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We investigate the structure of the exact wave function as a solution of thedBueo equation,
aiming the singles and doubles description of the exact wave function. The basis is that the
Hamiltonian involves only one and two body operators. We first present two theorems that indicate
a possibility of the singles and doubles description of the exact wave function. We then examine the
exponential ansatz, as this theorem implies it to be a possible structure of the exact wave function.
Variational CCSsingles wave function is shown to be certainly exact for one particle Hamiltonian.
Thouless transformation plays an important role in the formulation. The conventional CCSD
(singles and doublegfunction is restrictive, even if it is solved variationally. A wider coupled
cluster function with general singles and doubles substitution oper@@&SD is also not exact

for the existence of noncommuting operators. We then analyze some formal properties of the full ClI
wave function, and finally, we propose an ansatz of the exact wave function and describe the method
of solution. It involves successive solutions of the secular equations of the order of singles and
doubles. It is variational and we can calculate both ground and excited state2D0@®American
Institute of Physicg.S0021-960600)30832-7

I. INTRODUCTION ajagtaga; =[a; ,aql: = dpq,

Solving the Schrdinger equation is not only a dream of [a,a}], =0, (1.4)
a scientist but also has much practical utility. Exact predic- P
tions of chemical and physical properties and phenomena are [a,,a4]; =0.
our ultimate goal. Nowadays, only the full CI method is
available for solving the exact wave function within a given
basis set, but this method is too demanding computationall
and therefore impractical even for a small system. The pur-
pose of this paper is to" search for the possibility of an easier  |0)=|.....¢; ... TR [. (1.5
way of solving the Schidinger equation within singles and

doubles. The basis is that the Hamiltonian involves only onéV€ Use the indices j k,| for occupied orbitalsa, b, c,d for
and two particle operators. unoccupied orbitals, ang,q,r,s for general orbitals. There-

The reference one-particle functions used for definédg
nda, are the Hartree—FockiF) orbitals in the HF wave
unction,

We call a wave functions to be “exact” when it satis-  1Or€;
fies the Schrdinger equation, a|0)=0,
1.6
(H—E) =0, (1.2 2,0y =0. (1.6
whereH is the Hamiltonian of the system under consider- A point quite important to be mentioned here is that the
ation, Hamiltonian is composed of only one and two particle op-

erators. There are no elementary physical operators that in-
volve more-than-three body interactions. Because of this
H=> vla'a,+ 2>, wia alaa,=HoetH . o -
- Updr Qp < Wpgdr As 8q%p= Mone™ Mwo: simplicity, we may imagine that the exact wave function
P P (1.2 should have some simple structure, even though it is not
known now, because it is an eigenfunction of such a simple

andE is the energy of the system defined by operator, Hamiltonian. This is a motivation of this research.
In the formulation given below, we utilize only this fact, and
(Y|(H=E)|)=0. (1.3  therefore, the argument of this paper is valid to any kind of
physical systems.
The creation and annihilation operatoas, anda,, respec- It is well known that the second order density matrix
tively, satisfy the anticommutation relation given'by I'®(1'2'|112) is enough to calculate all the elementary
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physical propertie$-* We have the variational method for TABLE I. Single substitution operatofs.
the direct determination df(?).5>® We also have the density
equation, including only density matrices as variables, that is
equivalent to the Schdinger equatior:® These methods are 1: a%ai agaa
based on the possibility of the singles and doubles descrip- 2 a & a

tion of quantum mechanics. The obstacle there is therhe operators in thé1’,1) block is denoted agt, and those in the other
N-representability, but much progress has been made re-blocks as't.

cently along the density equation thedBET).” 1*A review

of the DET in chemical physics has recently been summa-

rized by the present authdt.

We now define “necessity” and “sufficiency” relations
to the Schrdinger equation. If the “exact” wave functiog,
which is a solution of the Schdinger equation, satisfies
some equation, then that equation is called a necessary co
dition. On the other hand, if @ satisfying some equation
should always satisfy the Scluinger equation, then this
equation is called a sufficient condition of the Salinger
equation. When some equation is not only necessary but al$¢/l(H—E)H|¢)= Er vp(¢l(H—E)a ay|#)
sufficient, then that equation is called to be “equivalent” to P
the Schrdinger equation. As such equivalent formula, we rs .
have variational principle, density equatibh,etc. The +pqzrs Woo(#I(H—E)a; as aqap| ) =0.
equivalent equation has the same determinative power as the
Schralinger equation has, when it is solved appropriately. 23
There are many necessallyut not sufficient conditions of ~ This equation combined with Eq1.3) gives Eq.(1.7), so
the Schrdinger equation, for example, Hellmann—Feynmanthat i is exact. Thus, the necessary and sufficient theorem
theorem, virial theorem, etc., but generally speaking, the deH-1 is proved.(QED)

1 2

Proof. The necessity is trivial because the solution of the
Schralinger equation automatically satisfies E¢&.1) and
(2.2). The sufficiency is also easily shown. We calculate the

llowing quantity using the definition of the Hamiltonian
g. (1.2] and Egs.(2.1) and (2.2), and show it to vanish
identically

terminative power of such an equation is limit€d. The indicesp,q,r,s run both occupied and unoccupied
In this paper, the following equation plays an importantorbitals, so that the single and double substitution operators

role for judging a wave functions to be exact, namely, appearing in Egs(2.1) and (2.2 are grouped as shown in
(|(H—E)?| ¥)=0, 1.7 Tables | and Il. These operators are classified into two types,

At and*t. The”t operators are the ones in tfE,1) blocks
where the energ is defined by Eq(1.3). This equation is  of Tables | and Il and involve only the excitation operators
equivalent to the Schdinger equatiot? in the necessary and from occupied to unoccupied orbitals. The other operators
sufficient sense and valid to both ground and excited stategre calledt operators and have at least one creation or an-

In Sec. Il, we show the basic theorems that imply anihilation operator of the typae;” or a,. The number of Egs.
possibility of the singles and doubles description of the exact2.1) and (2.2) is

wave function. As the theorem implies the exponential an-
satz combined with the variational principle as a possible
structure of the exact wave function, we devote Secs. Il IV,
and V to the examinations of the exponential ansatz includ- ith m being the number of the active orbitals. It is larger

) ) o . w
ing singles and doub!es excitation .operators asa ca}nd|date ﬂfan the number of the so-called singles and doubles, which
;hﬁ ?I(act Wa;/e fl:.n ctpn. Sl.e%'tv:,%;ves an extamma'gon ?.f thefs the number of thet type operators, but it is essentially in

u wave function in-a fignt ot the present Consideration, y,o o me order. The equivalence of this set of equations with

an n S_ec. Vlfl V\;]e give a proposa][ of the smgles qul dOUbleﬁwe Schrdinger equation implies an existence of the singles
escription of the exact wave function. Conclusions ar%nd doubles description of the exact wave function.

given in Sec. VIII. We note that even if we have the relation

2
M=m?+

m
g(m—l)

(2.4)

Il. BASIC THEOREM (Yl(H=E)aga; a;a,a.apl¢)=0 (2.5

The theorem given below is very simple but its implica-
tion is important.

Theorem II-1 The wave functiony that satisfies the fol-  TABLE II. Double substitution operatofs.
lowing two equations:

| N | 1 2 3 4
H—-E)a, a =0 (2.2
(C )3 a, v) 1 atalaa alay aa; ajajaca; aja; a.a;
and 2' ai ag+ aa,; ai ag aa; ai aﬂ+ aa; ai a,jt a.a;
' ag ag aa aga, aa agagaca agay aca
+_+ _ b %c Gk“%a b Gk “I%a b @d “%c%a b @k “c%a
(l(H=E)a, ag a-qap| #)=0, (2.2 4 ajal a a, aalaa, aajaca, aafaca,
f_or all the indicesp,q,r,s is SUfﬁc_i_ently exact. These equa- arhe operators in thél’,1) block is denoted adt, and those in the other
tions are also a necessary condition for théo be exact. blocks as‘t.
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for the triple substitution operators and similar ones for(2.5), we note that even if we include triple, quadruple, etc.,
higher operators, they have nothing to do with the derivatiorsubstitutions in our wave function and determine the associ-
of Eqg. (2.3), namely, with the proof of Theorem II-1. This ated variables by, e.g.,
again supports the existence of the singles and doubles de-
scription of the exact wave function. In a separate paper,
we examined the roles of the higher excitations in the con- <9C,quur
ventional configuration interactiofCl) and coupled cluster
(CC) wave functions.

Now, let us recall the variational principle of the form,

=aq a, a, a,aqap, (2.12

they have nothing to do with the proof of the above theorem.
Since the wave function defined by the above theorem is

exact, it should automatically satisfy several important prop-
(|(H-E)|sy)=0, (2.6) erties, e.g., size-consistency and size-extesiitypper-

bound nature for the ground state, the bound-from-below na-

which is equivalent to the Schdinger equation in the nec- ture for the excited states, and a correct behavior in the

essary and sufficient sense. Comparing Ef6) with the  homolytic bond fission processultireference type nature

equations in Theorem lI-1, we can imagine the structure obf the wave functiof?).

the exact wave function as expressed by the following theo- From Egs.(2.8) and (2.9), one may expect that the ex-

rem. ponential ansatz of the wave function combined with the
Theorem 1I-2 Let us assume a wave functignthat has  variational principle may represent the structure of the exact

variables of the order of only singles and doubles, wave function. We therefore examine this possibility in the
- s 44 following three sections. We note that the variational deriva-
Y=9(Cparap, Cpqar asaqdp, Py, (2.7 tion of the cluster expansion was given by the present author

. . in the formulation of the symmetry adapted clust6AC)
where®d are the given reference functions, and further as- o0 .

. expansiorf’ The SAC theory not only gives an accurate
sume thaty satisfies

ground-state wave function, but also generates a set of ex-

i . cited functions that span the excited stéte¥he SAC-CI
E:ar apy (2.8)  theory utilizes such functions for describing excited states,
P ionized states, and electron-attached st&fes.Kutzelnigg
and examined several different CC theorfés.
J
aC—lﬁrS =a ajagapy (2.9
Pq Ill. VARIATIONAL CCS FOR THE ONE-PARTICLE
for the variations in the coefficient§, and C.y,, respec- HAMILTONIAN

tively, theny is exact. As a simple prototype system, we consider here the sys-

Proof. Applying the variational principle, Eq2.6) un-  tem that has only one-particle term in the Hamiltonian,
der the assumption that the variation is done only for the

unknown variable€, andC;, then we get Eqs2.1) and
(2.2 of Theorem IlI-1 from Eqs(2.8) and(2.9), respectively.
Therefore,is is exact.(QED)

The numbers of Eq$2.8) and(2.9) are just the same as
those of the unknown variableS;, and C.,, respectively,
included in the wave function of Ed2.7), so that we can
determine all these unknown variables.

Theorem II-2 states that a sufficient condition for the
to be exact is that it has the structure defined by EZ®) =exp(T)|0),
and (2.9). The number of the variables & given by Eq.
(2.4). M is independent of the number of the electrddspf
the system and is much smaller than that of the full CI, for
which the number of variables is given lfpr singled

1 m+1
m+1\ IN

Hzg vpa, ap. (3.1

The HF model Hamiltonian is an example of this system. For
such system, we have the following theorem:

Theorem Il For the one-particle Hamiltonian, the varia-
tional CCS wave function is exact.

Proof. The CCS wave function is defined by

T=2, Clja;. (3.2
I,a

Since this wave function involves only commutable opera-
tors, we get

iy
aca =a, ajy. (3.3

m+1

: (2.10

Mii-c1=

IN+1

where () denotes binomial coefficient. This number depends
not only onm but also onN and soon becomes intractably From the variational principl¢Eq. (2.5)), we have
large even for relatively small systems.

Theorem 11-2 is a sufficiency theorem and it does not  (¥I(H—E)a,ai[¢)=0, (3.9
claim the necessity. This means that the space¢ dkfined : -
by Theorem II-2 may be smaller than the real space of thé’jlnd the energf is defined by
exact wave function. As expected from the argument on Eq.  (#|(H—E)|¢)=0. (3.5
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Since Eq.(3.4) is only for the At type operators, we have to Let us suppose the orbital transformations given by
formulate similar equations for th& type operators. For this
purpose, we examine the effect @f anda, applied to. xi=oi+ >, Clo, (3.19
First, we obtain a
and
a expT)=expNa, —| >, Cf(‘a;)exp(T) (3.6)
a
Xa=¢a— > Cloi, (3.19
and :
then, the new set of creation and annihilation operatoes
a,expT)=expT)a,+ 2 Cla; |expT), (3.7 noted with prim¢ associated with the orbitalg,} are given
i by
from the commutation rule given by E¢l.4) (see also the
Appendi¥. Applying these equations {®), we have a,=a + Cfal (3.16
a
a, +>, Clal|y=0 (3.9 and
a
and ay=a,— >, Cla. (3.17
I
aa_z Ca; | =0, (3.9 The CCS wave function given by E3.2) is nothing else
[ but the Thouless transformation of the single determinant
and then we have from [0)=|.....¢;.... [ to|&)=].....xi....], except
for a normalization factor, and Eg&.8) and(3.9) are noth-
8y a.)=2 Clayaiy, (319 N9 elsebul
+
a....xi....[=0 (3.18
a;rail//:((sij_z C?a;ai l//, (31]) and
aa/”)(, ”:0, (319
and . . . .
respectively. The corresponding equation for the original or-
bitals is given by Eq.(1.6).
alabt/f=§i) cP 5ik_§a: ka, a | . (3.12 tep) s Y

Now we calculate the following quantity, which is re- |v. VARIATIONAL CCSD

written using Table I: S .
Now, we come back to the general Hamiltonian given by

Eg. (1.2) and consider how good is the CCSD wave function,

<¢|<H—E>H|w>=§ v3(Y|(H—E)asa|¢)

Y=exp(T)[0),
n
+a2,b vp(¥l(H—E)a, ay| ) T=% C?a;ai+”2ab Cllajayaja. 4.2
+ j H-E)a‘a Applying the variational principle to the CCSD wave func-
2 vl(ulH-B)a aily) o o get
i (yl(H—E)a, a|y)=0 (4.2

+ 2 va(Ul(H-E)aagy). (313 o
The first term on the right-hand side vanishes identically by  (y|(H—E)a, a; aja|4)=0. 4.3
Eqg.(3.4). The following three terms are also shown to vanish We h ine th .
by using first Egs.(3.10—(3.12 and then Eqs(3.4) and e here want to examine the quantity,

(3.5. Thus, we have shown that Ef.7) holds for the CCS ) N
wave function; the CCS wave function is exact for the one-  (¥I(H _E)H|¢>=; vp{Yl(H=E)a; ap|4)
particle Hamiltonian(QED)

It is remarkable that in the CCS case, the substitution ; . 4
operators including th&t type operators are all transformed + %s Wpqu'(H —Bla; ag aqap| )
to the terms including only thé‘t type operators, and there-
fore, the last three terms of E¢3.13 become zero. This (4.4
remarkable relation is derived from Eg&.8) and (3.9), as in the previous section. The one and two electron opera-
which are essentially equivalent to the Thouless thetem tors of Eq.(4.4) run over all the elements®( and *t) of
for the single-determinantal wave function. Tables | and I, respectively, while the operators in H42)
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and (4.3) run only within the(1',1) blocks (At alone. The TABLE lIl. Single substitution operators of Table | applied|®).
operators*t are characterized by the inclusion of at least

1 2
onea;" or a, operators.
We show in the Appendix the following relations: ; 35%10) 8
ij
a’ + Ea: c? ;—2%}) Cﬁbagagaj) $=0 (4.5
and

volving up to six-particle excitations. Actually, wheft in-
volves a;" or a, operatorsn times (1=n<=4), the highest
a,— > Cla+22, Claya ai) $=0. (4.6)  excitation terms in*t  are (h+ 2)-particle ones. Therefore,
' b for such *t operators, we can not have the relations like Egs.
In contrast to Eqs(3.8) and(3.9) for the CCS wave function (4.9 and(4.10, so that the integral given by E(.4) does
for the one-particle Hamiltonian, the above equations innot vanish for the CCSD wave function. Thus, the conven-
volve the products of three operators in the last terms; theyional CCSD wave function is too restrictive to be an exact
originate from the double excitation termsThand compli-  wave function, even if it is solved variationally. In other
cate the Thouless transformation. words, it does not have the freedom associated with the sub-
Equations(4.5) and (4.6) are utilized to transform the stitution operators expressed bl
termsa;” s anda,, respectively, involved in the terft
into the terms involving only the commutable operatorsof
anda, types. The(1',2) and(2',1) elements of the single
substitution operators of Table | applieditcare transformed

as Based on the result of the preceding section, a natural
next step is to examine the coupled cluster with more general
¥, (4.7 T-operator. From the preceding argument, no restriction was
there on the reference function, so that the simplest choice is

V. COUPLED CLUSTER WITH THE GENERAL
T-OPERATOR

+ _ a,+ ba,+ .+
a. aa://—(Ei Cia. ai—ZHEb Cij a; ap a3

and the HF reference functiof0). Then, we consider the cluster
expansion with generdl-operator as given by
a ayy= ( ik — 2 Cla,ac+ 2,26 Cﬁba;agajak) . y=exp(T)|0), (5.2
(4.9

ro+ Iso+t4+
- L = +
Therefore, from the variational condition given by E¢&2) T %:‘ Cpar ap ,%;S Cpo?r 8s 3adp

and(4.3), we have

(Yl(H=E)aa,y)=0, 4.9 + pqErsm Co ala/alaazapt - (5.2
and In particular, we are interested in the followifigoperator of
(y|(H-E)a‘ay)=0, (4.10  singles and doubles:
for the (1',2) and (2’,1) elements of the single excitation T=> Cla‘a. + C'Sa*a‘aa 5.3
operators. Eqs(4.9) and (4.10 are very special among % peT P pqErs paTT s TaTE ©3

the *t type operators of Tables | and Il. For example, the

. o We refer to the coupled cluster with this general singles and
(2',2) element of the single substitution operater;a,, P g 9

. doubles operators as CCGSD, where G stands for general.
based on Eqsi4.5 and (4.6 leads to the terms involvin Othis function includes all kinds of substitution operators, i.e.,
qsis- : 9 both At and Xt given in Tables | and I, so that it is wider

thre‘?’ﬁv)aa;;“fle:ggai[llgr;i-bstitution operators shown in Tablethan the conventional CCSD wave function discussed in the
yp P preceding section. The number of the variabldgl igiven by

Il applied to ¢ are similarly transformed into the terms that Eq. (2.4, which is larger than that of CCSD, but it is still of
involve the excitations higher than triples. For example, the[he' or.de,r of singles and doubles '

(3',1) element of Table Il applied t@ is transformed as

+ o+
ac 4y akaa’p
TABLE IV. Double substitution operators of Table Il applied|®).
= Z C?aéaJakaﬁZiij Ch%ajajay awa;a; | ¥ 1 2 3 4
1 ajala,a0) Suaz ai|0) 0 0
(4.19 N — Sikas a|0)
that involves not only doubles but also triples, and the latter 2 N §k|0> 5g5g\o(>) 0 0
ones do not vanish by the variational conditions given by _5ika5 &|0) N ikoi" ) o o
Egs. (4.2 and (4.3). It is easy to show that the terfft e o 0 0 0

with *t given by Table Il is transformed into the terms in-
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The CCGSD wave function has some complex structurdunction and offers some useful ideas for the present study.
not in common with the ordinary CCSD. First, it includes We summarize here only some aspects of the full Cl that are
noncommuting operators, which make CCGSD somewhapertinent to the present study.

complicated. Second, the linked part of the operator is The full Cl wave function is written as

zero, |0), or single excitations, as seen from Tables Ill and

IV that summarize the GSD operators applied@p. There- ¢f°‘=CO|O>+2 Cada+ > C;”}bd)f}b+ > C%EC@%EC
ia ijab ijkabc

fore, most of the*t part works in the form of the unlinked

terms *tAt|0), which has the form of the multireference

coupled clustet? +...=> C®,, (6.1
We now solve the variable§}, and Cy, in CCGSD by '

the variational method. The CC expansion is given by whered®?, q)f}b, etc., denote singles, doubles, etc., excitation

1 1 configurations, and the secular equation is written as
= = —T2 —_ 78 P :
SinceT includes the noncommuting operators, the derivativeThe number of the variablegC,} and the configurations
of 4 with respect toCj, andC5, is written as {®} is My given by Eq.(2.10.

Since the full Cl space spanned by the configurations
{®,} is complete, any functions Iikar*apCD, , etc., and lin-
ear combinations thereof also belong to this space. If we
write such function asV, the full Cl wave function satis-

oy [oT 1 aTT TaT
aclacT2\oc T

+ il T2+T aTT+T2 il + 0 5 fies
silac! TTac Tt ]loh 69 .
'(H=E)|W¥¢)=0, 6.3
wheredT/dC actually stands for ] Vi) ©.3
since Wi is a linear combination ofb, that satisfies Eq.
T _ata, (5.6 (6.2. Similarly, the full CI wave function satisfies
&CI’ r " )
. P (W®l(H=E)a/ ay|¥y)=0, (6.4
an _
. (VEl(H-E)aragaqay| V) =0, (6.5
aors, = 3 3 83 G (yH-E)ala) 8] a8, V) =0, 6.6
Since T and dT/4C}, do not commute, we have from Eq. etc. As an extreme of the above case, full Cl also satisfies
(55) <¢fCI|(H_E)ar+ap|$fCI>:O, (67)
ﬁ . .
%;&a:’aplp (5.9 (¢f°'|(H—E)ar*a;aqapwfc'):o, (6.9
p ) )
etc.
ﬂ +a'al aq@pi. (5.9 Comparing Eqgs(6.7) and(6.8) with Egs.(2.1) and(2.2)

dCpq of Theorem II-1, we understand that the full Cl must be

Actually, dy/9C has some complex extra terms in addition €Xact: as it is. However, here, we have further g9 and

to the right-hand sides of Eq¢5.8) and (5.9). This means the higher ones, and without them we cannot determine all
that the variational CCGSD does not satisfy the sufficientthe coefficients involved in the full Cl. This may be consid-
condition of the exact wave function given by E¢2.8) and ered to contradict with the statement of Theorem II-1 that the

(2.9). Further, the variational conditidrEq. (2.6)] combined set _OT Egs.(2.1) and (2'2),,i5_ equivalent_(in necessary and
with Egs. (5.8) and (5.9 shows that we do not have Egs. sufficient senseto the Schrdinger equation. Actually, when

(2.1) and(2.2). Therefore, the variational CCGSD is not ex- the wave function involves only the variables corresponding
act. ’ to singles and doubles, the equations corresponding to triples

Nevertheless, the CCGSD has some interesting propeﬁnd highers like Eq(6.9), etc., are unnecessary. Thus, this

ties as described above, so that it is worth to be studied igontradiction originates from the ansatz of the wave func-
more detail in various situations. tion. Since the ansatz of the full Cl wave function includes

not only singles and doubles but also triples and higher ones,
we need all the equations like Eq$.4)—(6.6).

VI. FULL CI WAVE FUNCTION

Full CI wave function is exact within a limited space of \;; A PROPOSAL OF THE EXACT WAVE EUNCTION
reference functions, but the number of the variablgy.c,

given by Eq.(2.10 is tremendously large, so that a practical As Theorem II-1 and [I-2 imply that the singles and
application is limited only to a small system. However, full doubles description of the exact wave function should be
Cl is practically only one method to calculate the exact wavepossible, we consider in this section such a possibility.
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Based on Theorem II-1 and the discussion in the previrespectively, and from Theorem IlI-1, the solutignis the

ous section, we understand that whgand®, satisfying the
following two equations:
(#l(H-E)a ay|®)=0 (7.0
and
($l(H-E)a, ag aqa,|®)=0, (7.2

become identical, i.eyy=®, then ¢ is exact, and whenrs
includes only singles and doubles, E¢8.1) and (7.2) are
suffice to determine all the unknown variables.

exact wave function. We note that our wave functipm@lso
satisfies Egqs(2.8) and (2.9 of Theorem I1I-2. Since the
above method is variational, the energy satisfies the upper-
bound nature. We call this method iterative (€TI) method,
or more explicitly, ICIGSD method.

The wave functiony, is written in a closed form as

wn=£[1 (14T}) o, (7.19

We propose here a method of obtaining the exact wavevhere eacl; is different from others and has the form of
function by a successive diagonalization of the matrices okEq. (7.8). The coefficientéc;J and 'C[fq are determined in
the order of only singles and doubles. The first step is the Céach step by solving the secular equation of the size of the

with the general singles and doublgsGSD) defined by

Y= (1+T1) 9o, (7.3
T,= ; IClafa,+ qurS ICra’alagay, (7.4

where the coefficients are calculated by Esl) and(7.2)

with =4y and® = . Whenyy=0, ordinary CIGSD, the
Xt type operators mostly drop out because of the relation

given in Tables Ill and IV. The second step is

U= (1+T3) ¢, (7.9

2rS ot 4t
. Cper 85 aqap

T,=> 2Claa,+ (7.6)
Pq

pr

taking ¢, as a reference function, and the unknown variable

are determined by Eq$7.1) and (7.2 with =, and ®

=is,. This procedure is iterated until convergence as foIIowsthe exact wave function

with ¢, being given by

Un=(1+Tp) -1, (7.7
whereT, is

T,= ; "Claa,+ qurS "Chra’ag aqay, (7.9
and the variables i, are determined by

<¢n|(H_E)a:—ap|¢nfl>:0 (7.9
and

(nl(H=E)aagagap|n-1)=0. (7.10

We note that the linear expansion coefficienf%f,‘,;)

and "Cyy,,
When convergedy,, becomes identical witly,,
b=tha=n-1, (7.1
and the energy is
E=E,=E,_;. (7.12
Therefore, Eqs(7.9) and(7.10 are written as
(Wl(H-E)a ay|y)=0 (7.13
and
(Yl(H=E)aagaqap| ) =0, (7.14

singles and doubles

M
2 'Cl(P|(H=B)|®)=0 (L=1...M),

(7.1

where the asterisk implies complex conjugate akb

is given by Eq.(2.4). The coefficients'Cy run singles
and doubles coefficients{'C},,'Ci,} and @ run

$a, a,¥i-1,a, ad aga, i1}, which are singles and doubles
with respect toy; 4. The matrices involved in this secular
equation are Hermite and its dimensiorMs which is much
smaller tharMg,.c; . Equation(7.16) is just the same as Egs.
(7.9 and(7.10, replacing the index to i. Namely, in this
method, the secular equation of the sizévbfs successively
diagonalized until convergence, instead of solving once a

%iant secular equation of the size g, .c -

Since the size-consisten€yis a necessary condition of
it is interesting how the present
wave function satisfies this property. The origin of the size
consistency is different between full Cl and CC. In the full
Cl, it originates from the completeness of the configuration
space and therefore costs expensively, while in the CC, it
originates from the exponential ansatz, which causes some
additional calculations of the unlinked terms in comparison
with CI, but is not so expensive as far as we solve it by the
nonvariational method. In the proposed method, the origin of
the size consistency is not like full Cl, but should be similar
to that of the CC. From the requirement that the expansion of
Eq. (7.15 has a structure similar to the CC expansion, the
coefficients'C}, and'Ciy, must be able to become complex
numbers.

As the proposed method is variational, the solution

q

are complex in general to guarantee full freedom.would approach the exact wave function asymptotically from

above. Since the choice of the starting functigg is arbi-
trary, we may choose the CCSD #g. Such a choice would
shorten the iteration times more than the choigg=|0).
[For example, whewyy= ¢1,.c;, the calculation converges at
once as seen from Eq&.7)—(6.9).]

When converged, the aimddround state is exact and
the associated excited states obtained simultaneously satisfy
the orthogonality and the Hamiltonian-orthogonality with the
ground state, important necessary conditions for the excited
states. This relation between the ground and excited states is
very similar to that between the SAC and SAC-CI wave
functions for the ground and excited states, respectively, for-
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mulated originally by the variational methétiMore details  where
of the ICIGSD method will be published in the near future.

ac=2>, Cfa;—22>, Cl%alaa (A3)
VIIl. CONCLUSION i ija

This paper presents a progress report of the author’s rend
search aiming the _exact wave funct!on within 5|_ngles and [a) T]_= B, (Ad)
doubles. A conclusion of this paper is that the singles and
doubles description of the exact wave function is possibleWhere
This is a consequence of the fact that the Hamiltonian in-
volves only one and two body operators. Theorem Il-1isthe  Bc=—2>, Claj+2>, C¥alaa;. (A5)
necessary and sufficient theorem and Theorem 11-2 describes é 1ab
a sufficient condition. In the search for the exact wave funcUsing Eqs.(A2) and(A4) and the fact tha& (or 8,) andT
tion within singles and doubles, it is very important what commute, we can derive
ansatz of the wave function do we take.

We have examined the variational exponential ansatz be- [8c.expT)]-=ac exp(T) (A6)
cause Theorem II-2 implies it as a candidate of the structurand
of the exact wave function within singles and doubles. The + _
variational CCS for one-particle Hamiltonian is certainly [ exT)]-=Bi exp(T). (A7)
shown to be exact, while the conventional CCSD cannot bé\pplying Egs.(A6) and (A7) to |0), we obtain
exact because first it is not variational and second the opera- — (A8)

. I . . C C
tor space is too restrictive in the sense that it does not
include %t type substitution operators. When we include and
both At and *t type substitution operators in the coupled — ,+ =B (A9)
cluster ansatz, we obtain CCGSBSD stands for general . K
singles and doubl¢svave function. However, the variational Wherey is the CCSD wave functionj=exp(T)|0).
CCGSD is also not exact because of the noncommuting na-
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