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We propose a general method of solving the Schrodinger equation of atoms and molecules. We first construct
the wave function having the exact structure, using the ICI (iterative configuration or complement interaction)
method and then optimize the variables involved by the variational principle. Based on the scaled Schrodinger
equation and related principles, we can avoid the singularity problem of atoms and molecules and formulate a
general method of calculating the exact wave functions in an analytical expansion form. We choose initial
function ¢ and scaling g function, and then the ICI method automatically generates the wave function that has
the exact structure by using the Hamiltonian of the system. The Hamiltonian contains all the information of the
system. The free ICI method provides a flexible and variationally favorable procedure of constructing the exact
wave function. We explain the computational procedure of the analytical ICI method routinely performed in
our laboratory. Simple examples are given using hydrogen atom for the nuclear singularity case, the Hooke’s
atom for the electron singularity case, and the helium atom for both cases.
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I. INTRODUCTION

As noted by Dirac in 1929 [1], the Schrodinger equation
(SE) provides a fundamental mathematical law for chemistry,
though the importance of the relativistic theory is much
larger now than then considered. The SE has quite a signifi-
cant power of predicting chemical phenomena with very
high accuracy. It also connotes physical and chemical laws
that are conceptually useful for understanding chemical phe-
nomena like the Fukui-Woodward-Hoffman rule [2,3], etc.
So establishing a general method of solving the SE as accu-
rately as possible is one of the ultimate purposes of theoret-
ical chemistry. The scientific and practical merits brought
about by this method are huge. First, we can make accurate
predictions of chemical and related phenomena. This is a
new evolution of quantum chemistry since it has long been a
qualitative or semiquantitative science and could not do very
accurate predictions except for very simple systems. Second,
we can get chemical concepts as accurately as possible and
can get even very fine understanding of chemistry. Third, it
gives sound starting points of approximate theories. Since
one has exact wave functions, one can make up approximate
theories by neglecting some complex but minor terms. Fi-
nally, it even helps to predict a new phenomenon. When
accurate theory and accurate experiment contradict severely,
something must be wrong or missing in either of them and
this may become a clue for a discovery of a new science.
Such a situation could have never been expected before,
since our theories could not be sufficiently accurate.

Despite its importance, however, there was no general
method of solving the SE. Only one practical method of
calculating the “exact” wave function was the full-CI method
[4,5]. But the number of variables involved in the full CI is
astronomical: even for moderate-size molecules with
moderate-quality basis sets, the numbers of the variables are
huge and cannot be handled even with modern computers.
Therefore, applications of the full CI have been very limited.
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Furthermore, even if we could get the full-CI solutions, they
are actually far from the true solutions of the SE, because the
basis sets used there are usually far from complete. It is
necessary to develop a general theory for calculating the ex-
act wave function in an analytical form.

In our series of papers [6—13], we have studied the struc-
ture of the exact wave functions, aiming to develop a general
method of calculating the exact wave function. By exact
wave function, we mean the solution of the SE. We have
posed two questions: (1) What mathematical structure the
exact wave function has? (2) Is a general theory possible that
constructs the exact wave function systematically? Recently,
we could have been able to accomplish this aim and the
results were summarized in the previous communication
[13]. We have formulated a general systematic method of
solving the SE of atoms and molecules using the ICI (itera-
tive configuration or complement interaction) formalism in
an analytical expansion form up to a desired accuracy. A
purpose of this paper is to formulate this method in a more
general and detailed context.

The exact wave function ¢ is the solution of the SE,

Hy=Ey, (1)

where the Hamiltonian H is given by

1
H=, _EA"_E D Zalrai+ 2 =K+ V=K+V,,
i i A

i>j
+V,,. (2)

In our studies for formulating a general theory of solving the
SE [6-13], two stages were experienced. The first stage was
to clarify the structure of the exact wave function and to
formulate a general theory to construct the exact wave func-
tion [6—11]. In the SE, the Hamiltonian determines the exact
wave function, so that the exact wave function may be ex-
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pressed as a functional of the Hamiltonian, f(H), applied to
some appropriate function i, say,

= f(H) . (3)

We have investigated some possible forms of the function
Jf(H), based on the combined use of the variational principle
and the H-square theorem, and shown that the ICI and the
SECC (simplest extreme coupled cluster) methods give the
exact wave function in the sense of Eq. (3) above [6-8]. The
general ECC method, called ECCND method (ND stands for
the number of division of the Hamiltonian), was not guaran-
teed to be exact. A special example of ECCND was the
CCGSD (coupled cluster general singles and doubles)
method considered by Nooijen [14] and the present author
[6] almost at the same time. Nooijen conjectured that it may
describe the exact wave function with only GSD number of
variables. The present author also started his study with a
similar optimism, but reached a negative conclusion that the
CCGSD cannot be exact and, instead, he proposed the
ICIGSD method as a method to reach the exact wave func-
tion with essentially the GSD number of variables [6]. Later,
the present author relaxed his opinion to that the CCGSD is
not guaranteed to be exact: though the CCGSD cannot be
guaranteed to be exact, it may happen to be exact because of
its highly nonlinear character with respect to the GSD vari-
ables [8]. Later on, several studies have been reported about
the exactness of the CCGSD [15-20]: in particular, Mukher-
jee and Kutzelnigg [20] have strengthened the present au-
thor’s proof for the GSD case [6] by introducing the Lee-
algebraic concept, which is in the author’s language,
“generalized” Thouless transformation concept used in the
argument for the coupled cluster singles (CCS) in Ref. [6].

We have shown that the full-CI solutions can actually be
obtained with essentially single to GSD number of variables
by performing the simplest ICI (SICI) and the ICIGSD cal-
culations for some molecules in closed- and open-shell elec-
tronic structures [10,11]. We have shown a unique merit of
the ICIGSD method that gave the full-CI solutions in a few
iterations [11]. However, even so, the full-CI solutions are
usually far from the true solutions of the SE, because of the
incompleteness of the basis sets. So we wanted to solve the
SE in an analytical form.

A serious problem had occurred in the second stage in
constructing a general theory for solving the SE of atoms and
molecules in an analytical form. That was the singularity
problem [12,13] caused by the singularity of the Coulomb
potential V involved in the Hamiltonian given by Eq. (2).
The nuclear attraction term V,, and the electron repulsion
term V,, diverge when ry; and r;;, respectively, become zero.
For these singularities, the integrals of the higher powers of
the Hamiltonian diverge and so we cannot go further. We had
to overcome this difficulty for developing the general theory
of solving the SE.

We have proposed two ways to overcome this difficulty.
One was done by introducing the inverse Schrédinger equa-
tion (ISE) [12] and the other by introducing the scaled
Schrédinger equation (SSE) [13]. Both the ISE and SSE are
equivalent to the original SE. In the formulation based on the
ISE, it was difficult to explicitly represent the inverse Hamil-
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tonian in a closed analytical form, though even the expanded
form worked well [12]. On the other hand, the formulation
based on the SSE was easy and rigorous and yet had no
practical difficulties.

In the previous communication [13], we have also intro-
duced the free ICI method. This method is very flexible and
yet gives a solution variationally better than the ordinary
fixed ICI method [6,7]. We have formulated the free ICI
method based on the SSE as a general method of solving the
SE and given very briefly the preliminary results of applica-
tions to hydrogen atom, helium atom, and hydrogen mol-
ecule. The results were very encouraging, showing a high
potentiality of the proposed method.

The purpose of this paper is to explain in some details the
general method of solving the SE in an analytical expansion
form, which is currently performed in our laboratory. We
explain the theoretical background, introduce the SSE and
related principles, and give a general method of constructing
the wave function that has an exact structure. A merit of the
free ICI method is described in some detail. Then, the
method is applied to the hydrogen atom that has nuclear
singularity, to Hooke’s atom that has electron singularity, and
to the helium atom that has both nuclear and electron singu-
larities.

In the subsequent papers, we will show more general ap-
plications of the proposed method to the hydrogen molecule
[21] and to a few-electron atoms: helium, lithium, beryllium,
and boron—i.e., from two- to five-electron atoms [22]. We
will also apply the present method to Hooke’s atom in a
more general way than given in this paper. Further, an exten-
sion of the present formalism to the relativistic case for solv-
ing the relativistic Dirac and Dirac-Coulomb equations has
successfully been formulated and will appear in a separate
paper [23].

II. FORMALISM OF THE METHOD OF SOLVING THE
SCHRODINGER EQUATION

A. Basic theory

The SE given by Eq. (1) defines the exact wave function.
The variational principle given by

(YiH - E|8y) =0 (4)

is equivalent to the SE when the variation of ¢ is arbitrary.
Actually, when the variation is done within some limited
functional space, it gives the best possible @ within that
space. On the other hand, the H-square equation given by

(U(H=-E)|p)=0 (5)

is valid only for the exact . If ¢ satisfies the H-square
equation, this ¢ is guaranteed to be exact. Comparing Egs.
(4) and (5), we can easily get the following theorem [7]:
When a ¢ including only one variable C satisfies

ay

— =(H-E)y, 6

o= (H=E) ©)
it has the structure of the exact wave function, because the
variationally best ¢ satisfies the H-square theorem and so is
exact.
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Two simplest ¢’s that have the structure of the exact wave
function with only one variable are the simplest ICI (SICI)
wave function [7] and the simplest extreme coupled cluster
(SECC) wave function [8]. The SICI wave function is de-
fined by the recursion formula

l/jn+l = [1 + Cn(H_ En)]l//n’ (7)

where n stands for the iteration number. At convergence, the
SICI wave function is guaranteed to become exact though it
includes only one variable at each iteration. The SECC wave
function is compactly written as

ir=exp[C(H - E) ]y, (8)

which includes only one variable C. One can show, however,
from a different argument that the optimal C of the SECC
would be minus infinite [24].

Within a given limited basis set, the SICI provides a
method to calculate the “exact” full-CI solution by using
only one variable, in contrast to a huge number of variables
in the ordinary full CI. Actually, we have applied the SICI
method to many molecules in closed- and open-shell elec-
tronic structures using minimal and double-{ basis sets and
shown that it smoothly converges to the exact full-CI solu-
tion [10]. Because each iteration step of the SICI is varia-
tional, it converges from above to the exact solution. How-
ever, since the number of the variable is so small—i.e., only
1—the convergence speed was slow: it took 30-70 iterations
to get the energies correct to 8 decimal figures of the full-CI
energies [10].

We can introduce a larger number of variables in the ICI
formalism [6,7]. Dividing the Hamiltonian into N, pieces
(Np, stands for the number of division),

Np
H=2H, ©)
I=1
and introducing the partial energy E;,=(i,|H|4,), we can
define the ICIND as

Np
wn+1 = [ 1+ 2 Cl,n(HI_ El,n):| w'n’ (10)
1

which is also guaranteed to become exact at convergence.
When we introduce the second-quantized Hamiltonian

Tt
H= E v a,ap+ > oW Dy Ay dgd, (11)
pqrs

and divide it into singles and doubles pieces, we can define
the ICIGSD as

Y1 = <1 + E cpa,a, + > qa,avaqap>¢n, (12)

pqrs

which has the GSD number of variables {c,c,.}. This
ICIGSD is also guaranteed to become exact (full CI) at con-
vergence [6]. Actually, we have formulated the ICIGSD first
[6], showing that the exact full-CI solution can be solved by
using only the GSD number of variables that are much
smaller than the huge number of variables in the ordinary

full CI.
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We have used the ICIGSD method to calculate the full-CI
solutions of closed- and open-shell molecules using the mini-
mal and double-{ basis sets [11]. We have shown that the
convergence speed of the ICIGSD was much faster than that
of the SICI: typically only 3-9 iterations were enough in
contrast to 3070 iterations in the SICI. This was essentially
due to an increase in the number of variables from one to the
GSD number. Further, we have discussed a special merit of
the ICIGSD among the general ICIND.

Thus, with the ICI formalism, we can formulate a method
of calculating the exact full-CI solution using only one to
GSD number of variables at each iteration. However, as
stated in the Introduction, the full-CI solution is usually far
from the true solution of the SE. To get a true solution of the
SE, we have to formulate a method of solving the SE in an
analytical form.

When we consider a method of analytically solving the
SE, we soon encounter a big obstacle, which is the singular-
ity problem caused by the Coulomb potential included in the
Hamiltonian. As explained in the Introduction, the second
and third terms of the Hamiltonian given by Eq. (2) have the
so-called nuclear and electron singularities, respectively. In
the SE given by Eq. (1), the right-hand side (RHS) has no
singularity and therefore the singularities caused by these
terms must be canceled out completely within the lhs of the
SE. For example, in the hydrogen atom, the nuclear attrac-
tive force must be canceled out by the centrifugal force pro-
duced by the kinetic motion of an electron and this cancel-
lation occurs only for the exact wave function. Generally,
from such considerations, we can formulate the nuclear and
electron cusp conditions of the exact wave functions, which
were first derived by Kato [25]. The exact wave function
satisfies these conditions and therefore no singularities are
left in the SE of Eq. (1).

However, for approximate wave functions, such complete
cancellation does not occur and some serious problems oc-
cur. For example, we show in Table I the integrals of H" for
the hydrogen atom over the exact and approximate wave
functions (Stater type and Gaussian type). The exact wave
function always gives the correct value, but the approximate
one gives divergence for n=3. This divergence is due to the
nuclear singularity. Table II shows the integrals of the higher
powers of the electron-electron repulsion operator, (1/r,)",
over the approximate Slater-type and Gaussian-type helium
wave functions with the optimized orbital exponents. Again,
the integrals of (1/r,)" diverge for n=3 for both types of
orbitals. This divergence is due to the electron singularity. It
is easy to show that such divergence is general for the inte-
grals of the higher powers of Hamiltonian over approximate
wave functions. An intuitive explanation of this divergence is
as follows. When you make n large for (1/r)", it becomes
like a well of an infinite depth, so that any integrals of this
potential over approximate wave functions of atoms and
molecules must diverge.

These results imply that the theory involving higher pow-
ers of Hamiltonian has difficulties when applied to atoms and
molecules: numerical calculations become impossible when
the basic integrals involved become infinite. The SICI secu-
lar equation involves the integrals of third power of Hamil-
tonian [7] and the SECC wave function involves higher pow-
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TABLE 1. Integrals of the higher powers of the Hamiltonian and the scaled Hamiltonian of the hydrogen

atom over the Slater-type and Gaussian-type orbitals.

Slater-type

Operator Q in*

Gaussian-type

(Ol 1| ) Exact (a=1.0) Approximate (a=0.8) a=0.3
H -0.5 —-0.48 —0.4240387
H? 0.25 0.4608 0.4886535
H’ -0.125 —o0 —o0
vHv —00 —o0 —o0

H* 0.0625 w %
Hg(gH)? —-0.5625 -0.624 —-0.1402396
HgHgH -0.25 -0.2624 -0.0711785
HgH? -0.1875 -0.24576 —0.5396678
HgH? 0.09375 o %o

H=—1/2(d*/dr*)-1/r(d/dr)-1/r, v=—1/r, g=r.

ers of Hamiltonian [8]. Therefore, both SICI and SECC
suffer singularity problems when they are applied straight-
forwardly. The t-expansion method [26], the connected-
moments method [27], and the surplus function method [28]
are the methods that suffer similarly the singularity problem.
We note that this singularity problem is inevitable as far as
the exact wave function is expressed like Eq. (3) as a func-
tional of the Hamiltonian applied to an approximate wave
function: the Maclaulin expansion of the function f of Eq.
(3) with respect to H always includes the higher powers of
H, which causes the singularity problem.

This singularity problem cannot be circumvented by in-
troducing the finite-nucleus model [29]. Further, the finite-
ness of the nucleus is from a different physical origin and the
theory itself should be valid independent of the finiteness of
the nucleus. We also note that the singularity problem was
rather vague in the modern quantum-chemistry technology
where everything is expanded with finite basis functions.
There, when you have a Hamiltonian matrix H defined
within the finite basis space, you can calculate H" essentially
to an arbitrary n, though this is impossible if the basis is
complete, since then (H");;=(i|H"|j) and the integrals on the

TABLE II. Integrals of several operators over approximate he-
lium wave functions.

Wave function®

Slater-type Gaussian-type
Operator Aop=Z=5/16 Bopi=0.7670
H —729/256 -2.301
—Zlr=Zlry+1/r -729/128 -4.602
1/r 135/128 0.988
(1/r1,)? 243/128 1.534
(1/rp5)? +o0 +00
(1/rp)* +o0 +00

Yh=x()x(2)[a(1)B(2)-B(1)a(2)]/\2, where Slater-type means
x=exp(—ar) and Gaussian-type means y=exp(—8r?).

RHS diverge when n=3 as shown above. When the basis set
is far from complete, the calculation may proceed without
much difficulty, but it is simply due to the incompleteness of
the basis set.

Now, how do we overcome this singularity problem? Oth-
erwise, we cannot proceed further to find a way of calculat-
ing the exact wave functions of atoms and molecules. We
have proposed two methods of solution: one was by intro-
ducing the inverse Schrddinger equation [12] and the other
was by introducing the scaled Schrédinger equation [13]. In
the case of the ISE, a problem was how to define the inverse
Hamiltonian explicitly, though we have shown that even the
expanded form of the inverse Hamiltonian was useful. On
the other hand, in the case of the SSE reported in the previ-
ous communication, we could formulate a general straight-
forward method of calculating the exact wave function with
avoiding the singularity problem. We will explain this
method in some detail in the next section.

B. Scaled Schrodinger equation and related theorems

We define the scaled Schrodinger equation (SSE) by

gH-E)y=0, (13)

where the scaling function g is a function of electron coor-
dinates. It is a multiplicative operator and does not commute
with the Hamiltonian. It is always positive (or always nega-
tive) except at the singular points. Even at the singular point
ro, the scaling function satisfies
limgV # 0,

r—rg

(14)

where V is the potential operator in the Hamiltonian, in order
not to eliminate the information of the Hamiltonian at the
singular points: the singularity of the potential itself is also
important information of the Hamiltonian, though it causes
the singularity problem. Equation (14) means that 1/g is a
milder function than the potential itself in the limit of
r—ry.

The SSE is equivalent to the original SE: When the SE
holds, the SSE holds. Conversely, when the SSE holds, we
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multiply 1/g from the left of Eq. (13) and obtain the SE.
This is valid even at the singular points because of Eq. (14).

There are many possibilities in the choice of the g func-
tion. A choice is g=1/(-V,,+V,,), where V,, and V,, are the
nuclear-electron attraction operator and electron-electron re-
pulsion operator, respectively. A different choice is g
=-1/Vv,V,, or more explicitly the inverse of the product of
each Coulombic potential. However, this g function is very
complex and makes the ICI wave function very complex.
Further, when one of the product terms in the g function
becomes zero, the other terms can be arbitrary, so that the
restriction may not be complete. When we adopt the free ICI
method described below, the freedom of the choice of the g
function becomes wider and one choice is g=-1/V,,
+1/V,, or, more explicitly, the sum of all the inverses of the
Coulomb potentials involved in the Hamiltonian. In this
case, however, the ICI formulation also produces the func-
tions that are singular, so that we have to eliminate such
functions from our expansion bases of the free ICI wave
function: the wave function must be integrably finite by its
definition. Another choice is to take g=r/(r+a) with a being
a constant for each Coulomb potential 1/r. This applies to
both the product form and the sum form explained above.
Actually, the functional form of the scaling function is very
important in the ICI calculations. The choice of the g func-
tion affects the easiness of integral evaluations and the con-
vergence speed of the ICI calculations.

The SSE is very flexible as seen from its definition, and so
it should be useful not only for atomic and molecular sys-
tems where the potential has Coulomb singularity, but also
for more general cases where the singularity is steeper or less
steeper than the Coulombic one.

Table I shows the integrals of the operators including both
g and H for the case of hydrogen atom. For the potential V
=—1/r, we have chosen the scaling function g=r. We see
that the integrals of the higher powers of the scaled Hamil-
tonian, (gH)", exist for both exact and approximate wave
functions even for n=3, in contrast to the higher powers of
the original Hamiltonian H. Note further that the integrals of
the operators of the forms H(gH)" and H*(gH)" also exist.
These operators appear when we calculate the Hamiltonian
matrix element and the matrix of the H* operator, respec-
tively, over the ICI wave functions based on the SSE. So it is
generally true that the integrals g"H™ over ordinary wave
functions exist as long as 0 <m—n=<2. Similarly, the inte-
grals of the higher powers of the electron-electron repulsion
operator, (1/r;;)", exists if n<2. We will see later that these
properties are very important in constructing the free ICI
wave functions, as explained below, and calculating the exact
wave functions of atoms and molecules. Note that (|g"|)
exists since ¢ is exponentially decaying function which de-
cays much faster than the powers of r.

The variational principle given by Eq. (4) and the
H-square theorem given by Eq. (5) play very important roles
in the formulation of our theory. We now show that the SSE
also has the variational equation and the H-square theorem as
the original SE. This makes it possible to formulate the ICI
theory based on the SSE, which leads to the ICI theory free
from the singularity problem. Since the SE and the SSE are
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equivalent, this ICI theory also leads to the exact wave func-
tion.

The variational formula associated to the SSE is written
from the SSE as

(8Ylg(H-E)|p)=0. (15)

For arbitrary i, this equation is equivalent to the SSE. This
equation may also be used to calculate the best possible
wave function within the given functional form of . The
energy E may be defined by

E = (ylgH| /gl ), (16)

which is called scaled energy and is different from the Ritz
energy,

E = YlH|W (). (17)

The scaled energy does not have the upper-bound property,
differently from the Ritz energy. For the exact wave function,
both scaled and Ritz energies become equal to the exact en-

ergy.
The H-square theorem for the SSE is written as

(Y(H-E)g-g(H-E)|¢p)=0, (18)

which is valid only for the exact wave function that satisfies
the SSE or SE. The proof is very simple: this equation is
rewritten as [|g(H—-E)y|>d7=0, whose integrand is always
positive or zero, and therefore, the integrand must be zero in
order that the integral of them is zero, which leads to the
SSE. The converse is self-evident. Q.E.D. Another important
H-square theorem of the SSE is

(Y(H-E)g(H-E)|p)=0, (19)

which is valid since g is always positive or zero, so that we
can define Vg and [|Vg(H—-E)¢|*d7=0 is satisfied only when
Vg(H-E)=0, which leads to the SE. Equation (19) is use-
ful for showing the exactness of the ordinary (Ritz) varia-
tional solution of the SICI based on the SSE, as shown be-
low.

We can formulate the SICI based on the SSE, just like that
based on the SE. When a # including only one variable C
satisfies

dy

co g(H-E), (20)
it has the structure of the exact wave function. Putting Eq.
(20) into the variational formula given by Eq. (15), we obtain
Eq. (18): the variationally best ¢ satisfies the H-square theo-
rem and is therefore exact. In this formulation, we used the
variational principle associated to the SSE, but we can also
use the ordinary variational principle given by Eq. (4). When
you put Eq. (20) into the ordinary variational principle given
by Eq. (4), we obtain Eq. (19) which guarantees that the
variational best is exact if ¢ has the structure of the exact
wave function given by Eq. (20). This argument is important
because when we have ¢ having the structure of the exact
wave function as defined by Eq. (20), we can calculate its
unknown variable C either with the ordinary variational prin-
ciple given by Eq. (4) or by the scaled variational principle
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given by Eq. (18). Of course, the ordinary variational prin-
ciple is more useful, because it has the upper-bound nature
(Ritz) but the scaled one does not.

Now we can formulate the simplest ICI theory based on
the SSE. The SICI based on the SSE is defined by the recur-
sion formula

¢n+1=[1+cng(H_En)]¢n‘ (21)

It is different from the original one given by Eq. (7) simply
by the existence of the g function which works to eliminate
the singularity problem. By differentiating ¢, ; with respect
to the single variable C,, we obtain an equation similar to
Eq. (20) and this equation becomes identical to Eq. (20) at
convergence where everything does not depend on the itera-
tion number n. Thus, at convergence, the SICI based on the
SSE is guaranteed to be exact.

The unknown variable C,, of the SICI can be calculated in
two different ways. One is to use the variational principle
given by Eq. (15) and the other is to use the ordinary varia-
tional principle given by Eq. (4). From Eq. (15) we obtain
two-dimensional secular equation

<lr//n|g(H_ En+l)|lr/jn>C0,n + <¢n|(H_ En+l)g : g(H_ En)
X |l//n>C1,n = 0’

<¢n|(H_ En)g : g(H_ En+l)|¢n>C0,n + <wn|(H_ En)g : g(H
- n+l)g(H_En)|lv[/n>C1,n=0’ (22)
and from Eq. (4) a secular equation

<‘/ln|(H_ En+1)| l/’n>C0,n + <l//n|(H - En+1)g(H - En)|¢//n>cl,n
= 0,

<l//n|(H_ En)g(H_ En+l)| lr//n>C0,n + <‘/In|(H_ En)g(H
_En+1)g(H_En)|wn>Cl,n =0’ (23)

where the coefficient C, of Eq. (21) is given by C,
=Cy,/Cy,,: because of the normalization relation, we have
only one variable. Referring to Table I, we see that all the
integrals involved in Egs. (22) and (23) exist. As described
above, the solution of Eq. (23) satisfies the Ritz variational
principle and is therefore more favorable in actual calcula-
tions than that of Eq. (22).

We can also formulate the simplest ECC theory based on
the SSE as

t=exp[Cg(H - E)]t. (24)

It is easy to show that this ¢ satisfies Eq. (20) and is there-
fore exact. It gives a compact expression of the exact wave
function. Because of the existence of the g function, this
SECC is free from the singularity problem. It is known, how-
ever, that the coefficient C is infinitely large for the exact
ground state and this makes the usage of the SECC less
popular. However, we have formulated the usage of the
SECC wave function by expanding it in finite terms and the
results of applications were encouraging [8]. In this paper
our main concern is the ICI theory and therefore detailed
discussions on the SECC wave functions based on the SSE
are postponed to the future papers.
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The H-square theorem based on the SSE can be general-
ized by introducing the partitioned Hamiltonian

Np

H= H,, (25)

I=1

where N, stands for the number of division. The partitioning
may be into kinetic, nuclear-attraction, and electron-
repulsion operators of the Hamiltonian given by Eq. (2),
where the nuclear attraction operator may be further divided
into different nuclei or into the singles and doubles terms for
the Hamiltonian given by Eq. (11). The H-square theorem for
the partitioned Hamiltonian is given by a set of the N equa-
tions,

<z/;|(H—E)g-g(H,—E,)|1//):0, (26)

with I=1,...,Np. E, is defined by (¢|g(H,—E,)|)=0. Simi-
larly to Eq. (19), we also have another H-square theorem

<‘/’|(H—E)8(H1—E1)|‘/’>=O7 (27)

with =1, ... N, again, because we can define \g from the
definition of the g function. We can show that when either of
these partitioned H-square theorems holds for all the N
equations, this ¢ is exact. The proof is straightforward and so
is not given here, except we note that we use the variational
equation given by Eq. (15) for the proof of Eq. (26) and Eq.
(4) for the proof of Eq. (27). You may refer to the proofs
given in Refs. [6,7].

Based on the partitioned H-square theorem, we can gen-
eralize the ICI theory so as to include the Np, variables,

Np
¢n+l = |:1 + E Cl,ng(Hl - El,n)] lﬂm (28)
1

which was called ICIND method [7]. When this ICIND is
calculated with either of the variational equations, Egs. (15)
and (4), it gives the exact wave function at convergence. In
the proof, we use either combination, Egs. (15) and (26) or
Egs. (4) and (27).

The calculation of the unknown variables {C;,} in the
ICIND wave function given by Eq. (28) is done either with
the variational principle given by Eq. (15) or with the ordi-
nary variational principle given by Eq. (4). The secular equa-
tion obtained with the variational principle given by Eq. (15)
is written as

(lg(H = E, )| YCop+ 2 (i |g(H = E,.y) - g(H,— Ep,)
I

X | lv[/n>cl,n = 0’

<¢n|(Hl - El,n)g : g(H_ En+1)|¢n>CO,n + 2 <¢n|(HJ
1

- EJ,n)g : g(H - En+l)g(H1 - El,n)| ¢n>C1,n = 0’ (29)

and the secular equation derived from the ordinary varia-
tional principle given by Eq. (4) is written as
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(Ul (H = Epp )| Con + 2 (b (H = E,p1y) - (H, — Ep,)
I
X|¢n>cl,n = 0’

(l(H, = E;,)g(H — E, o )|4h) o+ 2 (| (H, - E )
I

Xg(H—En+1)g(H1_EI,n)|(//n>Cl,n: 0’ (30)

both for all J (J=1,...,Np). The coefficient C;, of Eq. (28)
is related to the coefficients C;,, of Eq. (29) or (30) by C;,
=C;,/Cy,. When we do not partition the Hamiltonian, Egs.
(29) and (30) reduce to Egs. (22) and (23), respectively, of
the SICI case. In actual calculations, Eq. (30) is more con-
venient, since the solution satisfies the upper-bound nature of
the Ritz variational principle.

Here, we explain how we perform analytical calculations
with the ICI method. We take the SICI method given by Eq.
(21) for example. The initial function ¢, may be Hartree-
Fock wave function, etc., which is anyway some analytical
function. For analytical calculations, we use the Hamiltonian
given by Eq. (2), which is the sum of the kinetic operator and
the potential operators. The kinetic operator is a sum of the
differentiation operators with respect to the electron coordi-
nates and the differentiations are always possible for any
kinds of analytical functions. There are many mathematical
programs available that perform such differentiations easily,
like MAPLE, MATHEMATICA, REDUCE, etc. The potential opera-
tors and the g function are simply multiplicative functions.
Thus the result of applying the SICI operator to # is an
analytical function with the unknown variable C,. Repeating
iterations, we always obtain the analytical functions with
some unknown coefficients. In some general choice of the g
function, the resultant function may include the functions
that have singularities causing the divergence of the inte-
grals: such functions should be eliminated since they do not
satisfy the integrability condition that the physical wave
function must satisfy. Finally, the variable coefficients in-
volved are calculated with the variational principle.

The ICI method we routinely use in our laboratory for
calculating the analytical exact wave function is not the SICI
or ICIND given above. These ICI methods are characterized
by the following two features. (1) They generate the func-
tions that converge iteratively to the exact wave function. (2)
The number of the variables is small and fixed to one or N
throughout the calculations. In our routine calculations, we
relax the second property. Namely, we collect all the inde-
pendent functions {¢}™, k=1,...,M,, included in the nth
iteration function of the SICI given by Eq. (21) and use them
for expanding our wave function—namely,

Mn
D1 = 2 Conbr (31)
k=1

where M, is the number of the independent functions in-
cluded in {¢}™. The coefficients {c;,}, k=1,...,M,, are
calculated with the variational principle (the ordinary Ritz
variational principle is easier to use). Since the functions ¢,
are generated with the scaled Hamiltonian, we no longer
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have the singularity problem. Even if we may have some
singular functions due to a general use of the g functions, we
simply throw such functions out since they do not satisfy the
physical condition (Q condition) for the wave function. We
call this method the free ICI method. Since the ICI formula-
tion guarantees to reach the exact wave function, the free ICI
method gives the best possible wave function, in a varia-
tional sense, at each iteration. When M,, is not so large, we
need not to keep it to Np. Further, in the free ICI method, no
accumulation of errors occurs, since no variables of the ear-
lier iteration step are used in the later iteration step. We can
start nth iteration step without performing the earlier n—1
iterations. The free ICI method is very flexible. It makes
many variants possible.

Thus, at sufficiently large n, we have the analytical func-
tion in the form of Eq. (31) that has the structure of the exact
wave function: when the variables involved are determined
by the variational principle, it gives the exact wave function.
We can reach any accuracy by adjusting the iteration number
n.

We have applied the ICI method, the free ICI method in
particular, to atomic and molecular systems. In order to con-
firm the accuracy and the usefulness of the method, we have
applied it to the hydrogen atom, helium atom, and hydrogen
molecule, for which the exact or very accurate wave func-
tions are already known. We have further applied it to many-
electron atoms: lithium, beryllium, and boron (three- to five-
electron atoms) and He-H™, a two-electron molecule. We
will summarize these calculations separately in the literatures
[21,22,30]

In the present paper, we show the applications to the hy-
drogen atom, to the Hooke’s atom, and to the helium atom.
They are the examples of the systems including the nuclear
singularity, the electron singularity, and the both, respec-
tively.

II1. SIMPLE APPLICATIONS
A. Hydrogen atom

The exact solution of the hydrogen atom is a classical
subject of quantum chemistry. The Hamiltonian for the s
state of the hydrogen atom is

16 10 Z

=——— - 32
20 ror (32)

;
and the exact wave function and energy are ¢y=exp(—Zr) and
E=-0.5 a.u. for Z=1. As an ICI problem, the hydrogen atom
is an example of the nuclear singularity and therefore, even
for this simplest example, the ICI approach fails without the
introduction of the SSE and ISE. The solution with introduc-
ing the ISE was given previously [12], and here we give the
solution with introducing the SSE.

As a simplest choice of the g function, we choose g=r,
which satisfies the condition given by Eq. (14). The initial
function i, is chosen to be ¢p=exp(-ar) with a=1.5. «
=1.0 is the exact wave function. We perform three different
ICT—namely, SICI (Np=1), ICIND (N,=3), and free ICI. In
ICIND (Nj=3), we have divided the Hamiltonian given by
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TABLE III. ICI calculation of hydrogen atom based on the SSE.”

PHYSICAL REVIEW A 72, 062110 (2005)

SICI (ND=1) ICIND (ND=3) Free ICI
Ritz Scaled Ritz Scaled Ritz Scaled

n energy energy n energy energy n M energy energy
0 -0.375 -0.625 0 -0.375 -0.625 0 1 -0.375 -0.625
1 -0.375 -0.375 1 -0.375 -0.375 1 2 —-0.491025404 —0.512259526
2 —0.465594827 -0.411923413 2 —0.497053531 —0.516537938 2 3 —0.465594827 —-0.501470244
3 —0.481256589 —0.434488719 3 —0.499652721 —0.494662663 3 4 —0.499954132 —-0.500144830
4 —0.488165311 —0.448981506 4 —0.499974617 —0.499580437 4 5 —0.499997229 —-0.500011697
5 —0.492183091 —0.458915958 5 —0.499989900 —0.499133267 5 6 —0.499999844 —0.500000825
6 —0.494625230 —0.465959942 6 —0.499998499 —0.499699622 6 7 —0.499999992 —0.500000053
7 —0.496147453 -0.471256973 7 —0.499999309 —-0.499755042 7 8 —-0.500000000 —0.500000003
8 —0.497154350 —0.475303857 8 —0.499999805 —0.499859453 8 9 —0.500000000
9 —0.497839922 —-0.478500137 9 —0.499999903 —0.499897917

10 —0.498324376 —-0.481062407 10 —0.499999961 —0.499930983

11 —-0.498674837 —-0.483160593 11 —-0.499999979 —0.499948993

12 —0.498934961 —0.484899446 12 —-0.499999990 —-0.499963105

13 -0.499131605 —-0.486362182 13 —0.499999994 —0.499971758

14 —0.499283108 —-0.487604403 14 —-0.499999997 —-0.499978750

15 -0.499401536 -0.488671137 15 —0.499999998 —0.499983211

16 —0.499495476 —0.489594209 16 —0.499999999 —0.499986999

17 -0.499570866 —-0.490399870 17 —0.499999999 —0.499989465

18 -0.499632078 —-0.491107471 18 —-0.500000000 —0.499991650

19 —0.499682257 —-0.491733231 19 —0.499993097

20 —0.499723785 —0.492289504 20 —0.499994420

21 —0.499758430 —0.492786793

22 —0.499787561 —0.493233307

23 —0.499812222 —0.493636113

24 —0.499833240 —0.494000854

25 —0.499851257 —0.494332439

26 —0.499866789 —0.494634860

27 —0.499880247 -0.494911621

28 —0.499891966 —-0.495165616

29 —0.499902215 —0.495399407

30 —0.499911217 —-0.495615134

%n: iteration number. M: number of independent functions.

Eq. (32) into three terms. The number of variables is unity in
SICI, 3 in ICIND (Np=3), and increases as the iteration
proceeds in the ICI. We calculated both Ritz energy and
scaled energy given by Egs. (16) and (17), respectively, and
the results are given in Table III.

We expect from Table I that the singularity problem
should not occur in the present method and actually, as seen
from Table III, we get a smooth convergence to the exact
energy in all cases, though the convergence rate is different
among the different ICI methods and between the different
definitions of the energy. For the SICI case, we have only
one variable and, therefore, the convergence rate is very
slow. When we use three variables in ICIND (N,=3), the
convergence becomes much faster. When we use the free ICI
method, the number of the variables increases as the iteration
proceeds, one by one in this case, as the iteration number

increases, and the convergence is fastest among the three ICI
methods: the Ritz energy converges after seven iterations and
the scaled energy by eight iterations to the exact energy up to
nine decimal figures. Between the Ritz and scaled energies,
the Ritz energy always converges faster and satisfies the
upper-bound nature. The scaled energy does not necessarily
satisfy the upper-bound nature: it may be even lower than the
true energy.

The results of Table III indicate the usefulness of the free
ICI method with the Ritz energy. The ICIND (Np=3)
method may also be useful because in this case the number
of the variables is always 3 or Np,.

Starting from the initial function ¢,=exp(—1.5r), the ICI
method with g=r improves the wave function order by order
as the iteration proceeds. Actually, the wave function at nth
iteration is written as ¢, =exp(—1.57)(2'Lyc;r ). Since the ex-
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act wave function is exp(—1.0r), the ICI correction term is
nothing else but the variational approximation to the expan-
sion, exp(0.5r)=2,_c;r |, with ¢;=0.5'/n!. The free ICI wave
function at n=7 was (cg,c;,¢3,C3,C4,Cs5,Cq,c7)=(1.000 000,
0.500262, 0.124 126, 0.022 132, 0.001 656, 0.000 621,
—0.000 049, 0.000 008). The sequence given by ¢;=0.5/n! is
(1.000 000, 0.500 000, 0.125000, 0.020 833, 0.000 260,
0.000 022, 0.000 002). Since the energy is correct to nine
decimal figures, the wave function would be correct roughly
to four decimal figures, in accordance with the Eckert theo-
rem. At higher iterations, we have actually confirmed that the
first eight coefficients of the free ICI wave function agree
exactly with the above numbers of the mathematical se-
quence. For general atomic and molecular systems, the exact
wave functions cannot be written with single analytical func-
tions, so that their best analytical expressions would be in an
analytical expansion form as given in this example.

In comparison with the usage of the inverse SE reported
in the previous paper [12], the calculation reported here is
more straightforward. Though we could do analytical calcu-
lations based on the ISE for the hydrogen atom with the
expanded inverse Hamiltonian and the results were rather
satisfactory, it is difficult to generalize such method to many-
electron atoms and molecules, but the present method based
on the SSE is straightforwardly applicable to any atoms and
molecules.

B. Hooke’s atom

Hooke’s atom [31] is not a real atom, but an imaginative
two-“electron” atom whose attractive potential is harmonic
and the inter-“electron” repulsion is Coulombic; namely, its
Hamiltonian is given by

1 k 1
H== A1+ 80) + (I[P + o) + e &Y

|r1

The harmonic potential is nonsingular, but the Coulombic
potential is singular [32]. We consider Hooke’s atom whose
Hooke’s harmonic constant is k=1/4. A remarkable charac-
ter of Hooke’s atom is that its exact solution is known. For
the above Hamiltonian, the exact solution is

¢=exp[— i(ﬁwﬁ)}(n%) (34)

and the exact energy is E=2.0 a.u.

We apply the ICI method to the above Hooke’s atom. We
take our initial guess as ¢0=exp[—i(r%+r%)], an eigenfunc-
tion when the “electron” repulsion term in Eq. (33) is miss-
ing, and our g factor as g=r|,: the g factor is necessary only
for the electron repulsion operator. The free ICI result is
summarized in Table IV. We see that the result converges to
the exact solution at second iteration. There, both the energy
and wave function become equal to the exact ones. Even if
we perform further iterations, the correction is identically
zero for both the energy and wave function, as it must be so.
Thus the ICI method has given the exact solution of Hooke’s
atom.
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TABLE IV. ICI energy and wave function for Hooke’s two-
electron atom.

Iteration Dimension Energy (a.u.) Ay
0 1 2.064189584 1
1 2 2.0 )
2 2 2.0 0
‘Y= Ay

C. Helium atom

The helium atom has both nuclear and electron singulari-
ties and therefore is a very interesting example. There are a
lot of calculations in the literature with various types of func-
tions, like Hylleraas [33], Kinosita [34], Pekeris [35],
Thakkar and Koga [36], and others [37]. In particular, re-
cently Schwartz [38] has reported very accurate calculations,
giving the energy correct up to 35 decimal figures. Though
these wave functions were cleverly formulated, the physics
behind was not necessarily clear, except for the first few
dominant terms. For general atomic and molecular systems,
it is difficult to estimate the functional form of the exact
wave function only by intuition as cleverly as in the helium-
atom case. In the present ICI formalism, the wave function is
automatically generated in an analytical form, once we
choose the initial function ¢, and the scaling factor g, and it
is guaranteed to approach the exact wave function. The pur-
pose of the calculation presented here is to give a rough
understanding of the free ICI method applied to helium
atom: we start from a rather simple initial function ¢, using
again a simple choice of the g function. We examine what
wave function the ICI method generates and how different it
is from the existing wave functions. The state-of-the-art cal-
culations of this atom with the ICI method will be published
in a forthcoming paper [22].

The calculations are performed by using the coordinate
defined by s=r,+r,, t=—r|+71,, and u=r, with the range of
the variables s=u=|t|. With this coordinate, the Hamil-
tonian of the helium atom is written as

tut—s* &#

LAY L el AP
as® o au® us>—1 ds du urr—s*oudr

4s 9 2 9 4t 9 4s7 1 (35)
————— -5+ —,
s2=1ds udu -5 -1 u

H=

where the last two terms represent the potential operator
(nuclear attraction and electron repulsion) and the other
terms represent the kinetic operator. The initial function we
chose is a primitive one: =exp(—as), with « being a varia-
tional parameter. The scaling function is g=(V,,V,,)"!
=u(s’>—1*)/s to prevent the nuclear and electron singularity
problem.

Table V summarizes the ground-state energy of the he-
lium atom calculated with the free ICI method. As the itera-
tion proceeds, the number of the independent functions gen-
erated by the free ICI method increases and the Ritz energy
approaches the best variational value, —2.903 724 377 a.u.,
reported in the literature [38]. The chemical accuracy was

062110-9



HIROSHI NAKATSUIJI

TABLE V. Free ICI calculation of the helium atom with ¢, and
g given in the text.

Iteration n M, Ritz energy Optimal a
0 1 —2.847 656 250 1.6875
1 6 -2.901 577012 1.6728
2 26 -2.903 708 675 1.8803
3 74 —-2.903 723 901 2.0330
4 159 —2.903 724 347 2.1998
5 291 -2.903 724 373 2.3307
6 481 -2.903 724 376 2.4862
7 738 -2.903 724 377 (2.68)

Best value” -2.903 724 377

“Number of independent functions.
PReference [38].

obtained already at the second iteration with 26 functions
(the energy is correct to four decimal figures). At the fourth
iteration, the free ICI energy is correct to seven decimal fig-
ures and at the seventh iteration it is correct to nine decimal
figures. Clearly, by continuing the iteration, we should be
able to improve our wave function to any order. This is cer-
tainly the behavior we expected from the proof of the theory.
We particularly want to note that these results were obtained
automatically by the free ICI algorithm described above.

The present helium wave function generated automati-
cally by the free ICI theory was different from those existing
in the literature. It was the Hylleraas-type wave function
written as

I=( 2 cams' Jerpl- ). (36)

I,m,n

but was different from the original Hylleraas wave function
in that our / ran both positive and negative regions, while the
original / was only positive as well as m and n. Our wave
function was closer to the Kinoshita one though different in
higher-order terms. Actually, the functional form of the ICI
wave function depends on the choices of the zeroth-order
wave function ¢, and the g factor. The Hylleraas expansion
actually corresponds to choosing g=u(s*-7?), differently
from the present one. This implies that a different conver-
gence would be obtained by a different choice of these func-
tions. In this sense, the examinations of different functions in
the description of the helium wave function given by
Thakkar and Koga [36] are useful. More detailed examina-
tions of the choice of ¢ and g in the ICI formalism of the
helium atom will be given in a forthcoming paper [22].

IV. CONCLUDING REMARKS

In modern quantum chemistry, one first prepares some
basis functions by empiricism, therefrom a set of orthonor-
malized orbitals (Hartree-Fock orbitals mostly), and then ex-
pands everything with these set of orbitals. The Hamiltonian
is rewritten in a second-quantized form and the quantum-
chemical calculations are transformed into matrix and vector
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manipurations. Ultimately, the best theory is the full-CI
method. However, due to the incompleteness of the basis
functions first prepared, the full-CI solutions are usually far
from the true analytical solutions of the SE. When we en-
large the basis function to make it closer to be complete, the
full-CI dimension increases formidably and, therefore, this
route of accurate quantum chemistry must be reconsidered.

We have reported previously [6—11] the methodologies to
reduce the number of variables that are necessary to obtain
the full-CI solutions into general singles and doubles (GSD)
number [6] and even to unity [7] and showed that their actual
performances were certainly good [10,11]. However, even in
these theories, we had to handle full-CI number of configu-
rations and this made these methods still not very useful.

In the previous communication [13], we proposed a gen-
eral method of solving the Schrodinger equation in an ana-
Iytical expansion form and the details of the proposed
method are presented in this paper. The method has already
been extended to solve the relativistic Dirac and Dirac-
Coulomb equations in an analytical form and preliminary
calculations were encouraging [23]. In these methodologies,
the strategy is very different from that of the modern quan-
tum chemistry described above. We first prepare an initial
function ¢, and choose an appropriate g function. Then, the
free ICI method automatically generates the most appropriate
basis functions (complement functions) for the system by
using the Hamiltonian of the system. The Hamiltonian in-
cludes all the information of the system. Further, the theorem
of the ICI guarntees that the resultant wave function has the
structure of the exact wave function as the iteration proceeds.
For efficient calculations of this step, we need a symbolic
manipulation mathematical program like MAPLE and MATH-
EMATICA. This point is quite different from traditional mod-
ern quantum-chemistry methodologies. Finally, the unknown
variables included in the free ICI wave function are deter-
mined by the variational principle or by some variants
thereof.

The good performance of the calculations reported here
and carried out in the author’s laboratory [13,21-23] implies
a high potentiality of the proposed new methodology. The
present ICI formalism based on the SSE may become a basis
of the general systematic method of calculating the exact
wave functions of atoms and molecules in an analytical ex-
pansion form. It was remarkable that the present ICI wave
functions were different from the existing ones. Hylleraas
[33], James-Coolidge [39], Kolos [40], and others were
clever enough to imagine the exact wave functions of helium
and hydrogen molecule only with intuitions. But for general
molecules, it is difficult to estimate the analytical form of the
exact wave function only by intuition, but the present theory
makes it possible to generate it automatically, since the dif-
ferentiations (involved in the Hamiltonian) are always pos-
sible and, furthermore, the integrals in the secular equation
step have no singularity problem. It is guaranteed that at
convergence we will get the exact wave function.

A different description of the wave function is obtained,
depending on the different choice of the initial function
and the g function. Since the exact wave function is a unique
reality, one may feel this to be strange. But this is something
like to using different complete functional sets for describing
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one entity. Many possibilities exist, but all the descriptions
are on a single reality: the exact wave function. So one de-
scription may be more efficient than the other. Actually, we
will show in the succeeding paper that different choices of ¢,
and g give finally the same result, but the convergence
speeds are different. It is impossible to write up the exact
wave function of many-electron atoms and molecules by a
single analytical function (without including operators) ex-
cept for one-particle cases, so that the best analytical expres-
sion would be in an analytical expansion form.

Since applying the Hamiltonian to some function means a
series of differentiations and multiplications, it is always
possible to obtain the free ICI wave function in the form of
Eq. (31). Further, at convergence, this wave function is guar-
anteed to have the structure of the exact wave function: when
the variables {c; ,} are determined by the variational prin-
ciple, it gives the exact wave function. In our theory, the
process of forming the functions given by Eq. (31) is rather
easy when a symbolic mathematical program like MAPLE is
used. Usually, the most time-consuming step is a step for the
variational calculations of the coefficiens {c;_,}. The best pro-
cedure is to solve the secular equation by calculating analyti-
cally the Hamiltonian and overlap integrals over the func-
tions {¢}™. We used this method in the present and
succeeding papers. However, different from differentiations,
integrations are not always possible for any functions. This
gives some restrictions on the choices of the g function and
. For general molecular systems, this problem becomes
more serious and we have to introduce different procedures.
Though Slater-type functions were used in our former calcu-
lations, Gaussian-type functions would also be useful for .
The Hamiltonian operator and the g function do not change
the functional form so that the types of functions are deter-
mined on the choice of ¢, The integrations over the
Gaussian-type functions are easier than for the Slater-type
functions. This merit may make up the well-known deficien-
cies of the Gaussian type functions on the cusp properties. In
principle, the cusp properties are improved even with the
Gaussians when many (infinite) Gaussians are used. Another
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general procedure may be provided by the Monte Carlo—type
approach [41]. A combination of the local energy procedure
and the Monte Carlo sampling method may provide a useful
tool. We note that our ICI wave functions should potentially
give very good local energies, so that we can expect small
mean-square deviations (variances) in the Monte Carlo inte-
gration processes. This is a key feature of the ICI wave func-
tion. Studies along these lines are now in progress in our
laboratory.

Though we have concentrated in this paper only on the
ground state, the present theory is applicable also to calcula-
tions of the excited states. They are calculated as higher so-
lutions of the same secular equation. For efficient calcula-
tions, some considerations of the choice of initial function i,
are necessary. For example, we may take a linear combina-
tion of several functions having the exponents covering both
ground and excited states under study.

We have recently extended the present methodology to
the relativistic case [23]. We have developed a general theory
of analytically solving the exact solutions of the Dirac and
Dirac-Coulomb equations. There, the ICI formalism was
similar to the present nonrelativistic case. A new problem
was variational collapse, which commonly occurs in the rela-
tivistic variational calculations. However, the exactness of
the ICI formalism has shed light on this problem and an
interesting reader may refer to Ref. [23].

In separate papers [21,22,30], we are going to summarize
the results of the applications of the present theory to the
many-electron atoms He, Li, Be, and B and to two-electron
molecules H, and He-H*. We are also going to summarize
the results for Hooke’s atom in a more general context than
that given in this paper.

ACKNOWLEDGMENTS

The author thanks H. Nakashima and T. Kurokawa for
some helpful discussions. This research was supported by a
grant for Creative Scientific Research from the Ministry of
Education, Science, Culture, and Sports of Japan.

[1] P. A. M. Dirac, Proc. R. Soc. London, Ser. A 123, 714 (1929).
[2] K. Fukui, Theory of Orientation and Stereoselection (Springer-
Verlag, Heidelberg, 1070); Acc. Chem. Res. 4, 57 (1971).

[3] R. B. Woodward, and R Hoffmann, Angew. Chem., Int. Ed.

Engl. 8, 781 (1969).
[4] P. J. Knowles and N. C. Handy, Chem. Phys. Lett. 111, 315
(1984).
[5] G. L. Bendazzoli and S. Evangelisti, J. Chem. Phys. 98, 3141
(1993).
[6] H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000).
[7] H. Nakatsuji and E. R. Davidson, J. Chem. Phys. 115, 2000
(2001).
[8] H. Nakatsuji, J. Chem. Phys. 115, 2465 (2001).
[9] H. Nakatsuji, J. Chem. Phys. 116, 1811 (2002).
[10] H. Nakatsuji and M. Ehara, J. Chem. Phys. 117, 9 (2002).
[11] H. Nakatsuji and M. Ehara, J. Chem. Phys. 122, 194108

(2005).

[12] H. Nakatsuji, Phys. Rev. A 65, 052122 (2002).

[13] H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).

[14] M. Nooijen, Phys. Rev. Lett. 84, 2108 (2000).

[15] T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 115,
5033 (2001).

[16] P. Piecuch, K. Kowalski, P.-D. Fan, and K. Jedziniak, Phys.
Rev. Lett. 90, 113001 (2003).

[17] E. R. Davidson, Phys. Rev. Lett. 91, 123001 (2003).

[18] S. Ronen, Phys. Rev. Lett. 91, 123002 (2003).

[19] D. A. Mazziotti, Phys. Rev. A 69, 012507 (2004).

[20] D. Mukherjee and W. Kutzelnigg, Chem. Phys. Lett. 397, 174
(2004); W. Kutzelnigg and D. Mukherjee, Phys. Rev. A 71,
022502 (2005).

[21] Y. Kurokawa, H. Nakashima, and H. Nakatsuji, this issue,
Phys. Rev. A 72, 062502 (2005).

062110-11



HIROSHI NAKATSUIJI

[22] H. Nakashima, Y. Kurokawa, and H Nakatsuji (unpublished).

[23] H. Nakatsuji and H. Nakashima, Phys. Rev. Lett. 95, 050407
(2005).

[24] R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127, 223
(1986).

[25] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

[26] D. Horn and M. Weinstein, Phys. Rev. D 30, 1256 (1984).

[27]J. Cioslowski, Phys. Rev. Lett. 58, 83 (1987).

[28] H. Huang, Q. Xie, Z. Cao, Z. Li, Z. Yue, and L. Ming, J.
Chem. Phys. 110, 3703 (1999).

[29] D. Andrae, Phys. Rep. 336, 413 (2000).

[30] H. Nakatsuji, Bull. Chem. Soc. Jpn. 78, 1705 (2005).

[31] N. R. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 (1962).

[32] M. Taut, Phys. Rev. A 48, 3561 (1993).

[33] E. A. Hylleraas, Z. Phys. 54, 347 (1929).

PHYSICAL REVIEW A 72, 062110 (2005)

[34] T. Kinishita, Phys. Rev. 105, 1490 (1957).

[35] C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

[36] A. J. Thakkar and T. Koga, Phys. Rev. A 50, 854 (1994).

[37] J. Rychlewski and J. Komasa, in Explicitly Correlated Wave
Functions in Chemistry and Physics—Theory and Applica-
tions, edited by J. Rychlewski (Kluwer Academic, Dordrecht,
2003), pp. 91-147.

[38] C.  Schwartz,
0208004.pdf

[39] H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825
(1933).

[40] W. Kolos, J. Chem. Phys. 101, 1330 (1994).

[41] B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds, Monte
Carlo Methods in Ab Initio Quantum Chemistry (World Scien-
tific, Singapore, 1994).

http://arxiv.org/PS_cache/physics/pdf/0208/

062110-12



