excitations from the
occupied orbitals {i} to the unoccupied orbitals {a}. All of
the excitation operators involved are commutative. There-
fore, an important property of the exp operator follows, i.e.,

exp(z agA })exp(; b, B '}_)
K

= exp(;aKA L+ ; bLB}:) {8)

which assures the size consistency. However, a shortcoming
of this expansion is that it is meaningful only when the
weight of the identity operator is large. This is shown later in
comparison with the EXP operator. This shortcoming of the
exp operator is one of the reasons of the breakdown of a
single reference cluster expansion theory for quasidegener-
ate systems.”’

Unknown in the SAC wave function, all the unknown
variables are associated with the linked operators. There-
fore, requiring the Schrédinger equation (H — E )¥A€ =0
in the space of the linked configurations, these variables are
uniquely determined, namely by

(O|H — E |W$A%) =,
(0ldx(H — E)| W) = 0. )

This equation is a nonvariational equation so that the solu-
tion does not necessarily satisfy the upper bound condition.
The variational equation is also easily derived by applying
the variational principle,'® but the solution is generally more
difficult than the nonvariational case since there we need the
integrals between unlinked terms not included in Eq. (9).!’
The operator EXP is different from the exp operator
only in the coefficient of the identity operator. For the EXP
operator, we assume the normalization within the linked
terms. The operators exp and EXP behave differently when
a weight of the identity operator becomes small. For a direct
comparison, we renormalize the exp operator as

a, exp(; agA }}) =a,+ ; ayAl

+~L S aaatal +.., (0
2! 4o KL

where ay = aya,. When the weight of the identity operator,
a, becomes close to zero, the unlinked term of Eq. (10) tends
to diverge. However, in the EXP operator such divergence
does not occur. In other words, the operator exp behaves
well only when the weight of the identity operator is not
small. When it is small, the EXP operator may behave better
because such divergence does not occur. When the weight of
the identity operator is large or dominant, the difference
between the expansions exp and EXP is small. Note that the
EXP operator is not a multiplicative operator in the sense

EXP(E axA })EXP(Z b, B 1)
K L
#EXP(zaKA}} +ZbLB;). (11)
K L

We define a new wave function by

\PESACEEXP(; axAd ;)[o), (12)

where ESAC stands for “extended” SAC. A merit of this
expansion over the SAC wave function is evident. It will
behave better than the ordinary SAC wave function in the
region of the nuclear configuration where the weight of the
configuration |0) becomes small. However, this does not
necessarily mean that an ordinary singles and doubles theory
is improved only by adopting the EXP operator instead of
the exp operator, because in such a region some of the triple
and quadruple excited configurations are sometimes impor-
tant as members of the main configurations which cannot be
expressed by the unlinked terms.?® In such a case, we expect
abetter result by including such triple and quadruple excita-
tion operators in the linked {4 %} operators of the ESAC
wave function. Probably, a more systematic solution is to
adopt the MR-SAC formalism.?® Further, the ESAC wave
function is not size consistent because the EXP operator is
not a multiplicative operator as shown by Eq. (11).

The solution of the ESAC wave function is very similar

' to that of the SAC method. The nonvariational solution is

obtained from the equations

(O|H — E |WESAS) =0,
(O|dx(H — E)|WESAS) =, (13)

which are solved similarly to the SAC method.

The operators ez and & Z° 7 are the generalizations
of the operators exp and EXP, respectively. Though the exp
and ez operators are the same in the linear term, they are
different in the product operator terms. Though the product
operators in the exp expansion have the coefficients which
are the products of the linear terms, those in the ¢/ expan-
sion have the coefficients which are free from the lower order
terms. Though the terms in the ¢z4 and & 2”7 expansions
may involve some redundant terms, we include only the lin-
early independent terms in the expansions of Egs. (3) and (4).
The & #° & operator is different from the ¢z operator only
in the coefficient of the identity operator. However, since all
the coefficients in these expansions are independent (except
for a normalization condition), these two operators are es-
sentially the same. The operator & 2% was introduced
previously on the basis of an analysis of the origin of the
breakdown of the single reference cluster expansion theory
in the case of the quasidegeneracy.?®

We define a new wave function using the & & Z opera-
tor as

\PEGCIEngg(Z axA ;r()|0), (14)
K

where EGCI means “exponentially generated” CI. In this
expansion, the operator parts are the same as the cluster
expansion, but all the terms have independent variables.
Therefore, this expansion is a linear CI expansion. The con-
struction of the configurations involved is done in the spirit
of the cluster expansion theory. Since this expansion is a
generalization of the cluster expansion theory, it has the
merits of the cluster expansion theory. For example, it is size
consistent. Since this expansion is more general than the
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cluster expansion, it has the freedom to become a product of
the wave functions of the two subsystems when it deals with
two noninteracting (closed-shell) subsystems. Therefore, the
physical solution of the EGCI wave function should be size
consistent. This situation is similar to the situation that the
full CI wave function is size consistent. Also, this wave func-
tion has the self-consistency property as shown below. The
EGCI wave function does not presume a dominance of the
Hartree-Fock reference configuration. Since the “unlinked”
term in this expansion has an independent variable, it can
represent a strong and synthetic coupling® of the lower op-
erators. Thus, this wave function is applicable to quasidegen-
erate states and excited states as well as ordinary ground
states. Moreover, since this expansion is a linear expansion,
we can easily apply the variational principle, and obtain the
equations,

(O|H — E |¥E°Cy =0,
(0|Ag(H — E )| WES) =,
(0|4 A, (H — E)|WES") =0, (15)

etc. The solution of Eq. (15) satisfies an upper-bound proper-
ty for both ground and excited states. Different solutions for
different states satisfy orthogonality and Hamiltonian orth-
ogonality to each other. Because of the linear nature of the
expansion, the variational and nonvariational formulations
give the same results. Further, we note that in the EGCI
expansion, the operators 4 , 4 x4}, etc., need not be sym-
metry adapted, in contrast to the SAC and ESAC theories.
Since the EGCI expansion is a linear expansion, the solu-
tions of Eq. (15) automatically satisfy a symmetry require-
ment, as long as enough space necessary to span the symme-
try space is given. Thus, actually, the EGCI theory satisfies
almost all the desirable properties summarized in the intro-
duction. Though this is only when we include all the possible
terms in the expansion (3) or (4),it is important to have such a
theory in a more physically imaginative form than the full CI
theory. '

The EGCI wave function is related to a different CI
wave function depending on a different choice of the opera-
tors {4 L }. It is written explicitly as

YR = 4,[0) + 3 axA k[0 + - 3 a A kAL [0)
e 21 £1

1
+— 3 agndkA4}A4}10)+ ... (14)
3! kT

When we choose as {4} ] all single excitation operators
within a given orbital space, WE°! becomes equivalent to the
full CI. The terms in Eq. (14') correspond to Hartree—Fock,
all singles, doubles, triples, etc. In this sense, the EGCI wave
function satisfies self-consistency. However, when we
choose only some single excitation operators, ¥¥*°“! is not a
full CI but corresponds to a selective limited CI. When
{AL] is a set of double excitations, ¥E°°" includes only
2n-ple (n =0, 1, ...) excitations. When {4 } } includes single
and double excitations, ¥YE°! is a sum of Hartree-Fock,

single, double, triple, etc. excitations. We have to delete re-
dundant terms. Thus, with a different choice of the operators
{4 %}, we can form a different level of approximate wave
function.

Practically speaking, a problem of the EGCI theory
would be how to establish a general rule of the selection of
the {4} } operators and the truncation of the expansion in
order to include only the important terms, since it is impossi-
ble to include all of the higher-order terms. Though the di-
mensions of the matrices involved in the calculations would
become much larger than that of the cluster expansion the-
ory, this demerit may be compensated by the merits men-
tioned above. Further, we can take advantage of the ad-
vanced algorithms developed for handling a linear
expansion theory.

Another method of solution of this situation is to use the
& & P operator only for such a part of the electron correla-
tions which really needs the & £° % operator. For the other
parts, we may use exp and/or EXP operators. This is theidea
of the MEG wave function described in the next section:

. MULTIEXPONENTIALLY GENERATED WAVE
FUNCTIONS

In the preceding section, we constructed the wave func-
tion using only one exponential-type expansion operator.
Here, we consider the wave functions constructed by using
two or more exponential-type operators given by Egs. (1)—(4).
A merit immediately expected is that this would permit an
optimal use of each exponential-type operator for each dis-
tinct class of the electron correlations involved in the system
under consideration.

Use of the two exponential-type operators gives the fol-
lowing five different wave functions:

WMEG‘EEXP(Z ayA }()EXP(Z b, B I)I0>; (16)
K L

wMEwwa@(z ayd })g%@(z bLB}‘_)IO);
K L
(17)

\I’MEG3Eexp(; agd L)EXP(; b, B ;)|o>; (18)
‘I’MEG4Eexp(; apA ;)smo@(; b, B 1))0); (19)
\pME.GsEExp(; ad ;)%@9@(; b, B ;)|o>. 20)

Here, the superscript MEG stands for multiexponentially
generated. These MEG wave functions are appropriate
when the system involves two kinds of electron correlations,
say, correlation 4 and correlation B. These two kinds of cor-
relations are represented by the sets of the excitation opera-
tors {4 L } and {B] }. The order of a multiplication of differ-
ent exponential-type operators is arbitrary because all of the
excitation operators involved are commutative. Among
these MEG wave functions, the MEG4 wave function is
equivalent to the MR-SAC wave function.?® The other four
MEG wave functions, WMES! YMEG2 PYMEG3 o4 PYMEGS
are defined for the first time in the present study.
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The wave function constructed from the two exp opera-
tors is identical to the one constructed from a single exp
operator in the sense,

YSAC — exp(z agA })exp(z b, B }_>|0)
K L

= exp( S axdk + 36,81 )0). 21

This wave function is just a SAC wave function. The MEG1
and MEG?2 wave functions are also constructed from the
two EXP and & & Z operators, respectively. These wave
functions are, however, different from the ESAC and EGCI
wave functions defined by the single EXP and & 2”7 oper-
ators, respectively, as

\I,ESAC=EXP(Z agAl +szBI)|O) (22)
K L
and
voo = g 2 7(Sacak + ToBL)ON  23)
K L

because the operators EXP and & 2”7 do not satisfy a mul-
tiplicative property as expressed by Eq. (21). The MEG1 and
MEG?2 wave functions are appropriate when the correla-
tions 4 and B are “separable” and they are expressed by the
EXP operators or by the & 2”7 operators.

The MEG3-MEGS5 wave functions use two different
operators for the two different classes of electron correla-
tions. For example, the MEG4 wave function will be useful
when the exp operator is most suitable for the correlation 4
and the & #° 7 operator is most suitable for the correlation
B and these two correlations are separable. An example of
the MEG4 wave function is the MR-SAC wave function
introduced previously®®

WYMR-SAC _ exp(z C,S ;f)g %ﬂ(szM})K)). (24)
T K

In the systems for which the MR-SAC theory is considered,
there exist at least two kinds of electron correlations. One is
the quasidegenerate (or internal®®) correlation and the other
is the dynamic correlation.? For the quasidegenerate corre-
lation, the & £° % operator is suitable because it does not
assume the Hartree-Fock configuration to be dominant and
includes the strong and synthetic coupling of the two excita-
tion operators.?® For the dynamic correlation, the exp opera-
tor is most suitable because of the approximate separability
of the correlated pair of electrons.> In the MR-SAC wave
function given by Eq. (24), the & £°Z part represents the
multireference part and the exp part represents a cluster ex-
pansion around this multireference part.

The wave function MEG3 has a similar meaning to the
MEG4 (MR-SAC) wave function. The exp part represents
the dynamic correlation and the EXP part represents the
quasidegenerate correlation. In contrast to the & 2”7 % oper-
ator, the EXP operator cannot represent the strong and syn-
thetic coupling effects. Therefore, such effects should be in-
cluded beforehand in the set of the linked operators {B ] }.

Let us consider some other examples of the systems
which are described adequately by the MEG wave functions.
For example, the MEG2 wave function would be adequate

for the system which consists of two interacting quasidegen-
erate subsystems. The operators {4 %} and {B]]} are as-
signed to different subsystems, and the interaction between
the two subsystems is not so strong as to produce the strong
and synthetic couplings, i.e., separable. Further, when the
subsystems are large, the electron correlations in the subsys-
tems would be classified into quasidegenerate part and dy-
namic correlation part. Accordingly, the operators may be
classified as

(AL} = {4k} + {4k},
(BL)={"BL} +{“BL}, (25)
and we may construct the following MEG wave function:

PYMEGE — exp(z YaxA }})2529.@(2 a4 }})
K K
XCxp(z ddeBI)sg%@(z qu«B;);m
L L
= exp(z YagAdl + Y "b,_“BI_)
K L

x sfgv@(}_j a4 ;)smﬂg’(z "b,_"B',[)]O).
K L

' (26)
This wave function is actually a product of the two MR-SAC
(MEG#4) wave functions. It includes two & £° % operators
and one exp operator. The dynamic correlation parts of the
two subsystems are summarized into one because of the mul-
tiplicative property.

Size consistency is one of the important properties of the
cluster expansion theory. How is this property kept for the
MEG wave functions? When the wave function consists of
the products of the size consistent components alone, it is
size consistent. If one of the components is not size consis-
tent, the wave function is not size consistent. We already
know from the previous discussions that the exp and & &° Z#
operators are size consistent, but the EXP operator is not.
Therefore, among the MEG wave functions given above, the
MEG2, MEG4, and MEG6 wave functions are size consis-
tent. The same is true for the self-consistency.

The solution of the MEG wave functions is done simi-
larly to the previous section. We require the Schrodinger
equation (H — E )W™EC = 0 within the space spanned by the
configurations which have independent variables, e.g.,
A%|0), B} |0), etc. It gives a nonvariational solution, so
that it does not satisfy the upper-bound nature. However, as
long as the wave function is already accurate, the difference
between the variational and nonvariational solutions should
be small.

It is easy to construct the MEG wave functions involv-
ing more than three exponential-type operators. By doing so,
we can construct an optimal wave function of the system
which requires different descriptions for different classes of
electron correlations. Note that in the MEG wave functions,
the interactions between different classes of electron correla-
tions are assumed to be expressed multiplicatively. When
more strong interactions exist, it is better to include them
within a single & £° Z operator. (The exp operator is a mul-
tiplicative operator and the EXP operator is not appropriate
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for a strong interaction.) The MEG6 wave function given by
Eq. (26) is an example of the MEG wave functions involving
more than three exponential-type operators.

IV. SUMMARY AND DISCUSSION

In this paper, we considered the exponential-type ex-
pansion operators defined by Eqs. (1)—(4). The exp operator is
an ordinary exponential operator and the EXP, ez, and
& % P operators are the variations and extensions of this
operator. Using these operators, we could define a class of
the wave functions which we call exponentially generated
(EG) wave functions. Several of them are new.

From a single use of the exponential-type operators, we
obtained the new wave functions called the ESAC (extended
SAC) wave function,

yESAC Exp(z apA 1,;)10)
- \'K
and the EG (exponentially generated) CI wave function,
yEGC mv@(z ad })|o>.
K

The ESAC wave function is an extension of the ordinary
cluster expansion and is applicable even when the Hartree—
Fock configuration is not a main configuration of the sys-
tem. Since the EXP operator can not represent the strong
and synthetic coupling of two operators,?® such effect should
be included beforehand in the linked operators {4 } }. A de-
fect of the EXP operator is that it is not size consistent. The
EGCI wave function is a synthesis of the spirits of the cluster
expansion theory and the CI theory. It has an upper bound
nature since it is a linear expansion and satisfies formally the
size consistency and self-consistency because it is a general-
ization of the cluster expansion. It is applicable to quaside-
generate states and excited states. However, since the dimen-
sion of the calculation becomes larger for the EGCI wave
function than for the SAC and ESAC wave functions, we
must take advantage of the advanced algorithms developed
in the field of the CI theory.

The multiple and mixed use of the exponential-type op-
erators gives also several new wave functions. We call such
wave functions multiexponentially generated (MEG) wave
functions. The MR-SAC wave function proposed previous-
1y?° is one of the MEG wave functions (MEG4). When the
system involves several kinds of electron correlations, the
MEG formalism permits an optimal (physically and practi-
cally) use of the exponential-type operators for distinct
classes of electron correlations. For example, in the systems
for which we considered the MR-SAC theory, there are at
least two kinds of electron correlations, namely, the quaside-
generate (first order) correlation and the dynamic correla-
tion. We used the & 2% operator for the former and the
exp operator for the latter. We have given some other exam-
ples of the usage of the MEG wave functions, like the MEG6
wave function given by Eq. (26), which includes three expo-
nential-type operators. We also examined the size consisten-
cy. Theexpand & & & operators are size consistent, so that
if a MEG wave function involves only these operators it is

size consistent but if it includes the EXP operator, it is not
size consistent. The same is true for the self-consistency.

Formally, all the wave functions studied here are exact.
They become different and represent different levels of elec-
tron correlations when the operators involved are limited to
some level, for example, to single and double excitations or
to only some of them. Some wave function may become simi-
lar to another wave function, when they are compared in
different levels of approximations. For example, the ESAC
wave function would be applicable even to the quasidegener-
ate state when we include the strong and synthetic coupling
effect beforehand in the linked operators. The MR-SAC
function, which is the MEG4 wave function, is also suitable
for such quasidegenerate case. It includes automatically the
strong and synthetic coupling effect. Though these two the-
ories are of course different in detail, the choice would de-
pend on the systems to be studied and the principal algor-
ithms of the program. The MR-SAC (MEG4) wave function
is more systematic and probably would be more efficient for
such systems. The MR-SAC wave function is size consistent
and self-consistent but the ESAC wave function is not.
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