
Abstract. The density equation proposed previously for
the direct determination of the density matrix, i.e. for the
wave mechanics without wave, is extended to a time-
dependent case. The time-dependent density equation
has been shown to be equivalent to the time-dependent
SchroÈ dinger equation so long as the density matrix,
included as a self-contained variable, is N-representable.
Formally, it is obtainable from the previous time-
independent equation by replacing the energy E with
i�h @

@t. The perturbation theory formulas for the density
equation have also been given for both the time-
dependent and time-independent cases.

Key words: Density equation ± Time-dependent density
equation ± Perturbation theory

1 Introduction

The non-relativistic electronic state is determined by the
SchroÈ dinger equation constrained by the Pauli exclusion
principle. We restrict ourselves, for a while, to fermions
but the argument is also valid for bosons. The
SchroÈ dinger equation is an equation of motion of the
wave function which depends on all the N-electron
coordinates, where N is the number of the electrons of
the system, and the Pauli exclusion principle is an
antisymmetric condition for the exchange of any two
electrons of the system. On the other hand, all the
elementary observables in quantum mechanics are
composed of one- and/or two-electron operators, so
that all such quantities are calculated only with the
knowledge of the second-order density matrix (2-DM)
de®ned by [1]

C�2��1020j12�
� N C2

Z
W��10203 � � �N�W�123 � � �N�dx3 � � � dxN : �1�

The 2-DM depends only on the four coordinates, while
the wave function depends on the N-coordinates.
Therefore, it would be a great simpli®cation if we could
®nd the equation-of-motion of the 2-DM itself.

Such an equation-of-motion was derived by the
present author in 1976 as the density equation [2], which
is connected with the SchroÈ dinger equation by the
necessary and su�cient conditions. The Pauli condition
in the wave function space becomes the N -represent-
ability condition [3] for the density matrix. Figure 1
shows the relation between these two methods. A
problem in the density equation method is that the
N -representability condition is not yet completely
known, despite the e�orts of many researchers [4]. The
Pauli (exclusion) principle is trivial in the wave function
space so that we still use the wave function approach
despite the simplicity of the 2-DM.

Let us de®ne the Hamiltonian of the system by

H�1 � � �N� �
X

i

v�i� �
X
i>j

w�i; j� ; �2�

where v�i� and w�i; j� are one- and two-particle opera-
tors, respectively. The SchroÈ dinger equation for the
stationary state is written as

H�1 � � �N�W�1 � � �N� � EW�1 � � �N� : �3�
The Pauli condition for the wave function is

P �W�1 � � �N� � �ÿ�pW�1 � � �N� ; �4�
where P is a permutation operator and �ÿ�p is plus or
minus unity depending on the parity of the operator P.
The second-order density equation is written as [2]

EC�2� � �v�1� � v�2� � w�1; 2��C�2�

� 3

Z
�v�3� � w�1; 3� � w�2; 3��C�3�dx3

� 6

Z
w�3; 4�C�4�dx3 dx4 ; �5a�
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Z
�H�2��12; 34� ÿ E�C�4��10203040j1234�dx3 dx4 � 0 :

�5b�
In general, the nth-order density equation is written as
[2]

EC�n� �
Xn

i

v�i� �
Xn

i>j

w�i; j�
" #

C�n�

� �n� 1�
Z

v�n� 1� �
Xn

i

w�i; n� 1�
" #

� C�n�1� dxn�1 � 1

2
�n� 1��n� 2�

�
Z

w�n� 1; n� 2�C�n�2� dxn�1 dxn�2 ; �6a�

or equivalently asZ
�H�n��1 � � � n; �n� 1��n� 2�� ÿ E�

� C�n�2��10 � � � �n� 2�0j1 � � � n� 2�dxn�1 dxn�2 � 0 ;

�6b�
where H�n� is a reduced Hamiltonian de®ned by either

H�n��1 � � � n; �n� 1��n� 2��

�
Xn

i

v�i� �
Xn

i>j

w�i; j�

� 1

2
�N ÿ n� v�n� 1� �

Xn

i

w�i; n� 1�
" #

� 1

2
�N ÿ n� v�n� 2� �

Xn

i

w�i; n� 2�
" #

� 1

2
�N ÿ n��N ÿ nÿ 1�w�n� 1; n� 2� ; �7a�

or

H�n��1 � � � n; �n� 1��n� 2��

�
Xn

i

v�i� �
Xn

i>j

w�i; j�

� �N ÿ n� v�n� 1� �
Xn

i

w�i; n� 1�
" #

� 1

2
�N ÿ n��N ÿ nÿ 1�w�n� 1; n� 2� : �7b�

H�n� de®ned by Eq. (7a) is symmetric for the interchange
of the coordinates, n+1 and n+2, but that by Eq. (7b) is
not. The nth-order density matrix �n-DM�C�n� is de®ned
by

C�n��10 � � � n0j1 � � � n�

� N Cn

Z
W��10 � � � n0�n� 1� � � �N�

�W�1 � � � n�n� 1� � � �N�dxn�1 � � � dxN : �8�
Using the energy density matrix G�n�, the density
equation is also written as [2]

EC�n� � N CnG�n� : �9�
The de®nition of G�n� is self-evident by comparing Eq.
(9) with Eq. (6a). It was shown in the previous paper [2]
that each density equation with n � 2 for the set of the
N -representable density matrices is equivalent (connect-
ed by the necessary and su�cient conditions) with the
SchroÈ dinger equation constrained by the Pauli principle
(see Fig. 1).

Here we note that the factor N Cn can be omitted if
C�n� is normalized to unity. However, for consistence
with the previous paper [2], we use the normalization
given by Eq. (8).

The density equation was left unsolved, despite its
potential utility, for two decades. Davidson and Harri-
man [5] pointed out that the number of unknowns in-
cluded in the density equation is larger than the number
of equations, so that the equation is insoluble. From
Fig. 1, it is clear that such insolubility originates from
the unknown nature of the N -representability condition:
if we have the complete N -representability condition, we
can solve the density equation, just as we can solve the
SchroÈ dinger equation under the Pauli condition.

Recently, a breakthrough concerning this approach
was presented by Valdemoro's group [6, 7] and our
group [8]. Valdemoro's group tried to ®nd good ap-
proximate formulas representing C�3� and C�4� in terms
of C�2� and C�1�; putting these formulas into Eq. (5a) the
density equation becomes an equation involving only
C�2� as a basic variable. Valdemoro and her coworkers
[6] generalized the fermion anticommutation relation
written for the 1-DM and the ®rst-order hole density
matrix (1-HDM) to the second, third, and fourth-order
cases, and from these equations they derived approxi-
mate decoupling equations (which are referred to as IPH
approximation in Ref. [8]). For the 2-DM, this approx-
imation was equivalent to the independent particle ap-
proximation. Nakatsuji and Yasuda [8], on the other
hand, utilized the hierarchy equations in the Green's
function method [9] and introduced the decoupling
approximations which were valid essentially up to
second-order in electron correlations. As clearly
understood from the argument based on Fig. 1,
these decoupling formulas constitute the (approximate)
N -representability conditions. In this formalism, Val-
demoro's approximation is shown to be valid up to ®rst-
order in the correlations. They could solve the density
equation for more than ten atoms and molecules and the
resultant energies and properties were in good agreement

Fig. 1 Wave function method vs density equation method
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with the full con®guration interaction (CI) (exact) val-
ues. Thus, we have been able to solve the 2-DM directly
from the density equation without any use of the wave
function. Wave mechanics without wave has thus been
realized in our laboratory. This was certainly a big
breakthrough in the density approach in chemistry and
physics.

It is therefore time to publish the time-dependent
density equation. In this paper we deal with a general-
ization of the density equation to the time-dependent
case. Our basic variable is the time-dependent density
matrix which is connected with the time-dependent wave
function as

C�n� � C�n��10 � � � n0; t0j1 � � � n; t�
� N Cn

Z
W��10 � � � n0�n� 1� � � �N ; t0�

�W�1 � � � n�n� 1� � � �N ; t�dxn�1 � � � dxN �10�
and we want to derive an equation which is related to the
time-dependent SchroÈ dinger equation

HW � i�h
@

@t
W �11�

by a necessary and su�cient theorem. In Sect. 2, we
derive such a necessary and su�cient theorem. In Sect. 3,
we give the time-dependent density equation in a form
which includes only the density matrix as a variable and
consider a method to use it for the direct determination
of the density matrix. In Sect. 4, the perturbation theory
of the denstiy equation is studied brie¯y for both the
time-dependent and time-independent cases. Some con-
cluding remarks will be given in Sect. 5.

2 Basic theorem

We consider a system composed of N fermions or bosons
speci®ed by the time-dependent Hamiltonian

H �
XN

i

v�i; t� �
XN

i>j

w�i; j; t� ; �12�

where v and w are respectively the one- and two-particle
operators which may depend explicitly on time t. We
assume that our density matrix C�n��10 � � � n0; t0j1 � � � n; t� is
N -representable so that we can suppose the existence of
a wave function W�1 � � �N ; t� which satis®es Eq. (10).
Note that our time-dependent denstiy matrix is com-
pletely general, i.e. it depends not only on the two
independent sets of n-coordinates, 10 � � � n0 and 1 � � � n,
but also on the two independent times, t and t0. The
number of particles, N is supposed to be a constant of
motion, so thatZ

C�n��1 � � � n; tj1 � � � n; t�dx1 � � � dxn � N Cn : �13�

Note thatZ
C�n��1 � � � n; t0j1 � � � n; t�dx1 � � � dxn � N Cn S�t0; t� ; �14�

where S�t0; t� � hW�t0�;W�t�i.

Using the wave function W introduced in Eq. (10), we
de®ne the energy density matrix for the time-dependent
system analogously to Eq. (10) as,

G�n� � G�n��10 � � � n0; t0j1 � � � n; t�
�
Z
�W��10 � � � n0�n� 1�0 � � �N 0; t0�

� H�1 � � � n�n� 1� � � �N ; t�
�W�1 � � � n�n� 1� � � �N ; t���n�1�0��n�1�;...;N 0�N dxn�1 � � � dxN

� hW0;HWin : �15�
Note that in Eq. (15) the Hamiltonian is de®ned with the
unprimed coordinates and time, and operates only on
the right. In the last equality, the integral notation h in
which denotes

h in �
Z
� ��n�1�0��n�1�;...;N 0�N dxn�1 � � � dxN ; �16�

is used and the prime on W within h in means that
it depends only on the primed coordinates and time, i.e.
W0 � W�10 � � �N 0; t0�. Using this notation, Eq. (10) is
written as

C�n� � N CnhW0;Win : �100�

2.1 Theorem

The time-dependent density equation,

i�h
@

@t
C�n��10 � � � n0; t0j1 � � � n; t� � N CnG�n��10 � � � n0; t0j1 � � � n; t�

�17�
with any single n which is larger than or equal to two
�n � 2� constitutes a necessary and su�cient condition
for the W�1 � � �N ; t� included in Eqs. (10) and (15) to
satisfy the SchroÈ dinger equation

HW � i�h
@

@t
W : �110�

2.2 Proof

We note that in Eq. (17) the operator @
@t written by the

unprimed t operates only on the unprimed time t in C�n�.
The necessity is as follows. From Eqs. (10) and (15), we
can rewrite Eq. (17) as

W0; H ÿ i�h
@

@t

� �
W

� �
n
� 0 : �18�

This is the density equation in the W-representation. It is
trivial that when W satis®es Eq. (11), Eq. (18) follows
automatically. Next, we prove the converse, i.e. the
su�ciency. We ®rst consider the lowest-order density
equation with n � 2. Then, Eq. (17) reads

i�h
@

@t
C�2��1020; t0j12; t� � N C2G�2��1020; t0j12; t� : �19�

Equating 20 to 2 and integrating, we obtain from Eq. (19)
the identity
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i�h
@

@t
C�1��10; t0j1; t� � N C1G�1��10; t0j1; t� ; �20�

and further

i�h
@

@t
hW0;Wi � hW0;HWi : �21�

The right-hand side of Eq. (21) can be rewritten as

hW0;HWi
�
Z

v�1; t�C�1�dx1 �
Z

w�1; 2; t�C�2� dx1 dx2 ; �22�

where we have used Eq. (12) and the permutation
symmetry for the coordinates of W�1 � � �N ; t�. We have
also used the abbreviationsZ

v�1; t�C�1�dx1 �
Z
�v�1; t�C�1��10; t0j1; t��10�1dx1 : �23�

Hereafter such abbreviations will be used frequently.
Similarly, the integral hH 0W0;Wi is written as

hH 0W0;Wi
�
Z

v��10; t0�C�1�dx1 �
Z

w��10; 20; t0�C�2�dx1 dx2 ; �24�

where v� and w� are actually equal to v and w, because
they are real. We now introduce an N -particle function
U�1 � � �N ; t� by

U�1 � � �N ; t� � H�1 � � �N ; t� ÿ i�h
@

@t

� �
W�1 � � �N ; t� �25�

and consider the integral hU0;Ui:

hU0;Ui � hH 0W0;HWi ÿ hH 0W0; i�h @
@t

Wi

ÿ hi�h @

@t0
W0;HWi � hi�h @

@t0
W0; i�h

@

@t
Wi : �26�

The ®rst term of Eq. (26) can be transformed to

hH 0W0;HWi

� N C1

Z
v��10; t0�G�1��10; t0j1; t�dx1

� N C2

Z
w��10; 20; t0�G�2��1020; t0j12; t� dx1 dx2

� i�h
@

@t

Z
v��10; t0�C�1�dx1 �

Z
w��10; 20; t0�C�2�dx1 dx2

� �
� i�h

@

@t
hH 0W0;Wi

� hH 0W0; i�h @
@t

Wi : �27�
The ®rst equality was obtained similarly to Eq. (24),
since W and HW have the same symmetry for the
interchange of coordinates. In the second equality we
have used Eqs. (19) and (20), and in the third equality
we have used Eq. (24). Next, we transform the third term
of Eq. (26).

i�h
@

@t0
W0;HW

� �
� ÿi�h

@

@t0
hW0;HWi

� ÿi�h
@

@t
i�h
@

@t
hW0;Wi

� �

� i�h
@

@t
W0; i�h

@

@t
W

� �
: �28�

In the second equality we have used Eq. (21). Inserting
Eqs. (27) and (28) into Eq. (26), we obtain

hU0;Ui � 0 : �29�
for any t0 and t. When t0 � t, this is

hU;Ui � 0 �30�
which gives U � 0, i.e. the SchroÈ dinger equation (Eq.
11). Thus, we have shown that the second-order density
equation (Eq. 19) is a necessary and su�cient condition
of the SchroÈ dinger equation. In general, when we have
the density equation (Eq. 17) with n � 2, we can always
obtain the second-order density equation (Eq. 19) by a
direct integration over the last n-2 coordinates. There-
fore, the above proof also holds for the general case.
Thus, we have proved that the time-dependent density
equation (Eq. 17) with any single n�n � 2� is a necessary
and su�cient condition for the W to satisfy the time-
dependent SchroÈ dinger equation (Eq. 11). (QED)

2.3 Implication of the theorem

Because the theorem is a necessary and su�cient
theorem, it shows that the density equation (Eq. 17)
for any single n�n � 2� is just equivalent to the
SchroÈ dinger equation (Eq. 11) so long as the density
matrix is N -representable. Among others, the simplest
equation is the second-order density equation (Eq. 19)
with n � 2. Here, the density equation is de®ned using
W explicitly, but our purpose is to solve the density
equation not in the W-space but for the set of the density
matrices. For this purpose, we have to transform the
energy density matrix G�n� such that it depends only on
the density matrix, since G�n� was de®ned in Eq. (15)
using the wave function W. Such a transformation will
give an equation-of-motion of the N -representable
density matrix itself, as will be shown in the next section.

The following properties of the density equation are
important:

1. As in the time-independent case, the equation for
n � 1 (®rst-order equation) is not a su�cient condi-
tion, though it is evidently a necessary condition. This
is due to the fact that our Hamiltonian (Eq. 12)
includes up to the two-particle interaction terms. For
the case in which the Hamiltonian is composed of
only the one-particle term (e.g. the model Hamilto-
nian in the time-dependent Hartree-Fock theory), the
®rst-order density equation also constitutes a neces-
sary and su�cient condition.

2. In general, when the Hamiltonian of the system
includes up to p-particle interaction operators, it is
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easy to show that the necessary and su�cient theorem
holds for the density equation higher than the p-th
order �n � p�.

3. The permutation symmetry of the wave function W
required in the proof of the theorem was only for
the three types of exchange operators, P12; P1i and
P2i �3 � i � N�, in the pairwise exchanges in both
sides of bra and ket, i.e.

�PW��PW � W�W; P � P12; P1i; P2i �3 � i � N� :
�31�

Although this requirement alone looks at ®rst sight to
be much weaker than requiring W to be symmetric or
antisymmetric for any exchange operators (i.e. re-
quiring C to be N -representable), it can be shown that
these two requirements are the same1 [10]. Therefore,
the theorem is valid only for the N -representable set
of the density matrices.

4. When the system is time-independent, the present
time-dependent density equation reduces to the pre-
vious time-independent density equation. For the
stationary state, the time variable would appear as

W�1 � � �N ; t� � U�1 � � �N�eÿiEt=�h ; �32�
or

C�n��10 � � � n0; t0j1 � � � n; t�
� C�n��10 � � � n0j1 � � � n�eÿiE�tÿt0�=�h �33�

G�n��10 � � � n0; t0j1 � � � n; t�
� G�n��10 � � � n0j1 � � � n�eÿiE�tÿt0�=�h �34�

where E is an appropriate constant. Inserting these
equations into Eq. (17), we obtain

EC�n��10 � � � n0j1 � � � n� � N CnG�n��10 � � � n0j1 � � � n� �9�
which is just the density equation for the time-
independent system, and the constant E is the energy
of the system given by

E �
Z

G�n��1 � � � nj1 � � � n�dx1 � � � dxn : �35�

3 Time-dependent density equation

In this section, we transform the time-dependent density
equation (Eq. 17) into the form which includes only the
density matrix as a self-contained variable, and consider

the method to use the density equation for the direct
determination of the density matrix.

We rewrite the Hamiltonian of the system given by
Eq. (12) as

H �
Xn

i�1
v�i; t� �

Xn

i>j

w�i; j; t� �
XN

i�n�1
v�i; t� �

Xn

j�1
w�i; j; t�

" #

�
Xn

i>j�n�1
w�i; j; t� : �36�

Inserting Eq. (36) into the density equation (Eq. 17) or
(Eq. 18) andperforming the integrationover the lastN ÿ n
coordinates, we obtain the density equation in the formZ

H�n��1 � � � n; �n� 1��n� 2� : t� ÿ i�h
@

@t

� �
C�n�2�dxn�1 dxn�2 � 0 ;

�37�
where H�n� is the reduced Hamiltonian given by

H�n��1 � � � n; �n� 1��n� 2� : t�

�
Xn

i

v�i; t� �
Xn

i>j

w�i; j; t�

� 1

2
�N ÿ n� v�n� 1; t� �

Xn

i

w�i; n� 1; t�
" #

� 1

2
�N ÿ n� v�n� 2; t� �

Xn

i

w�i; n� 2; t�
" #

� 1

2
�N ÿ n��N ÿ nÿ 1�w�n� 1; n� 2; t� ; �38a�

or

H�n��1 � � � n; �n� 1��n� 2� : t�

�
Xn

i

v�i; t� �
Xn

i>j

w�i; j; t�

� �N ÿ n� v�n� 1; t� �
Xn

i

w�i; n� 1; t�
" #

� 1

2
�N ÿ n��N ÿ nÿ 1�w�n� 1; n� 2; t� : (38b)

In Eq. (37), we have used the abbreviation as in Eq. (23).
As the reduced Hamiltonian, we may use either Eq.
(38a) or (38b). The former is symmetric for the
coordinates n� 1 and n� 2, but the latter is not. The
two particles n� 1 and n� 2 are the representatives of
the last N ÿ n particles.

The density equation (Eq. 37) is written in a following
equivalent form. Using the recurrence formula for the
density matrixZ

C�p��10 � � � �p ÿ 1�0p; t0j1 � � � �p ÿ 1�p; t�dxp

� N ÿ p � 1

p
C�pÿ1��10 � � � �p ÿ 1�0; tj1 � � � �p ÿ 1�; t� ;

�39�

1 The requirement given by Eq. (31) means that the W should be
symmetric or antisymmetric for the exchanges P12, P1i and P2i
�3 � i � N�. However, this requirement is completely general: any
exchange operator Pjk can be written as Pjk � P1j P2k P12 P2k P1j, so
that such W should actually be an eigenfunction of any exchange
operators, all of the eigenvalues being either +1 or ÿ1. (See, e.g.
Ref. [10]. Since any permutation operator can be written as a
product of exchange operators, the requirement given by Eq. (31) is
completely general. (In a previous paper (Ref. 2), the author has
tried to expand the space of the density matrix from the N -
representable one in the last two paragraphs of Sect. IIIA, but the
resultant space turned out to be not wider than the N -representable
space for the reason given above.)
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we can rewrite Eq. (37) as

i�h
@

@t
C�n�

�
Xn

i

v�i; t� �
Xn

i>j

w�i; j; t�
" #

C�n�

� �n� 1�
Z

v�n� 1; t� �
Xn

i

w�i; n� 1; t�
" #

� C�n�1� dxn�1 � 1

2
�n� 1��n� 2�

�
Z

w�n� 1; n� 2; t�C�n�2� dxn�1 dxn�2 : �40�

From the previous theorem, the density equation
(Eq. 17), (Eq. 37) or (Eq. 40) with any single n �n � 2� is
equivalent to the SchroÈ dinger equation for the set of the
N -representable density matrices. That is, to solve the
SchroÈ dinger equation (Eq. 11) imposing W to be sym-
metric (for bosons) or antisymmetric (for fermions) is
equivalent to solving the density equation (Eq. 17), (Eq.
37) or (Eq. 40) imposing the density matrix to be N -
representable. This equivalence is just like the one shown
in Fig. 1 for the time-independent case. The density
equation gives the exact density matrix without any
ambiguity when it is solved for the N -representable ones.
Thus, the time-dependent density equation (Eq. 37) or
(Eq. 40) is self-contained equation for the time-depen-
dent density matrix, and so may be considered as giving
an equation-of-motion of the N -representable density
matrix. There, every solution of the density equation
should be identical with the one obtained indirectly from
the SchroÈ dinger equation.

The simplest and practically most important density
equation is the second-order density equation given byZ

H�2��12; 34 : t� ÿ i�h
@

@t

� �
� C�4��10203040; t0j1234; t� dx3 dx4 � 0 ; �41�

or

i�h
@

@t
C�2� � �v�1; t� � v�2; t� � w�1; 2; t��C�2�

� 3

Z
�v�3; t� � w�1; 3; t� � w�2; 3; t��C�3� dx3

� 6

Z
w�3; 4; t�C�4� dx3 dx4 : �42�

Here, the variable is essentially the 2-DM C�2� irrespec-
tive of the number of the particles involved in the
system. This would be a quite remarkable simpli®cation
over the SchroÈ dinger equation in which the variable W
depends on all the N coordinates. In the density
equation, N is included in the reduced Hamiltonian
only as a constant factor, so that an increase in N would
not cause a di�culty in solution. In the SchroÈ dinger
equation, however, it is well known that an increase
in N causes a tremendous di�culty in solution.

A note is necessary here that the density equation
(Eq. 41) or (Eq. 42) involve not only C�2� but also C�3�
and C�4� so they are indeterministic by themselves.
However, the necessary and su�cient relation as given
in the proof and as depicted in Fig. 2 means that they
are deterministic when the complete N -representability
condition is given as a subsidiary condition. This implies
that the N -reprersentability condition describes the
explicit and exact relations of C�3� and C�4� in terms
of C�2�and C�1�.

The density equation given by Eq. (40) or (42) is similar
to a member of the coupled chain of hierarchy equations
often appearing in the many-body theory (e.g. Green's
function) [9, 11]. We also refer to the BBKGY (Born-
Bogoliubov-Kirkwood-(H. S.) Green-Yvon) equation
(see, for example, Ref. [12]). In particular, in the time-
independent limit, Eq. (40) becomes identical with a
member of the coupled hierarchy equations derived for
the density matrix by Cho [13] and by Cohen and Frish-
berg [14], who showed only the necessary condition.
However, the implication of our density equation is es-
sentially di�erent from that of these hierarchy equations.
As discussed in the previous paragraph, every density
equationhigher than secondorder isdeterministic in that it
is equivalent to (a necessary and su�cient condition of)
the SchroÈ dinger equation. The higher-order equations are
not required for the exact solution in contrast to the usual
interpretation of the hierarchy equations.

So far, we have supposed that our density equation is
to be solved for the N -representable density matrix. In
such a case, all the solutions would be the exact physical
solutions. However, since the complete (necessary and
su�cient) N -representability conditions are not yet
known at present, such a presupposition would not be
realistic. So, we may relax the constraint, i.e. we solve
the density equation imposing only the known and
tractable N -representability conditions. Such a proce-
dure is possible for the density equation since it is a non-
variational equation. Even in such a case, the density
equation would give correct exact solutions within the
N -representable set, though it may also give some non-
physical solutions in the space outside of the N -repre-
sentable set. The properties and the number of these
non-physical solutions would depend strongly on the
N -representability (necessary) conditions which have
been imposed simultaneously on the density equation.
These non-physical solutions could be eliminated, in
principle, using the rest of the N -representability con-
ditions, although we are not sure whether the already
known N -representability conditions are enough for
completely eliminating these non-physical solutions. In
some cases, the experimental values for some properties
of the system may well be used, since our knowledge on
the complete N -representability condition is still limited.

In the above procedure, the choice of the N -repre-
sentability conditions to be imposed simultaneously on
the density equation are very important, in order to ef-
fectively reduce the non-physical solutions. If the choice
is improper, the number of the non-physical solutions
would be too many to select out the correct ones. Nev-
ertheless, the above procedure would be more realistic
than the variational solution for which the complete N -
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representability conditions are required before solution
in order to obtain a correct upper bound of the energy2.
In the density equation, some of the conditions may be
used after solution for selecting the correct solutions.
Such a procedure seems furthermore to be more con-
venient since some of the known N -representability
conditions are too complex to be used as simultaneous
constraints. They are more easily used as the criteria of
the N -representability for the given density matrix ob-
tained as a solution.

In the previous solution of the time-independent
density equation [8], the 3- and 4-DM, C�3� and C�4�,
were decoupled with the use of C�2� and C�1�, using the
Green's function technique for the correlation expansion
correct up to the second-order. Though our formulas
might be far from the correct N -representability condi-
tion, they certainly worked for many molecules in cal-
culating the 2-DM without any use of wave functions.
The calculated C�1� and C�2� were completely N -repre-
sentable and almost N -representable, respectively. A
similar method of solution is expected for the time-
dependent density equation.

4 Perturbation theory for the density equation

We next consider the perturbation theory for both the
time-dependent and time-independent density equations.
We refer to the earlier perturbation theory formulation
for the dendity matrix [16, 17]. When the Hamiltonian of
the system is divided into the unperturbed part and the
perturbation part

H � H0 � kH1 �43�
the reduced Hamiltonian given by Eq. (38) is divided
similarly as

H�n� �H
�n�
0 � kH�n�

1 �44�
where H

�n�
0 and H

�n�
1 have the same form as Eq. (38)

except that they are composed of v0, w0 and v1, w1,
respectively. When the perturbation is the so-called one-
particle perturbation, H

�n�
1 is composed only of the

operator v1, and the application would be simpli®ed. As
in the conventional perturbation theory in the W-space,
we assume that the density matrix Cn�2 is expanded in
power series in the perturbation parameter k

C�n�2� �
X
k�0

kkC�n�2�k �45�

where k denotes the order of the perturbation.

4.1 Time-dependent case

Inserting Eqs. (44) and (45) into the density equation
(Eq. 37), and equating the coe�cient of each power in k
to be zero, we obtain

Z
H
�n�
0 ÿ i�h

@

@t

� �
C�n�2�0 dxn�1 dxn�2 � 0 ; �46�

which is the density equation for the unperturbed
system, andZ

H
�n�
0 ÿ i�h

@

@t

� �
C�n�2�k �H

�n�
1 C�n�2�kÿ1

� �
dxn�1 dxn�2 � 0 ;

�k � 1; 2; . . .� �47�
which is the density equation for the kth-order correc-
tion, C�n�2�k . The normalization condition for the density
matrix (Eq. 13) givesZ

C�n�2�0 �1 � � � n� 2; tj1 � � � n� 2; t� dx1 � � � dxn�2 � N Cn�2 ;

�48�
andZ

C�n�2�k �1 � � � n� 2; tj1 � � � n� 2; t� dx1 � � � dxn�2 � 0;

�k � 1; 2; . . .� : �49�
When the unperturbed Hamiltonian H

�n�
0 is time inde-

pendent, the solution of Eq. (46) may be written in the
form given by Eq. (33).

4.2 Time-independent case

Here, we further assume, in addition to Eq. (45), that the
energy E of the perturbed system is expanded as

E �
X
k�0

kkEk : �50�

Inserting Eqs. (45) and (50) into the time-independent
density equation (Eq. 6b), we obtain a set of equationsZ
�H�n�

0 ÿ E0�C�n�2�0 dxn�1 dxn�2 � 0 ; �51�Z
��H�n�

0 ÿ E0�C�n�2�1 � �H�n�
1 ÿ E1�C�n�2�0 �

� dxn�1 dxn�2 � 0 ; �52�
andZ
�H�n�

0 ÿ E0�C�n�2�k ��H�n�
1 ÿ E1�C�n�2�kÿ1 ÿ

Xk

j�2
EjC

�n�2�
kÿj

" #
� dxn�1 dxn�2 � 0; �k � 2; 3; . . .� �53�

where Eq. (51) is the equation for the unperturbed
system, Eq. (52) the equation for the ®rst-order correc-
tion to the density matrix, and Eq. (53) the equation for
the kth-order correction. The normalization condition
gives the same equations as Eqs. (48) and (49).

The expression of the kth-order correction to the
energy, Ek is obtained by integrating Eqs. (52) and (53).
It includes both of the kth- and (k ) 1)th-order correc-
tions, C�n�2�k and C�n�2�kÿ1 . However, we show below that
we need only C�n�2�kÿ1 for the calculation of Ek. The energy
of the perturbed system is written as

2 Garrod and Percus have proposed a variational method in which
only the selected N -representability conditions are used to get the
lower bound to the ground state energy. (see Ref [15]).
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E � �N Cn�2�ÿ1
Z
H�n�C�n�2� dx1 � � � dxn�2 : �54�

We use the Hellmann-Feynman theorem in the form

@E
@k
� �N Cn�2�ÿ1

Z
@H�n�

@k
C�n�2� dx1 � � � dxn�2 ; �55a�

orZ
H�n� @C

�n�2�

@k
dx1 � � � dxn�2 � 0 ; �55b�

where k is a dummy perturbation parameter de®ned in
Eq. (43). Di�erentiating Eq. (50) with respect to k,
equating the result with Eq. (55a), and making the
coe�cient of each power of k zero, we obtain

Ek � �kN Cn�2�ÿ1
Z

H
�n�
1 C�n�2�kÿ1 dx1 � � � dxn�2:

�k � 1; 2; . . .� �56�
This equation requires only C�n�2�kÿ1 for the calculation of
Ek which somewhat reduces the labour in calculating the
perturbation energy. Further, the Hellmann-Feynman
theorem expressed by Eq. (55b) gives the equationsZ

H
�n�
0 C�n�2�1 dx1 � � � dxn�2 � 0 ; �57a�

and

k
Z

H
�n�
0 C�n�2�k dx1 � � � dxn�2

� �k ÿ 1�
Z

H
�n�
1 C�n�2�kÿ1 dx1 � � � dxn�2 � 0 ; �57b�

which shows an interrelation between the k th- and
�k ÿ 1�th-order corrections. The expression correspond-
ing to Eq. (56) was derived in the W-representation by
Carr [18] and LoÈ wdin [19].

5 Concluding remarks

In this paper, the author has generalized the density
equation to the time-dependent case and obtained an
equation-of-motion for the N -representable density
matrix. The equation has the form which is formally
obtainable from the previous time-independent equation
by replacing E with i�h @=@t. Its properties are also
similar to the previous ones. Therefore, some of the
previous results are easily extended to the time-depen-
dent case. An example is the time-dependent Hartree-
Fock equation [20] which is easily derived from the
present time-dependent density equation by using the
independent particle approximation, just like the Har-
tree-Fock equation derived from the density equation in
a previous paper [2]. The equation for the correlated

density [2] is also easily extended to the time-dependent
case.

The perturbation theory for the density equation
would be useful when the density equation for the un-
perturbed system is solved exactly. When we take elec-
tron correlation as a perturbation, the Hartree-Fock
equation which is the unperturbed density equation [2],
and the correlated density equation [2], which includes
the correlation correction to all orders, may be divided
into each order using the present perturbation theory.
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