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Abstract

Theoretical aspects of the SAC/SAC-CI method for calculating ground, excited,
ionized, and electron attached states of molecules are summarized. The SAC-CI SD
(singles and doubles) method for the ground and excited states of singlet to septet spin
multiplicities and the SAC-CI general-R method for two-to-many clectron excitation
processes arc described and their accuracies are explained based on the computed
results. Some recent topics of interest in the applications such as the spectra of metal
complexes, the collision induced absorption spectra of CsXe, and the excitation spectra
of porphyrins are reviewed. The SAC/SAC-CI method is shown to be simple enough
to be useful and accurate enough to be useful.
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1. Electronic theory for excited states
What condition characterizes the excited states? Using the Schrodinger equation,

HY =EWY, (€]

the excited state is characterized as the solution not having the lowest energy eigenvalue. When the

system has no symmetry at all, this is the only one condition defining the excited state. Let us write
the ground state wave function as ¥, and the excited one by ¥, , then they should satisfy

(% ]w)-o, (22)
(w,alw)=o0. (2b)

This is the condition that the ground and excited states must satisfy: otherwise the wave function is a
mixture of the ground and excited states.

This argument implies that the theory for the excited states can not be independent of the
theory for the ground state. Two theories should be designed to be consistent to each other and this
consistency should be kept at any level of approximations up to the exact limit. The SAC/SAC-CI
theory is such a theory. The SAC (symmetry adapted cluster) theory is the theory for the ground
state!-2 and the SAC-CI (configuration interaction) theory is the theory for the excited states.37 As
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always is, we mean by excited states not only the excited states, but also the ionized states and the
electron attached states.

We give here a review on the theoretical aspects and on the recent applications of the
SAC/SAC-CI method. Some reviews were already published;8-13 general and on the computer
code,8:10:11 on the excited and ionized states of conjugated molecules,® on the applications to
surface reactions,!? and on the excited states of porphyrins.!3> The computer code was already
published!4:15 and the more recent current version!® is also available on request to the author.

2. Hartree-Fock and SECI theories as a warming-up

There is a beautiful theoretical relationship between the Hartree-Fock (HF) theory for the
ground state and the single excitation (SE) CI theory for the excited states. It is analogous to the
relationship between the SAC and SAC-CI theories. For the HF and SECI theories, the Brillouin
theorem is a key theorem which interconnects these two theories. We consider, for a while, a
closed-shell ground state with 2n electrons, and the excited and ionized states produced therefrom.

The HF molecular orbital theory is a good starting approximation for the ground state. It
assumes a single determinant wave function,

v -|| eapB..0.00b.0,008|, ©)
where molecular orbitals ¢, are the solutions of the Fock equation,
F P =9, (4)

with ¢; being orbital energies. Generally speaking, the HF model is appropriate for molecules near
equilibrium geometry.
We now introduce a singly excited configuration ®; given by

Lo =|| goppB..09, (aff — ﬂa)/ V2 .@,a9 B | S)
Then, the HF wave function and the SECI configuration satisfy the Brillouin theorem,
(%" lor) - o, (62)
and the orthogonality,
(v [@f) =o0. (6b)

Itis easy to show that the Brillouin theorem is theoretically equivalent with the HF equation given
by Eq. (4).

We note that the relation given by Eq. (6) is formally identical with Eq. (2). Therefore, Eq.
(6) implies that if ‘I‘g"" is a good approximation of the ground state W,, the singly excited
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configurations {(D:'} may give a good basis for describing the excited states ¥,. Then, we expand
the excited state by a linear combination of @7, i.e.,

v =y e, Q)

which is the SECI method. The coefficients C; are determined by projecting the Schrodinger
equation onto the space of {<I>"} ,i.e.,

(o7 -
which is a secular equation. The solutions automatically satisfy

(grlwe)-o0, (¥

sy -, ®)

¥ ) -0, ©)

as a result of the Brillouin theorem. Different solutions of Eq. (8) satisfy

(e ) =0, (¥ |H|w>) -o. (10)

Eq. (9) shows that the HF and SECI wave functions satisfy mutually correct relations as given
by Eq. (2) so that we expect that the SECI method may describe the excited states as well as the HF
method does the ground state.

Similar relations hold for ionized states and electron attached states. In the HF model, the
ionization energy from the orbital @, is written by the Koopmans' relation as,

p@)=-¢, ()
and the corresponding ionized state is written by
Y = |||p,a¢,ﬂ...q),.a...¢,,a¢”ﬂl|. (12)
It is easy to show the relations,
(lw)=0,  (wlaw")-o0, (3)
and

(lpilqli)=6i’ (w, |H|lpi)=‘si' (14)
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Eq. (13) comresponds to Eq. (6), and Eq. (14) means that the secular equation, Eq. (8) is already
diagonal for the ionized configurations ¥;. Thus, the Koopmans' relation is valid up to SECI.
Similar relations hold for electron attached states.

Theoretical simplicity of the HF/SECI theory is beautiful, but this does not necessarily mean
that it gives quantitatively reliable results for the ground, excited, ionized, and electron attached
states. Actually our experiences show that the SECI and Koopmans methods are not satisfactory for
quantitative purposes: usually the agreement with experiment is poor when we use these methods.
Thus, electron correlations are important for describing excitation and ionization properties.

We note that the theoretical consistency of the HF/SECI theory is valid only up to single
excitations. The Brillouin theorem means that the first correction to the HF wave function is an
inclusion of doubly excited configurations. When such configurations are included (e.g., as in the
singles and doubles (SD) CI), the Brillouin theorem is no longer satisfied. It is desirable to extend
the simplicity and beauty of the HF/SECI theory up to the levels including electron correlations. We
will show that these merits are kept, in the SAC/SAC-CI theory, at any stage up to the exact limit.

3. SAC theory for the ground state

SAC is an abbreviation for the symmetry adapted cluster, the meaning of which will become
clear later. It belongs to the cluster expansion approach, which was originated in the statistical
theory of interacting atoms,!” then introduced by Sinanoglu!8 in the theory of electron correlations
in atoms and molecules, and further developed by Primas,!? Cizek,20 and Paldus.2!

Electron correlation is defined on the basis of the HF theory as

E® = E™ - E', (15a)
xcon' - lp'exza _lIIHF, (15b)

where 'exact' stands for the exact solution of the non-relativistic Schrodinger equation. Since the
HF model is an independent particle model, electron correlations represent mainly the collisions of
electrons scattering into unoccupied orbitals. We introduce an excitation operator Tf which
represents such a collision. For example, a collision of two electrons belonging to the occupied
orbital @,, resulting in the scattering into the unoccupied orbital @, is represented by the excitation
operator T;*,

I’ = a:aa:ﬁaiaaiﬂ s (16a)
7°10) = | e 09,8..0,09,8..0,00,8| , (16b)

where [0) =W, given by Eq. (3).
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Configuration interaction (CI) method is one of the most popular methods for including
electron correlations. This method is based on the expansion theorem,?? and the correlated wave
function is expressed as

¥ =Bl0)+ Y BTl0), an
1

where B, are expansion coefficients. This method is simple and exact, but is usually slowly
converging, especially for excited states. The dimension of the configurations easily reaches to the
order of 108, though many efficient algorithms for handling such large matrices are proposed.?3-25
Further, it is difficult to extract a physical meaning from such a large number of configurations. It is
also difficult to solve many lower solutions of such a large matrix, which is necessary for studying
shake-up spectra, for example.

The main factor of electron correlation is collisions of two electrons. In many electron
systems, however, there is a chance for three, four and more electrons to collide each other.
However, the probability for four electrons, for example, to actually collide at the same time and
place is very small. Four electron collisions actually important are the products of pair collisions
occurring at different places of the molecule. This is because the fluctuation potential for the
electron correlation is very short range, in nature, as Sinanoglu has pointed out very clearly.!8
When we introduce a sum of the excitation operators as

T=YGT, (18)
1

the wave function including higher-order collisional effects is written as

_( 1. 1.,
v, \1+T+2T +6T +)|0) , 19)

where the terms T2, T°, etc., represent two pair collisions, three pair collisions, etc., and the
factors 1/2, 1/6, etc., are due to the indistinguishability of pair collisions. Eq. (19) is more
compactly written as

‘I’g =cxp(T)|0) s (20)

which is the cluster expansion. The suffix g again stands for the ground state. The theory based on
this expansion is called coupled cluster (CC) theory.2® Hereafter, we call the term, (1+7)0) as

linked term and the term, (%TZ + %T:’ +)|0) as unlinked term.
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In the above formulation, we have introduced the operators 7, representing two electron
excitations (pair collisions). However, generally speaking, this is just an example, and we may take
any operators physically important. An important example is to choose T as a sum of all single
excitation operators,

TO = ‘wac:aja,, . (1)

where i and a stand for the general spin orbital. Then, we get Thouless theorem,?® i.c.,
W = 2 exp(T@)0> 22)

where @ and W are different single determinants, 4 a normalization constant. This theorem
states that the transformation of a single determinant to another one is expressed by the operator
N exp(T(’)) : the cluster expansion includes the self-consistency of orbitals.

We note that for open-shell systems, the single determinant W on the left hand side of Eq.
(22) is not a restricted determinant, but an wnrestricted one which is not an eigen function of the
spin-squared operator S2. Generally, the wave function of the CC theory is not an eigenfunction of
§2, as actually reported for the CCSD wave functions for doublet radicals.?’” In the linear
expansions like CI, the solution of the secular equation is always symmetry-adapted, irrespective of
the choice of the excited configurations, because the Hamiltonian is totally symmetric. However,
this is not the case for the non-linear expansions like cluster expansion. Further, as explained
below, coupled cluster expansion may involve a larger number of variables than that necessary for
describing the state.?

These difficulties do not occur when we choose excitation operators to be symmetry adapted.
We define an excitation operator S| to be symmetry adapted when the configuration S0} is
symmetry adapted. For totally symmetric singlet states, we define the symmetry adapted cluster
(SAC) expansion as!-2
WHC — exp(S)0) , (23

13

where

S=3Cs) . 24
1

Since S,'r is totally symmetric, the unlinked terms of Eq. (23) are also totally symmetric. For open-

shell states like doublet and triplet states, we need a symmetry projector Q as
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WA = Qexp(S)0) = 1+ 5+ Q(%S2 +%S3 + ...)]lO), 23)

where |0) is a restricted determinant and Q applies only to the unlinked terms, since the linked term
is already symmetry adapted. We have also formulated the SAC theory for excited states in a way
slightly different from Eq. (25).28

The SAC expansion defined by Eq. (23) is thus different from the CC expansion given by Eq.
(20). In Table 1, we summarized the differences in a schematic way.2 Generally speaking, the
number of the unknown variables necessary for describing a state is the number of the symmetry
adapted configurations belonging to this symmetry. The SAC expansion involves just that number
of variables, since the unknown variables C, are associated with the symmetry-adapted operators,
S,' (Eq. (24)). In the expansion (20), on the other hand, the operator T is symmetry non-adapted so
that it generally involves a larger number of variables than necessary. For example, the particle-hole
operators include singlet, triplet, etc., operators, though the state under consideration is singlet.
Since the products of two triplet operators may include singlet ones, the unlinked terms may involve
the unknown variables originating from the triplet space, and they are not projected out by the
symmetry projector Q as applied in Eq. (25). Thus, the conventional cluster expansion may involve
larger number of variables than that necessary for describing the state. This may cause a difficulty
in solution. In Table 1, we have sketched the differences between the CC expansion given by Eq.
(20) and the SAC expansion given by Eq. (23) or (25). For closed-shell states, the CC wave
function may become identical with the SAC wave function if the instability does not occur in the
CC wave function.

Table 1: Schematic summary of the differences of the SAC expansion from the conventional cluster expansions?

Number of inde- With 74V or S
pendent variables® Symmetry! alone®

Expansion _ Linked term Unlinked term®

exp(TH0)  Ti0) T,7,l0) Larger Mixed UHF
Qexp(D)0) QTlo)—>Slo)  QT,T;|0) Larger! Pure SEHF
Qexp(S)0) slo) 0s,S,10) Justasrequired  Pure Pseudo-orbital

2The operators T; are not symmetry-adapted, but the operators Sy are symmetry-adapted.

b Only the second-order unlinked terms are given.

©The number of the independent variables included in each expansion is compared with that necessary for the
description of the system under consideration.

4 Symmetry of the total wave function.

¢ This column gives the orbital theory which is equivalent with the cluster expansion including 7D or SO alone.

‘We assume that these cluster expansions are solved with the variational principle. SEHF stands for spin extended
Hartree-Fock.

The Thouless' theorem suggests an existence of a new orbital theory based on the SAC
expansion. We construct the wave function, )
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W™ - gexp(s@ o), (26)

using only single excitation SAC operator S, This is called pseudo-orbital theory.!>2-32 Though
the unrestricted HF (UHF) theory and the spin-extended HF (SEHF) theory are shown to be
inadequate for the description of spin density distributions,2%-31 the pseudo-orbital theory gives the
spin densities which are free from such deficiencies.32-35 However, later, it has been shown that
electron correlations are very important for calculating reliable spin densities.36-40 We note here that
the SAC wave function was first given in the form of Eq. (26) in 1977! prior to the more general
form of Egs. (23) and (25) in 1978.2

We now consider the solution of the SAC theory. In the SAC expansion, the unknown
variables C, are associated to the linked excitation operators S;' , so that we require the Schrodinger
equation, H - E, |‘I»’f‘c) = 0, within the space of the linked configurations as*

(Ol - E|w¥) =0, (27a)
(Ols,(H - E,)| ¥*°) =0 . (27b)

We have the same number of equations as the number of the unknown variables. This solution is
called non-variational solution.

The variational solution is obtained by applying the variational principle to the SAC wave
function and we obtain,%*

([ -5, 5) -0, (28)
(wkn -E)s/[w*) =0 . (28b)

This equation is valid only for the SAC expansion, but not for the CC expansion, because of the
reasons summarized in Table 1. Generally speaking, the variational solution is more difficult than
the non-variational one, because the former involves the integrals between the unlinked terms.
However, we believe, as long as the wave function itself is accurate, the difference between the
variational and non-variational solutions should be small.

We note that Eq. (28b) is the generalized Brillouin theorem. In comparison with Eq. (6a),
'I’:A “ corresponds to ‘PBHF and S} I‘I‘:AC) does to @. As the Brillouin theorem is a key equation in

the HF/SECI theory, the generalized Brillouin theorem given by Eq. (28b) is a key equation in the
theoretical framework of the SAC/SAC-CI theory. We will show this in the next section.

The SAC theory has the following properties. The first three are common to the CC theory.
(1) It effectively involves higher-order effects of electron collisions. It describes dynamic
correlations quite effectively.!8
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(2) It is size consistent*! or size extensive,*2 so that it correctly describes the energy change in the
dissociation process such as X, — nX. This property is a direct consequence of the exponential

ansatz, since
exp(A)exp(B) = exp(A + B) , (29)

when the operators A and B are commutable. This equation also implies that the correlations
included in the cluster expansion is separable in the sense of Primas.!?

(3) It includes self-consistency. This property is best represented by the Thouless' theorem given
by Eq. (22). It guarantees that the cluster expansion is independent of a choice of the reference
orbitals, when we include all the single excitation operators.

(4) The SAC theory defines not only the SAC wave function itself ‘P:A  for the ground state, but
also the excited functions which span the basis for excited states.> The SAC-CI theory is based on
this property, and we explain it in the next section. This property is probably the most important
property, among others, and is valid only for the SAC theory.

4. SAC-CI theory for excited, ionized, and electron attached states

It was thought for a long time that the description of electron correlations in excited states is
much more difficult than that in the ground state. Excited states are generally open shells and are not
represented by a single Slater determinant. Many different states of many different symmetries and
natures are involved in a narrow energy range, which makes it difficult to suppose a single general
theory in a useful form. However, this is not the case in the SAC-CI theory. By using the SAC-CI
method, we can easily calculate the correlated wave functions of the excited, ionized and electron
attached states,3# as explained in this section.

We describe the electron correlations in the excited state on the basis of those in the ground
state. Approximately speaking, excitations and ionizations involve only one or two electrons, and
most other electrons lie essentially in the same orbitals as in the ground state. Therefore, the
electron correlations in the excited state should be able to be compactly described by considering
only some modifications to the ground-state electron correlations.

Let us define the excited functions {<I> K} by using the SAC wave function as

, = PSP, (30)
where P is the operator which projects out the ground state wave function,
P=1- X, G1)

and {S,T(} a set of the excitation operators involving the excitations under consideration in a orbital

picture. From the generalized Brillouin theorem of the SAC theory, Eq. (28b), it is easily shown
that the functions {QK} satisfy
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(o ])=0, (@ |H|w>)-o0. 32)

These equations imply, as Eq. (2) shows, that the set of the functions {<D K} spans the space for the

excited states. We therefore describe the excited state by a linear combination of the functions

{oh
yHea Ny o, (33)
e 2 K™K
which is the SAC-CI theory.?

Obviously, the SAC-CI wave function for the excited state satisfies the correct relations with
the SAC ground state,

(q,:Ac

‘_PCSAC-CI) =0, (T:AC |H

ysAce-a) g (34)
Applying the variational principle to Eq. (33) for solving the unknown variables {d K} , we obtain

(q>K IH - Ee

yseay g (35)
Different solutions of Eq. (34), which correspond to different excited states, satisfy
(wrealyea)ao,  (weomgre)-o, (36)

since they are the solutions of the common secular equation. Thus, the SAC-CI wave function
satisfies the correct relations with the ground state and with the other excited states. This is very
important when we consider the properties, like transitions and relaxations, which interconnect
different states.

In the above formulation, we have considered implicitly the excited states having the same
symmetry as the ground state. However, the SAC-CI theory is also valid for the excited states
having different symmetries (e.g., triplet), and for the ionized and electron attached states. We
generalize Eq. (30) as

@, = PRRYC 37

where {R}} represents a set of excitation, ionization, and/or electron attachment operators. In any
cases, Egs. (32)-(36) are valid.

Though the above formulation of the SAC-CI theory is variational, non-variational
formulation is also possible and has been given in Ref. [43] The non-variational SAC-CI solution is
obtained by projecting the Schrodinger equation onto the space of the linked configurations,

OIR (H - EN¥ %) =0 . (38)
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Referring to Eq. (27), we note that in the non-variational case, the SAC and the SAC-CI wave
functions satisfy the common set of equations. In particular, when we consider the excited states
belonging to the same symmetry as the ground state, the operators {R}}} in Eq. (37) are actually
{S,T } . The solutions of the Schrodinger equation belonging to different eigenvalues are orthogonal

and Hamiltonian orthogonal. Therefore, we obtain Eqgs. (34) and (36) within the space of the linked
operators under consideration. These equations are quite important for the theoretical consistency of
the different states under consideration.

Practically speaking, the non-variational solution is easier than the variational one by the
reason similar to that stated for the SAC solution, but we have to diagonalize non-symmetric
matrices. When we first coded the SAC-CI program, it was in 1978, there was no efficient method
for diagonalizing non-symmetric matrices of large dimensions. Therefore, we had to prepare the
algorithm of iterative diagonalizations of non-symmetric matrices,** extending the Davidson's
algorithm for symmetric matrices.*3

When we diagonalize non-symmetric matrices, we obtain both right-hand and left-hand
eigenvectors. Note however that in the non-variational SAC-CI equation, Eq. (38), the SAC-CI
wave function corresponds to the right-hand solution. The left-hand solution never appears as a
physical wave function in the above formalism. Therefore, we use the right-hand solution as the
SAC-CI wave function in calculating properties.

As the SAC theory is exact, the SAC-CI theory is also exact. Though the introduction of the
SAC-CI theory so far given is rather formal and straightforward, it has some interesting physics.
First, omitting the projector, or including the identity operator into {RK} , we can write the SAC-CI

wave function as

SAC -Cl1 SAC
P g (39a)

where the excitator R (a kind of reaction operator) is defined as

R = dRL. (39b)
K

We already know that the SAC wave function well describes the electron correlation of the ground
state. The excitator R describes the excitation starting from the electron correlation involved in the
SAC ground state W} .

Generally speaking, excitation is only one or two electron processes and most other electrons
lie in the situations (orbitals) similar to those in the ground state. Therefore, it is clever to start from
the ground-state electron correlation and describe only the modifications caused by the excitation.
Egs. (39a) and (39b) just represent such an idea, which is the fransferability of electron correlations
between ground and excited states. This method is much easier than calculating all of the electron
correlations of each state from the beginning. Since the ground-state electron correlation is easier to
calculate than the excited-state one, when we calculate from the beginning, we first calculate it by the
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SAC method and then utilize it in the SAC-CI method for calculating the excited-state correlations
based on its transferability. For this reason, the SAC-CI expansion is much easier and more rapidly
convergent than ordinary CI.

The SAC-CI wave function is also written in the form

WS —exp| Y CST) ) d RLIO) (40)
oo a3 G81) 3

which has the structure of multi-reference CI. The configurations R}|0) represent the reference
configurations and the operator exp( 2 ,C ,S,T) represents the excitations from these reference
configurations. In the latter, we use the coefficients {C,} determined for the ground state, which is
based on the transferability of electron correlations between the ground and excited states. The
dimension of the SAC-CI method is the number of the reference configurations which are typically
in the order of 103 - 105, not like limited to ~ 10. Therefore, in the SAC-CI method, there is almost
no ambiguity in the choice of the 'main reference' configurations in contrast to the ordinary multi-
reference CI method.

The SAC-CI method can be applied to various kinds of excited states by using appropriate
excitation operators. We have applied it to the excited states, ionized states, and electron attached
states having spin multiplicities of singlet, doublet, triplet, and up to septet, as explained below. An
important merit is that we can calculate these different electronic states in a same accuracy. We can
directly compare the energies and the wave functions of different electronic states: a property quite
important and useful in actual applications. Thus, using the SAC/SAC-CI method, we can study
chemistry and physics involving the ground and excited states of various spin multiplicities.

5. Theoretical framework: SAC/SAC-CI theory compared with HF/SECI theory
The SAC/SAC-CI theory has a beautiful theoretical framework in common with the HF/SECI

theory. This is summarized schematically in Table 2. For the ground state, the HF equation is just
equivalent with the Brillouin theorem with respect to the single excitation operators s/, while the

generalized Brillouin theorem of the SAC theory is valid for any excitation operators S;. In the
HF/SECI method, the excited state is described by a linear combination of the singly excited
configurations, ¥, -sI‘PEHF which are orthogonal and Hamiltonian orthogonal to the HF ground
state. In the SAC-CI theory, the excited states are described by a linear combination of {tb K}
defined by Eq. (30) or (37), which are orthogonal and Hamiltonian orthogonal to the SAC ground
state. In the HF/SECI theory, the theoretical consistency is valid only within the single excitations,
as we already explained in the introduction but in the SAC/SAC-CI theory it is valid, in principle, at
any stage up to the exact limit. Needless to say that this similarity shown in Table 2 is valid not only
for excitations but also for ionizations and electron attachments.

In the framework of the HF theory, one often adopts a frozen-orbital approximation, in which
an excited state is represented by a single function ,. Similarly, we may approximate an excited



75

state by a single function ®,. This approximation may be called 'frozen-correlation'
approximation, in which a complete transferability of electron correlations between ground and

excited states is assumed.

Table 2: Analogy in the theoretical framework between the HF/SECI theory and the

SAC/SAC-CI theory.
HF/SECI SAC/SAC-CI

G
R HF SAC
(0} HF eq. = Brillouin Theorem Generalized Brillouin Theorem
U (R slT)-o (weka - £s]|9) -0
N s}; single excitation operator S} ; general excitation operator
D
E SECI SAC-CI
X P, =sjWE @, = PSLPXC
¢ (w|wr)-o (@9 -0
1 (wlaler)-o (@l ;) - 0
T v =Y dy, PReA =N A,
E theoretically consistent only theoretically consistent af any
D within single excitations stage up to exact limit

Y, = single ¥, W, = single @,

"frozen-orbital approximation" "frozen-correlation approximation”

6. SAC/SAC-CI code

After completing the SAC/SAC-CI theory in 1978, I immediately started to write up a
computer code. We already wrote about four different versions and the third one is SAC85.14:15
The earlier two versions#6:47 were theoretically more accurate. The current versions, the fourth
one, 16 is more efficient than before particularly in integral evaluations and diagonalizations. We are
currently making the code more user-friendly and it will be published soon.

A remarkable merit of the SAC-CI method lies in its wide applicability to different electronic
states and in its rather constant accuracy. Figure 1 shows the electronic states covered by the current
SAC/SAC-CI code.!#16 Using the SAC method, we calculate a closed-shell state of a molecule,
and using the SAC-CI method, we calculate many different electronic states of the molecule, shown
in Figure 1, which are produced by the excitations, ionizations, and electron attachments from/to the
closed-shell state. Using the current SAC-CI code, we can study the ground and excited states
having singlet to septet spin multiplicities. The subjects of the SAC/SAC-CI method are the
chemistry and physics involved in many different states shown in Figure 1.
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SAC  SINGLET CLOSED-SHELL (GROUND)
I

SAC-CI
SINGLET EXCITED STATES
TRIPLET GROUND AND EXCITED STATES
IONIZED STATES (DOUBLET GROUND AND EXCITED STATES)
ELECTRON ATTACHED STATES (DOUBLET GROUND AND EXCITED STATES)
QUARTET TO SEPTET STATES (GROUND AND EXCITED STATES)

Subjects of SAC-CI: CHEMISTRY and PHYSICS involved in these states

Figure 1: Electronic states studied by the current SAC/SAC-CI codes.

In most applications, the SAC solution is the ground state and the SAC-CI solutions are the
excited states (in a general sense). However, when we calculate a doublet state, for example, we
first calculate a closed-shell state by the SAC method by adding or by subtracting an electron from
the molecule. The orbitals used in the SAC/SAC-CI calculations may be the open-shell RHF MOs
of the doublet radical or the closed-shell RHF MOs for the anion or the cation. We already know
that the orbital dependencies are small.

The SAC/SAC-CI theory itself is an exact theory. As you noticed in this review, the theory
itself is quite simple and perspective. However, when we write up a code along the SAC/SAC-CI
theory for actually calculating the ground and excited states, we have to introduce some
approximations. We explain below the algorithms adopted in the present SAC-CI code currently
used.

We explain first the SAC method.2*> We calculate a closed-shell state by this method as
seen from Figure 1. Next, we explain the SAC-CI method.3* We explain the SAC-CI SD (singles
and doubles) method for calculating singlet excited states, triplet ground and excited states, ionized
ground and excited states, and electron attached (ground and excited) states.>#® Next we explain
the SAC-CI method for high-spin multiplicities,” namely, for the ground and excited states having
quartet, quintet, sextet, and septet spin states. Then, we explain the SAC-CI general-R method®
which is useful for studying more-than-two electron processes such as the shake-up processes in the
ionization spectrum.

6.1. SAC method
We calculate singlet-closed shell state using the SAC theory. We include in the linked terms
totally symmetric single and double excitation operators of the forms

aa”ia

single excitation, ¢ = (aT a, +aj,a, )/ 2 41)
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double excitation, S =88] 42)

and in the unlinked terms the products of only the double excitation operators, which are quadruple
excitation operators,

quadruple excitation, 5;S;S;S; . 43)

The triple excitations are known to be less important than the quadruple excitations which represent
simultaneous occurrence of two pair collisions. We use the suffices, i, j, k, ! for occupied orbitals
and a, b, ¢, d for unoccupied orbitals in the reference single determinant (usually HF one). We
adopt non-variational solution, for simplicity, so that we need integrals only up to linked x
unlinked, and we need not to consider the unlinked terms higher than the third order.

We introduce the following approximations for reducing computational time. The number of
linked operators is reduced by the configuration selection technique*® which is popular in CI
calculations.23 This is effective for saving a storage and cpu time of computers. Namely,

(a) all single excitation operators are included,
(b) the double excitation operator S,.“Sf is included when its second-order contribution to the energy

is larger than a given threshold Ag; i.e.,

E,| = 2, (44)
where
ag, = folife Y /(@3 |rhey)- o) &)
with
@, =@} =5/5]|0). (46)

For the unlinked terms, we include the products of the linked operators whose coefficients in
the SDCI are larger than a given threshold, Cg, which is usually 103 - 102

The SAC solution is carried out by the non-variational procedure, though a code is given for
an approximate variational procedure’ which was less satisfactory than the non-variational one.

6.2. SAC-CI SD method
We explain here the SAC-CI SD method for the excited, ionized, and electron attached states

having the spin multiplicities of singlet, doublet, and triplet. The SAC-CI wave function is written
as

pse-ar ZdKR,‘; exp(EC,S;) |0) 47
7
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where the operators {S,t } and their coefficients {C,} are transferred from the SAC calculation for
the ground state. The SAC-CI operators R}, are restricted here to single and double (SD) excitation
operators which are shown in Table 3. Generally speaking, the excitation order of the operators R,*(
should be higher by one, at least, than the order of the real excitations to be calculated. For ordinary
single excitation and ionization processes, this choice of the SAC-CI operators is sufficient. For
multiple excitation processes, like shake-up jonizations, the inclusion of triple, quadruple, and
higher excitation operators in the linked term is necessary and we call such method as general-R
method,® which is explained in the next section.

Table 3: Single and double excitation operators for singlet and triplet excitations, ionization and
electron attachment?®

Type of excitation Single excitation operator Double excitation operator
. o t t b
Singlet excitation S; =(a,,a, +a,a, / ¥ p) S5'S;
. . . 1 b
Triplet excitation T =a,0, T'S;
Ionization I, =a, sz
Electron attachment A*=al, A°S!

2, j and a, b denote occupied and unoccupied orbitals, respectively, in the reference configuration |0).

For the unlinked terms, we include the terms

single R, x double S| = triple excitation (48)
for single electron processes such as ordinary excitations and ionizations, and further the terms

double R, x double S| = quadruple excitation (49)

for more accurate calculations and for two electron processes such as shake-up ionizations. The
operators S are restricted to doubles since electron collisions are the main origin of the electron
correlations. Note however that for two electron processes, the inclusion of some important triple
excitation operators in the linked terms is more important and effective (economical) than including
these unlinked quadruple excitation operators. For more details, see the SAC-CI general-R method
given in the next section.

The configuration selection technique is also useful to reduce computer time.48 For the linked
R} operators, (a) all single excitation operators are included and (b) double excitation operators are
selected in the following way. Let W'’ be a primary reference state

po) - 2 PP | (p=1,..,N), (50
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which is usually a SECI solution or small SDCI solution. N is the number of the excited states we
want to calculate. We denote doubly excited configuration to be selected as @ and define

AEY =|®[ [(H? - H,) 1)
where

HY = (@ |H|oP), HP = (2P |H|oP), H, - (@ |H|2,). (52)

We include only such ®_ which satisfies

[AEP)|= 4., (53a)

with at least one of the configurations @ whose coefficients &’ in Eq. (50) are larger than 0.1 or
0.05. Recently, we modified the condition, given by Eq. (53a) as*®

P AES)| = .. (53b)

This equation takes into accounts the weight of the teference configurations in the primary states
g

In the unlinked term szC,RLSHO), we include only such double-excitation operators S,
whose coefficients in the ground-state CI are larger than 1x 103 or 5x104. As for the R}
operators in the unlinked term, two types of selections are possible. For single-electron processes,
we included only single-excitation operators whose coefficients in the CI including only linked
operators are larger than 0.1 or 0.05. The unlinked term then represents triple excitations. For two-
electron processes like shake-up ionizations, we included single- and double-excitation operators
whose coefficients in the CI including only linked operators are larger than 0.1, so that the unlinked
term becomes triple and quadruple excitations. We referred to the former as '3-excited' calculations
and the latter as '3,4-excited' calculations. However, for two electron processes, the inclusion of
the triple and higher excitation operators by the general-R method is more effective than including
'3,4-excited' terms, as shown below.

We note here a problem of the configuration selection method in calculating the potential
curves of a reaction.>® In such cases, an independent selection of operators for independent
geometries may lead to a discontinuity of the calculated potential curves and properties. Therefore,
we have adopted the following method of selections which we call GSUM (group sum) method.
The GSUM method applies to both SAC and SAC-CI calculations.

An essential point of the GSUM method is to take a group sum of the operators (linked and
unlinked) selected for all the representative points in the nuclear configuration space. We first select
several representative points in the nuclear configuration space which cover the reaction under
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consideration. The Hartree-Fock MO's of each geometry are rearranged so as to have the same
ordering as the MO's of the adjacent geometries. The linked and unlinked operators are selected for
each geometry, and then we take the group sum of these operators and the calculations are carried
out at each geometry using the same set of this group sum of operators. This method is appropriate
to study continuous changes in the potential energy curves and the properties along the change in
nuclear configuration.

The SAC-CI solution is carried out by the non-variational method. We have also given an
approximate variational procedure® in which the final matrices to be diagonalized are just the
symmetrized ones of the non-variational ones. This method has been proved to give satisfactory
results.

6.3. SAC-CI for high-spin multiplicity

High-spin multiplet states sometimes occur in molecules with degenerate or quasi-degenerate
orbital structures. Transition metal clusters and complexes often have high-spin multiplicities in
their ground and lower excited states. Other interesting examples are organic ferromagnetic
molecules: high-spin organic ferromagnetic molecules having topological degeneracy due to
methylene and phenylene components have been synthesized by Itoh, Iwamura, et al.>1:52 High-
spin multiplet states are also important in the excited states. They often play an important role in the
dynamic processes like predissociation and recombination processes.

In many cases, high-spin molecules have different spin states (including low-spin states) lying
closely to each other. Therefore, accurate information on the relative stability is very important for
assignments and for studying dynamics. However, these molecules are sometimes so large and the
inclusion of both spin and electron correlations is important. Therefore, we need a theory that is
useful and yet accurate for both low- and high-spin multiplicities.

The SAC/SAC-CI theory was originally formulated for arbitrary spin multiplicity, though in
SACSS the implementation has been limited up to triplet spin multiplicity. We explain here the
SAC-CI calculations for the high-spin multiplicitites, quartet, quintet, sextet, and septet spin states.
We start the correlated calculations from the SAC calculations for the closed-shell electronic
configuration and generate high-spin states by applying the excitator : to the resultant SAC wave
function. Therefore, the lowest SAC-CI excitation operators are two-electron excitation operators
for quartet and quintet multiplicities and three-electron excitation operators for sextet and septet spin
states. In the sense of the SD-R method, these operators correspond to single excitation operators
and therefore we have to include one-more (three- or four-) electron excitation operators in the
linked operators. Table 4 shows the linked operators for the quartet to septet-spin multiplicities.
The unlinked operators in the '3-excited' approximation are written as R(2)S(2) for quartet and
quintet multiplicities and as R(3)S(2) for sextet and septet states, where S(2) represents the double
excitation operators representing the electron correlation in the closed-shell ground state.
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Table 4: Linked operators for the high-spin SAC-CI calculation.
Spin Linked operatora,b
multiplicity

Quartet RQ)=R; RG)=S/R;
=q Aiglip

Quintet RQ)=R? RG)=S/R;
= a: 4 Jaa.pa i

Sextet R@)=R% R@)=S{R;
= a: 4 l:aa 62

Septet R@)=R* R@)=S:Ry"
= alaﬂ:aa:uaipaiﬂakp

a The operator S; denotes singlet-type single excitation operator defined
in Table 3.

b Values in parentheses denote excitation levels relative to the closed-shell
reference configuration.

6.4. Accuracy of the SAC-CI SD calculations

Tables 5 and 6 show the SAC/SAC-CI results for the singlet to septet excited states of N2 and
N2* compared with the full-CI results. Table 5 corresponds to the results of Sections 6.1, 6.2 and
Table 6 to those of Section 6.3 and they are taken from ref. [7]. The bond length is 1.09768A for
both N2 and N2*, which is the equilibrium distance of the ground state of N2. The basis set is
[4s2p] Huzinaga-Dunning53 plus Rydberg s function (¢=0.028). The SAC/SAC-CI calculations are
performed without configuration selection and the RHF MOs are used as reference MOs. For
performing full-CI calculations, the active space is limited very small: five occupied and five
unoccupied MOs.

Tables 5 and 6 show that the average discrepancies of the SAC-CI total energies from the full-
CI ones are 4.21, 4.45, 3.42, 3.46, 2.27, 0.19, and 0.18 mhartrees, respectively, for the singlet,
doublet, triplet, quartet, quintet, sextet, and septet states. They are small and the accuracies are
rather constant independent of the multiplicity. For the excitation energy, the maximum deviation
from the full-CI results is 0.15 eV.

The sizes of the SAC-CI calculations, which are the dimensions of the matrices involved, are
small in comparison with those of the full-CI. In Table 5, the calculated excitation and ionization
energies are compared with the experimental values. Despite that the sizes of the basis set and the
active space are nothing but the test calculation quality, the calculated values compare reasonably
well with the experimental values.

The excitation level shown in Tables 5 and 6 characterizes the nature of the excited state by the
number of the electrons excited in the main configuration. ~For the singlet, doublet, and triplet
excited states, they are unity, but two for the quartet and quintet states, and three for the sextet and
septet states. These are the smallest possible numbers of excitations from the closed-shell SAC
configuration.
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Table 6: SAC-CI and full-Cl results for quartet, quintet, sextet, and septet states of N2 and N2*.

State Exci- Main configuration? SAC-CI Full-CI Difference
tation (mhartree)
level Size Energy Size Energy

Quartet states (Ion)®

142.,* 2 0.68(222110001)+0.68(22121001) 89 -108.07606 2416 -108.07561 -0.45

1°A, 2 0.68(22211001)+0.68(221210001) 87 -108.02787 2524 -108.03024  2.37

1, 2 0.96(212210001) 87 -108.00566 2480 -108.01184  6.18

142“' 2 0.68(22211001)-0.68(221210001) 87 -108.00257 2524 -108.00787  5.30

1 I 2 0.98(221120001) 89 -107.97544 2480 -107.97792  2.48

142; 2 0.66(21122001)+0.66(212120001) 85 -107.96563 2524 -107.96668  1.05

1A, 2 0.66(21122001)-0.66(212120001) 87 -107.91663 2416 -107.91995  3.32

1y 2 0.66(21212001)-0.66(211220001) 85 -107.89388 2524 -107.90043  6.55

Average discrepancy 3.46

Quintet states®

151'[‘. 2 0.98(221210011) 128 -108.37714 1540 -108.37756  0.42

1528+ 2 1.00(221120011) 124 -108.35819 1540 -108.35838  0.19

1°s, 2 0.98(212210011) 128 -108.34024 1580 -108.34665  6.41

ISHg 2 0.95(212120011) 120 -108.26921 1540 -108.26999  0.78

1Pzt 2 0.68(22121101)+0.68(222111001) 116 -108.20347 1515 -108.20611  2.64

25t 2 0.65(222110101)+0.65(22121011) 124 -108.16790 1540 -108.17082  2.92

1°A, 2 0.68(22211101)+0.68(221211001) 116 -108.16048 1515 -108.16045 -0.03

2 M, 2 0.96(212211001) 128 -108.13264 1540 -108.13890  6.26

¥ Ag 2 0.65(222110101)-0.65(22121011) 124 -108.12478 1540 -108.12485  0.07

251'1g 2 0.90(221121001)-0.38(21221011) 120 -108.10537 1540 -108.10831  2.94

Average discrepancy 2.27

Sextet states (Ion)d

lsﬂg 3 0.99(212110011) 98 -107.76082 615 -107.76120  0.38

162; 3 0.97(221110011) 98 -107.74308 629 -107.74322  0.14

12, 3 0.99(211120011) 96 -107.62994 629 -107.62988 -0.06

Average discrepancy 0.19

Septet state®

17g," 3 091(221110111) 80 -107.84480 287 -107.84498 (.18

2The MO ordering is (Og)(Ou)(px™u)(py™u)(pOg)(Rydberg sOg)(Rydberg sou)(pxg)(pyTg)(POu).
b Quartet states which dissociate to N(4S%) + N+(3P) and N(4S9) + N*+(ID).

€ Quintet states which dissociate to N(4S%) + N(4S?), N(4S%) + N(2D?), and N(*S?%) + N(2P?).

d Sextet states which dissociate to N(*S®) + N*(P).

€ Septet state which dissociates to N(4S0) + N(4S0).

In Table 6, we examined eight quartet states which lie in a narrow energy region (within 0.18
au): nevertheless the SAC-CI results give the same correct ordering as the full-CI ones. The sizes of
the SAC-CI calculations are only 85-89, while those of the full-CI are 2400-2500. This shows the
efficiency of the SAC-CI method. For the quintet states, we calculated ten states lying within 0.27
au. The SAC-CI results again give correct ordering, though the lowest four states are valence
excited states, while the following six states are Rydberg in nature.



84

We thus conclude that the SAC/SAC-CI method gives accurate and efficient descriptions of
not only the low spin multiplicities but also the high spin multiplicities. Similar examples were
given in ref. [10, 54].

The exponentially generated (EG) CI method%-36 explained briefly in Sec. 6.5.1 is also easily
extended to high spin multiplicities. The method and the results were given in ref. [57].

6.5. SAC-CI general-R method

In many applications of the SAC-CI method, the excitator i was expanded by single and
double excitation operators. We know from the experiences that this choice gives accurate results
when the excitations or ionizations under study involve only one-electron process. However, when
we study two-or-more electron processes involved in excitations and ionizations, this choice is
insufficient. We have to choose R,T( operators to include not only the single and double (SD)
excitation operators, but also triple-, quadruple-, and higher-excitation operators. We denote the
former method as the SD-R method and the latter as the general-R method.®

In what cases, the general-R method becomes useful? The calculations of the ionization
spectra are one such case. For lower ionizations, the Koopmans state is dominant so that the SD-R
method is effective. But in a higher energy region, simultaneous ionization and excitation
processes, typical two-electron processes, arise in the same energy region and mix with the one-
electron Koopmans configurations. Therefore, in this region, it is necessary to calculate accurately
both one- and two-electron processes. This is very important to obtain accurate results of not only
energies but also intensities. Another interesting example of the two and many electron processes
is the excited Ag states in polyene. In ethylene, its 7t-it* statc appears at about 8 eV. In butadiene,
there is a chance of the occurrence of simultaneous excitations of the 7 electrons in the two double
bonds. Such a chance increases further in long polyenes.

In both of the above cases, the ground state is well approximated by the Hartree-Fock
configuration, so that the SAC method is well suited for the ground state: i.e., the ground-state is
well described by a single reference SAC method. Therefore, these many-electron processes are
well described by the SAC-CI method just by generalizing the R!, operators to include higher-
excitation terms.

From the theoretical point of view, limiting the space of the R}, operators to be within singles
and doubles is just one choice. Rather, in the spirit of the configuration selection, one may think it
to be a better strategy to include important R} operators regardless of their excitation numbers. In
this point of view, the general-R method is a more natural choice than the SD method.

6.5.1. Generation of the higher-excitation operators

In the SD-R method, the double excitation operators are selected using the ordinary
configuration selection algorithm explained in Section 8.2. However, if we adopt this algorithm for
selecting triple, quadruple, etc. excited configurations, even the- selection can be quite time-
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consuming for moderate-size molecules. Instead, we recommend to use the algorithm developed in
the EGCI (exponentially generated CI) method.55-56
The basic idea of the EGCI method is expressed by the script exponential operator as>>

yEe o %%@(EaKAL)QO, (54)
K

%P (2 aKA,z) - Q(a0 * Y auA) +%E ag ALAl + ) , (55)
K K K,L

where the excitation operator A}, runs over all the space and spin symmetries and Q is a symmetry
projector. Single and double excitation operators are usually adopted for the Al operators. The
constructions of the higher-order excitation operators are made in the spirit of the cluster expansion
theory. Namely, the higher-order operators are generated as the products of the lower-order ones.
For example, the important triple excitations would be the products of the single and double
excitation operators which are important already in the SD-CI, and the important quadruple
excitation operators would be the products of the already important double excitation operators in
SDCI. In this way, the higher-order excitation operators are generated. We give independent
coefficients, free from the lower-order ones, to these product operators. This is the spirit of the
EGCI method.

In the above EGCI algorithm, the triple excitation operators are generated as follows. We first
do SDCI for the states we are interested in and choose single excitation operators whose coefficients
in the state vectors we are interested in are larger than a given threshold Y and similarly choose
double excitation operators whose coefficients are larger than a given threshold y,. By multiplying
these single and double excitation operators, we obtain a space of triple excitation operators. We
may use these triple excitation operators, or we may further diminish the space by applying the
ordinary configuration selection method to these triple excitation operators. In the latter case, the
preselection of the operators by the EGCI algorithm makes the ordinary selection procedure tractable
in size. Similarly, we can generate quadruple and higher-excitation operators.

6.5.2. Result of the general-R method

‘We show the result of the general-R method applied to CO and C; from ref. [6]. We calculate
a number of singlet and triplet excited states, ionized states and electron-attached states, and compare
with the full CI results. The basis sets are the [4s2p] GTOs of Huzinaga and Dunning.5® The
active MOs are limited to four occupied and four unoccupied MOs for CO and four occupied and
five unoccupied MOs for Cs.

Table 7 shows the full-CI and SAC-CI results for CO at its equilibrium bond length.
'Excitation level' denotes the number of electrons involved in the excitation, ionization, or electron-
attachment process. 'Main configuration' shows the most important configuration in the full-CI,
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Table 7: SAC-CI and full-ClI results in hartree for CO atR = 1.1283A (equilibrium distance)

State Exci-  Main configuration® Full-CI sac-cr’
;:lgln size  energy general-R SD-R
size  emergy  A°x10® size  energy A°x103
Singlet
13+ 0 0.98(2222) 492 -112.74374 51 -112.74054 3.20 51 -112.74054 3.20
106 -112.74353 021 51 -112.74045 3.29
I 1 095(22211) 432 -112.41498 85 -112.41433  0.65 36 -112.41052 4.46
13- 1 0.69(221210 - 212201) 408 -112.35612 56 -112.35662 -0.50 30 -112.35434 178
1A 1 0.68(212210 +221201) 492 -112.35538 56 -112.35533  0.05 51 11235312 2.26
1 1 0.89(12221) 432 -112.21458 85 -112.21264 194 36 -112.20864 5.94
1S+ 1 0.92(2221001) 492 -112.20140 106 -112.19829 3.1 51 -112.19655 4.85
13+ 1 0.61(212210 - 221201) 492 -112.11498 106 -112.11449  0.49 51 -112.12178 -6.80
I 2 0.64(221111) 432 -112.08857 85 -112.08731 126 36 -112.08426 4.31
-0.49(21212 + 212102) (1.27+1.14)° (4.10£1.55)°
Triplet
ST 1 0.96(22211) 392 -112.49703 95 -112.49644 0.59 44 -112.48977 726
33+ 1 0.69(21221 - 221201) 584 -112.40058 84 -112.40040 0.8 44 -112.40219 -1.61
3A 1 0.69(21221 + 221201) 584 -112.37771 84 -112.37756 0.5 44 -112.37747 024
33 1 0.68(22121 - 212201) 584 -112.36376 71 -112.36453 -0.77 40 -112.36188 1.88
M 1 093(12221) 592 -112.26151 95 -112.25892 2.59 44 -11225873 278
(0.86+0.90)° (2.7522.40)°
Ion
23t 1 0.95(2221) 616 -112.22748 147 -112.22735 013 22 -112.22377 371
M1 0.96(2122) 588 -112.11220 143 -112.11346 -1.26 17 -112.11517 -2.97
25+ 1 0.93(1222) 616 -112.00829 147 -112.00904 -0.75 22 -112.00912 -0.83
23- 2 0.68(22111)- 0.63(212101) 560 -111.82683 146 -111.82376 3.07 12 -111.78508 41.75
2A 2 057(21211 + 221101) 616 -111.82500 147 -111.82262 2.38 22 -111.77826 46.74
211 2 0.78(22201)- 0.53(12211) 588 -111.81991 143 -111.81923 0.68 17 -111.76878 51.13
(1.38+1.03)° (24.52222.20)°
Anion
21 097(22221) 588 -112.61520 84 -112.61375 145 17 -112.60802 7.18
23+ 1 0.97(2222001) 616 -112.44502 87 -112.44135 3.67 22 -112.43937 5.65
2A 2 0.68(222120 - 222102) 616 -112.35009 87 -112.34860 149 22 -112.32377 26.32
25+ 2 0.67(22212 + 222102) 616 -112.32870 87 -112.32651 219 22 -112.29876 29.94
23 2 0.81(222111) 560 -112.30504 64 -112.30248 256 12 -112.25951 45.53
(2.27:0.82)° (22.92214.95)°

2 The MO ordering is (2sXp)XpXp OXpr* Xpu*)2ps* Y2po').

® The first row is the SAC result and all the others are the SAC-CI results.

€ A shows the difference from the full CI result.

d(xzy) where x means the average discrepancy from the full-CI value and y means the standard deviation, both in millihartree.

and 'size' denotes the dimension of the matrices involved in the calculation. A shows the difference
between the SAC-CI and full-CI energies in mhartree.

The SAC calculation is done for the singlet ground state and the result is commonly used in
both general-R and SD-R SAC-CI methods. The second row shows the SAC-CI solution for the
ground state.

Between the two SAC-CI methods, the general-R method gives the results which are superior
to the SD-R method. This is clearly seen from the average discrepancy and the standard deviation
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given in the parentheses. The accuracy of the general-R method is almost constant, independent of
the excitations, ionizations, and electron attachments. The error is often negative, since the method
of solution is nonvariational. The error of the SD-R method is larger than that of the general-R
method, but for the single-electron processes, where the excitation level is unity, the results are
acceptable. However, for the two-electron processes, the error is large, more than 20 mhartree,
except for the 311'I-singlet excited state. Thus, for two-electron processes, the SD-R method is poor
and we have to use the general-R method.

The average discrepancy in the excitation energy, ionization energy, and electron affinity is
calculated from the results shown in Table 7, and it is 0.025 eV for the general-R method. For the
SD-R method, it is 0.067 eV for the single electron processes, but it is as large as 0.865 eV for the
two-electron processes. We thus conclude that the SAC-CI SD-R method is reliable only for single-
electron processes. For two- and many-electron processes, we should use the general-R method.
We next examine the general-R method for C2 molecule. Since the po-bonding MO is left unfilled
in the low-lying region, the C2 molecule has many doubly excited states in a relatively low-energy
region. Table 8 shows the results of the SAC-CI general-R method as compared with the full-CI
results. As seen from the excitation level, there are many two- and even three-electron processes.
The errors of the general-R method are consistently small, independent of the excitation levels and
the sizes of the matrices involved are much smaller than those of the full-CI.

Table 9 shows the excitation energies, ionization potentials and electron affinities of C;
calculated from the results shown in Table 8. The average error from the full-CI results is 0.054 V.

The C2 molecule has unique excited, ionized and anion state due to the existence of the
unfilled po MO. The electronic structures and the spectroscopic properties of Cz and Cz" have
received much experimental’8 and theoretical’9-62 attentions. In particular, the excitation energies
are very small for several lower singlet and triplet states, and the electron affinity is positive for
some lower anion states. The lowest excitation is for the *T1, state. The calculated excitation energy
is 0.528 eV in comparison with the adiabatic excitation energy of 0.09 eV.5® The lowest doubly
excited state is the 1> g~ state, which is 1.92 eV above the ground state. The experimental adiabatic
energy is only 0.80 eV above the ground state.’8 The existence of the stable excited states of the
anion is particularly unique. Two anion states are calculated to be more stable than the neutral
ground state. Experimentally, at least three adiabatic states of C2~ seem to be lower than the neutral
ground state.’® In the ionized states, simultaneous excitation-ionization two- and even three-
electron processes appear in a lower-energy region. However, because of the limitations in the
active space and the basis set, detailed comparisons of the present results with experiment are
limited.

We conclude from the present study that the accuracy of the SAC-CI method for two- and
many-electron processes is improved by using the general-R method. For single-electron
processes, the conventional SD-R method is reliable, as has already been confirmed.



State Exci- Main configuration® (C>0.3) SAC-CI (general-R)°
tation
level size __energy size  energy  A°x103
Singlet
12t 0 0.85(2222)-0.35(20222) 748 -75.52629 46 -75.51985 6.44
112 -75.52378 251
I, 1 0.96(22121) 654 -75.45297 86 -75.45147 1.50
13+ 2 0.63(22202 + 22022)-0.32(20222) 748 -75.42469 112 -75.42195 2.74
1Ag 2 0.68(22202 - 22022) 748 -75.42356 112 -75.42130 2.26
lﬂx 2 0.90(21212)+0.36(2211101) 654 -75.32914 69 -75.32437 4.77
T4 1 0.86(21221) 688 -75.30272 111 -75.30186 0.86
12;’ 2 0.60(20222)+0.39(2222)-0.30(212111 - 2112101) 748 -75.25369 112 -75.24821 5.48
13, 1 0.62(221201 - 2221001) 620 -75.22000 79 -75.21597 4.03
1A, 1 0.63(221201)+0.62(2221001) 620 -75.20743 111 -75.20551 1.92
(2.9021.46)¢
Triplet
311, 1 0.94(22121) 950 -75.50716 158 -75.50437 2.79
3T, 1 091(21221) 960 -75.48006 152 -75.47606 4.00
323' 2 0.96(22112) 940 -75.45908 95 -75.45324 5.84
3[13 2 0.90(21212) 960 -75.42354 124 -75.41957 3.97
3T, 1 0.57(222101 - 2212001)+0.31(21221) 960 -75.28156 152 -75.27305 8.1
3A, 1 0.62(2221001 + 2212001) 940 -75.25573 152 -75.24966 6.07
3“8 2 0.80(2211101)+0.48(222011) 960 -75.23213 124 -75.22675 5.38
3y 1 0.62(2221001+221201) 940 -75.23070 115 -75.22491 5.79
3[13 2 0.59(2211101)+0.48(222011 - 220211)-0.34(2211101) 960 -75.19460 124 -75.18999 4.61
323* 2 0.50(212111 - 2112101)-0.42(212111 - 2112101) 920 -75.19404 124 -75.18586 8.18
(5.51+1.72)¢
Cation
AL, 1 0.84(2212)-0.39(20122) 756 -75.06396 145 -75.05952 4.44
zAg 2 0.66(22201 - 22021) 784 -74.99347 141 -74.99174 1.73
228’ 2 0.61(22201 + 22021)-0.37(20221) 784 -74.99019 141 -74.98752 2.67
25,5 2 0.82(22111)-0.48(22111) 728 -7497066 109 -74.96650 4.16
Zﬂg 2 0.85(21211) 756 -74.96718 139 -74.96376 3.42
2z, 1 0.90(2122) 784 -74.96041 149 -74.95513 5.28
M, 3 0.89(22102) 756 -74.95202 145 -74.94621 5.81
2A, 3 0.64(21202 - 21022) 728 -74.89972 123 -74.89819 1.53
23t 3 0.61(21202 + 21022) 784 -74.86227 149 -74.86018 2.09
223* 2 0.81(20221) 784 -74.84186 141 -74.83864 3.22
23, 3 0.78(21112)+0.45(21112) 728 -74.83681 123 -74.83394 2.87
(3.38+1.34)¢
Anion
223’ 1 0.93(22221) 1164 -75.57950 133 -75.57263 6.87
M, 2 0.96(22122) 1100 -75.54346 142 -75.54102 2.44
22t 2 0.87(21222) 1144 -75.48444 121 -75.48003 441
21]8 1 0.88(222201) 1100 -75.35620 125 -75.35020 6.00
25, 2 0.64(222111 - 2212101) 1144 -75.32372 121 -75.31868 5.04
2, 2 0.66(2221101)-0.50(221211)+0.45(221211) 1056 -75.32053 125 -75.31667 3.86
zﬂg 3 0.78(2211201)+0.56(222021) 1100 -75.31882 125 -75.31391 491
2A, 2 0.59(221211)+0.57(2221101)+0.35(2221101)+0.32(221211) 1056 -75.31794 121 -75.31379 4.15
2A, 2 0.60(221211)-0.58(2221101)+0.36(2221101)-0.33(221211) 1056 -75.30293 125 -75.29987 3.06
23, 2 0.65(2221101)-0.49(221211)+0.47(221211) 1056 -75.28780 125 -75.28073 7.07

(4.7821.45)8

2The MO ordering is (2s)(2so*)(pr)(pr)Xpo)pr*Xpn* ) po*)Xpo').

b The first row is the SAC value and all the others are the SAC-CI values.

¢ A shows the difference from the full CI result.
d(x+y) where x means the average discrepancy from the full-CI value and y means the standard deviation, both in millihartree.



Table 9: Excitation energies, ionization potentials and electron affinities in eV calculated by the
uilibrium distance

SAC-CI and full-CI methods for Cy at R = 1.24253 A

State Excitation Main Full-CI SAC-CI (general-R)
level configuration
size _ energy size __energy A°x103
Singlet
13,0 Hartree-Fock 748 0.0 112 0.0 0.0
M, 1 pra—po 654  1.995 86  1.968 -0.027
13,42 p, pi—>po, po 748 2.765 112 2771 0.006
1Ag 2 px, pui—>po, po 748  2.795 112 2.789 -0.007
I 2 2s0%, pu—>po, po 654 5.365 69 5.426 0.061
1z, 1 250%—>pC 688 6.084 111 6.039 -0.045
13+ 2 250%, 2504—po, po 748 7.418 112 7.499  0.081
13, 1  pr—spus 620 8335 79 8376 0.041
1A, 1 pr—spus 620  8.677 111 8661 -0.016
(0.036)"
Triglet
w1 pR—>po 950 0.520 158 0.528 0.008
E) | 2s0%—>pC 960 1.258 152 1.299 0.041
384 2 pm, pn—>po, po 940  1.829 95 1920 0.091
3 2 2s0%*, pt—>p0, pO 960 2.796 124 2.836 0.040
33,01 pR—>pr* 960 6.659 152 6.823 0.163
3A, 1 pr—vpmu* 940  7.362 152 7.459 0.097
3, 2 pw, pi—>po, pu* 960  8.005 124 8.083 0.078
3%, 1 pu—pm+ 940  8.043 115 8133 0.089
3 2 pm, pu—>po, pr* 960 9.026 124 9.083 0.057
38,42 250%, pu-»po, pus 920  9.041 124 9.195 0.154
(0.082)°
Cation
2, 1 pr—>® 756 12.581 145 12.633 0.053
2A;, 2 pm, pi—>po, ® 784 14.499 141 14.478 -0.021
25,2 pw, pR—>pc, ® 784  14.588 141 14592 0.004
25, 2 pw, pr—spo, © 728 15.120 109 15164 0.045
zrlg 2 250%, pt—>po, ® 756  15.214 139 15.239 0.025
25, 1 250%—>® 784  15.399 149 15474 0.075
2, 3 pm, pr, pR—>pO, po, ® 756  15.627 145 15717 0.090
27, 3 250%, px, pR—*po, po, ® 728 17.050 123 17.023 -0.027
234 3 250%, pX, pR—*po, po, © 784  18.069 149 18.058 -0.011
2}:3* 2 250%, 2s0%—*pC, © 784 18.624 141 18.644 0.019
2%y 3 2s0%, px, pi—>po, po, ® 728 18.762 123 18.772 0.010
(0.035)¢
Anion
223" 1 —>po 1164 1.448 133 1.329 -0.119
2, 2 pw, °—>po, po 1100  0.467 142 0.469 0.002
25,42 pm, 0—>po, po 1144  -1.138 121 -1.191 -0.052
2, 1 O—>pIT 1100 -4.628 125  -4.723 -0.095
2542 p, w—>po, s 1144  -5.512 121 -5.581 -0.069
25, 2 pw, ®—>po, pik 1056  -5.599 125 -5.636 -0.037
M, 3 PT, pX, ©®—>p0o, po, pr* 1100  -5.646 125  -5.711 -0.065
2A, 2 pm, ®—>po, pue 1056  -5.670 121 -5.714 -0.045
2A, 2 pw, ®—>po, pus 1056  -6.078 125 -6.093 -0.015
25, 2 pu, @—spo, pue 1056 -6.490 125 -6.614 -0.124
(-0.062)¢

“ The Hartree-Fock MO ordering is (25)(2s0%)(pr)(pr)(pO)(pr+ )(pru+ )(po*)(po').
b Relative to the SAC-CI energy for the singlet ground state.

© A shows the difference from the full CI result.

d Average discrepancy
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6.5.3. General-R method applied to ionization spectra

The results given in Tables 7-9 show a potential utility of the SAC-CI general-R method for

the electronic processes including multi-electron processes. We show here an example of

applications to the ionization spectra.

Figure 2 shows the ionization spectra of N2 calculated by the SAC-CI SD and general-R
method compared with the full-CI result.63 Though the SD-R result gives rather good result for the
lower three ionization peaks, which lie distantly from the satellite peaks, the results for the higher-

energy peaks are not good. On the other hand, the general-R result is very close in all the energy

region to the full-CI result. This is true not only in the energy but also in the intensity. The general-

R result and the full-CI result almost exactly superpose each other, showing a high accuracy of the

general-R method.
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Figure 2: Ionization spectra of N2 calculated by (a) SAC-CI SD-R method, (b) SAC-CI general-R

method, and (c) full-CI method.
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7. Multi-reference case : EGWF approach

The SAC theory assumes that the HF configuration is dominant in the expansion. The ground
states of most molecules satisfy this condition. However, when a molecule undergoes homolytic
dissociation, this situation may be broken down. For such cases, we have proposed MR(multi-
reference)-SAC method4-65 and applied it to the calculations of the potential energy curves of the
ground and excited states of small molecules.% The underlying theoretical concept was further
generalized as the exponentially generated wave function (EGWF) approach.>5 In this generalized
idea, the MR-SAC wave function is just one of the multi-(or mixed-)exponentially generated (MEG)
WFs.55:66  When we get the MEG-WFs, we can construct on that basis the wave functions for
excited, ionized, and electron-attached states, which we call EX(excited}-MEG WFs. In short,
MEG and EX-MEG correspond to SAC and SAC-CI, respectively, in the single-reference limit and
the thoeretical framework is similar. Coding of these methods was completed®” and the test
calculations gave satisfactory results.55:66 We have also proposed a CI wave function constructed
in the spirit of the EGWF and called it EGCI.>¢ Applications of EGCI to high-spin molecules were
also reported.5” This method is a useful and reliable method for studying reaction dynamics.
Though these EGWF approaches are quite interesting, we can not give a detail for a lack of the
space.

8. Chemistry studied by the SAC/SAC-CI method

The SAC/SAC-CI method is already 18 years old and it has offered a practically useful way of
studying many different topics in chemistry and physics.

A remarkable merit of the SAC-CI method lies in its wide applicability to different electronic
states and in its rather constant accuracy. As shown in Section 6, our current SAC/SAC-CI code
can deal with many different electronic states as shown in Figure 1. It also shows a promising
future of the SAC/SAC-CI method.

In some topics of interest, we have to study many different electronic states at the same time.
The dynamics in the excited states68-72 and the (photochemical) reactions on surface’3-76 are such
subjects. The SAC-CI method is suitable for such studies since it describes many different states as
shown in Figure 2 in essentially the same accuracy. Examples showing such constant accuracy
have been given in Tables 6-8. In conclusion, using the SAC/SAC-CI method, we can study
chemistry and physics involved in many different states shown in Figure 1.

In Table 10, we summarize the subjects and the molecules studied so far using the SAC-CI
method. After completing the SAC/SAC-CI first code, some calculations were for confirming the
accuracy of the SAC/SAC-CI method, which were quite encouraging,’ and later we applied it to the
spectroscopies of valence and Rydberg excitations and ionizations. The molecules studied include
organic and inorganic molecules, metal complexes, and more recently metallocenes and biologically
important porphyrins. Benzene, pyridine, and naphthalene were the largest molecules ever
calculated by accurate theories when we published the SAC-CI studies on the excited and ionized



Table 10: Chemistry and physics studied by the SAC/SAC-CI method

Subject Publication Reference
Theory
SAC JCP,1978; CPL,1979 2,4,5, 28,48, 64
SAC-CI CPL,1978,1979 3,4,5,6,7,48,77
Spectroscopy

Valence and Rydberg Excitations
Be CPL,1979,1981 5,28
BH3 CPL,1979 5
H20 CPL,1979,1981,1991; JQC,1981

5,71, 28, 54

CH2 CPL,1981 28
H2CO JCP,1981 78
CO2,N20 CP,1983 48
NO 1JQC,1983 81
C2H20 JCP,1983 84
NH4* JACS,1984 83
COo, C; CPL,1991 6
Ethylene JCP,1984; BCSJ,1996 82,118
Pyrrole,Furan,Cyclopentadiene JCP,1985 85
Pyridazine CP,1986 86
Benzene JCP,1987; TCA,1987 89, 65
Naphthalene CPL,1987 90
Butadiene CPL,1988 91
Pyridine JCP,1988 92
Cyclopropane, Bicyclobutane, Propellane CP,1996 119

Ionizations, Shake-up, and Electron-Attachment
H20 CPL,1979,1982; 11QC,1981 5,79, 77
H2CO JCP,1981 78
CO2,N20 CP,1983 48
CO0S,CS2 CP,1983 80
NO 1JQC,1983 81
Co, C2 CPL,1991 6
Ethylene JCP,1984 82
Pyrrole,Furan,Cyclopentadiene JCP,1985 85
Benzene JCP,1987 89
Naphthalene CPL,1987 90
Pyridine JCP,1988 92
Butene(cis, trans, iso-) JCP,1995 107
CHCI=CHCl1 J. Mol. Struc. 111

Hyperfine Splitting Constant and Spin Density

BeH, CH3, C2Hs, HCO, H2C=CH2 JPC,1983 (GTO) 36
H20%, H,CO*, O(CH3)2*, CH3NH, C;Hs, CH30
JCP,1988 (GTO) 38

H2*, H20%, O(CHz3)2*, H2CO*, CH3, C2Hs, CH3NH, CH30, H2C=CH, HCO
JCP,1989 (STO; with cusp) 39

(Table 3 continue)



Anisotoropy

CH3F*

CFCl2

NH2
OH,CH2,BH2,CH3,H20*

High-Spin Molecules

JCP,1990

JCP,1991
JCP,1991

(Table 3 continued)

96

97
98

JCP,1992 (STO; with cusp) 101
JCP,1994 (GTO, fullCI) 40

N2, OH, m-phenylenebis(methylene) JCP,1993

Liz, Liz*
CO

An, Aryt

CsXe, CsNe,CsAr,CsKr
02,02%

MnO4-

Ni(CO)4

M004-nsn2'

Ru0Qg4, 0sO4

MnO4~
TiCla,TiBr4,Til4
CrO2Cl2

Cr04%

RhCle>, RhCls(H20)>
SnHg4, Sn(CH3)4
TcO4

MoFe

Catalysis and Surface Photochemistry

Pdp-H2
Pta-H2
Ag-02
Zn0O-H2
(Alkali)s-Cl2

Ptp-CO

Spectroscopy of Large Systems

Porphin (C20H14N4)

Mg porphin (MgC20H12N4)
Oxyheme (FeC23H16N602)
Tetrazaporphin (C16H10N8)
Carboxyheme (FeC24H16N6O)
Phthalocyanine (C32H18Ns)

Potential Curve and Dynamics, Photochemistry

Can.J.C.,1985
Indian Aca. Sci. 1986
JCP,1990

CPL,1990; JCP,1994
CPL,1992
TCA,1994; JPC,1995
JCP,1995

Excitation and Ionization Spectra of Metal Complexes

JCP,1990

1JQC,1991

JCP,1991
JCP,1992,1994
JCP,1993

JCP,1994

BCSJ,1995

JPC,1995

TCA,1995

JPC,1996; 1QC,1996

JACS,1985,1987
JCP,1988
CPL,1990; JCP,1993
1JQC,1992
J.Mol.Cat.,1992
ICP,1996

ICP,1996
CPL,1996
CPL,1996
CPL,1996
CPL,1996
JPC,1996

104

50

43

68

69, 70
102
71

72

94

95

99

100, 106
104

105

108

109

110

117

87

93
73,74
103
75

76

49

112
113
114
115
116

93
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states. We could improve the excited states having V character in comparison with the previous
calculations by including a large amount of -electron correlations together with the m-clectron ones.
In particular, the SAC-CI calculations on metal porphyrins constitute the largest calculations ever
made by the accurate ab initio method including electron correlations. We give a brief review later
on this subject taking porphin, tetrazaporphin and carboxyheme as examples.

Surface chemistry is often a very good subject of the SAC/SAC-CI method since in catalysis,
the active state and species does not necessarily correspond to the ground state, but sometimes
involves the excited states of the system.”3:74.93 For example, oxygen exists in various forms on a
metal surface. When we deal with them theoretically, one corresponds to the ground state but the
other corresponds to the excited state.”3-74 Surface photochemistry is a field now growing up very
rapidly. Cluster model was used in H2/Pd,Pt and CO/Pt chemisorptions and photodesorptions, but
in O2/Ag and Cl2/Na,K,Ru chemisorptions, the cluster model fails because it does not describe the
effect of bulk metal. We have proposed dipped adcluster model (DAM)!20-121 in order to take into
account the effect of free electrons of the metal and the surface image force as two important effects
of the bulk metal and succeeded to quantitatively describe the Oz and Cl2 chemisorptions on the
metal surfaces. In both cases, electron transfers from the metal surface to the admolecules were
important. In the Clo/Na,K,Ru system, the chemisorption accompanies the surface luminescence
and the surface electron emission, which were studied successfully by the SAC-CI method. The
harpooning of an electron was satisfactorily described by the DAM.”

In the dynamics of the excited states, many different states are often involved and the SAC-CI
method is useful. In the study of the potential curves of CO,*? we showed a utility of the SAC-CI
method in the region near the equilibrium distance. When the CO distance is large, the HF dominant
13 state becomes an excited state. Then, we calculated the SAC wave function for that excited state,
and calculated the ground state using the SAC-CI method. For Ar, the SAC-CI potential curves
were shown to be very accurate.58 An overview will be given in this review for the collision
induced absorption spectroscopy of CsXe system.9%70  Recently, the photochemical
decompositions of Mn0O42" and Ni(CO)4 were studied by the SAC-CI method.”1,72

Hyperfine splitting constant (hfsc) is an important property of doublet, triplet and high-spin
molecules. The isotropic hfsc is represented by the Fermi contact interaction which is proportional
to the spin density at the nucleus. Since this is a very local property, ab initio calculations of the
hfsc's are more difficult than those of the other electronic properties such as dipole moment,
polarizability, etc. The SAC-CI method is shown to give fairly accurate results for the hfsc's. It
has been clarified that the following factors are important for adequate descriptions of the
hfsc's;36-39:40 (a) spin-polarization effect, (b) electron correlation effect, and (c) the cusp condition
at the positions of nuclei.

We give in this review some recent topics of interests of the SAC-CI applications: excitation
spectra of metal complexes, collision-induced absorption spectra of CsXe, and excited states of
porphyrins. Some interesting previous topics were overviewed in a previous review article.10
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9. Related methods
It is interesting to formulate the SAC-CI theory in a different way.8* Starting from Eq. (39),
it is easy to derive an equation-of-motion (EOM) type formula

[H RN = AEREC (56)
where AFE is the excitation energy

AE=E}® - EX°. 7
Egq. (56) is notable in that only the ground-state wave function is involved but we have the excitation
energy. Rowe,122 Shibuya, Mckoy, Yeager and others!23-125 have developed the EOM method for
directly calculating the difference properties like transition energies and moments. We note that the
so-called killer condition is unnecessary in the above formalism.

From Eq. (56), we can further derive

(0IR.e*[H,R]e’l0) = AE(0IR Rl0) (58)

which is equivalent with the CCLR (coupled cluster linear response) equation recently investigated
extensively by Koch and Jgrgensen.126-127 This line of theory can be traced back to Mukherjee.!28
This formulation shows that the SAC-CI method and the CCLR method are essentially equivalent.
However, different formulations are sometimes quite useful, because different insights, though
common, may be obtained from such formulations.

Recently, a method with a slight modification of SAC-CI was published with the name of
equation-of-motion coupled-cluster (EOM-CC).129:130 [t does not start from the EOM formula like
Eq. (56), but its formalism?30 is just the same as the SAC-CI one. Namely, it used in Eq. (39) the
coupled cluster (CC) wave function (CCSD) instead of the SAC wave function and expanded the
excitation operator R by single and double excitation operators. For closed shells, if the instability
does not occur in the CC theory, the CC wave function becomes the same as the SAC wave
function, so that the EOM-CC is the same as the SAC-CI. Actually, the SAC-CI theory itself is
exact and the difference is only minor: different approximations were adopted in practical
calculations. The SAC/SAC-CI method is now well established, due to our pioneering efforts, not
only as a theory for ground, excited, ionized, and electron-attached states, but also as a useful
computational method for studying chemistry and physics involving these different electronic states.
It is therefore misleading to use the term EOM-CC, since it is not new but published much (11
years) later after the SAC-CI method is established as a quite useful method, and since it is merely a
modification of the SAC-CI method.

It is further nonsense to use the terms IP-EOMCC!3! and EA-EOMCC!32;: SAC-CI has been
formulated from the beginning to apply not only to the excited states, but also to the ionized and
electron attached states, and we have published many such applications for many years since
197943 Our SAC-CI code! can deal with the ground and excited states having spin multiplicities
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from singlet up to septet as shown in Figure 1. The EOM-CCSDT method!33 is also a special case
of our SAC-CI general-R method published earlier.®

10. Excitation spectra of metal complexes

Metal complexes show beautiful colors in all possible ranges, and therefore, we thought at
first that there should be a lot of studies on the excitation spectra of metal complexes. However, we
soon found this was wrong. The reason was simple, there was no good theory for excited states
before SAC-CI. Probably, metal complexes were too large for the theory already existed before.

We show here the SAC-CI study of the excitation and ionization spectra of TiCl4, %% TiBra,
Til4, 106 CrO2Cl3,1%4 and Sn(CH3)4.19% We explain only the final results and for the details we
refer to the original papers.

10.1. TiCl4, TiBr4, Til4

Figure 3 shows the experimental and SAC-CI theoretical excitation spectra of TiCl4, a
tetrahedral molecule. The lowest calculated state is 1T arising from the 1t; — 2e (homo-lumo)
transition, but this is dipole forbidden. The first allowed transition is to 1T> which again arises
from 1t; — 2ec transition. It is calculated at 4.42 eV in comparison with the experimental values,
4.43 and 4.41 eV: the first band is assigned to the 1T state. Similarly, all the peaks observed in the
experimental spectrum are assigned to the dipole-allowed T? states as seen in Figure 3. We note that
the peaks in the experimental spectrum are sometimes composed of the two or three transitions. For
example, the large band at about 7 eV is assigned to be composed of the transitions to the 6T, 7T2,
and 8T states, the transition to the 8T state being the most intense one.

The nature of the transition is different in different energy regions. In the region of 4 - 6 eV,
the excitation is mainly from the ligand to the metal-ligand anti-bonding MO, in the region of 6 - 8
eV, the excitation is from the metal-ligand bonding to the metal-ligand anti-bonding MO, and in the
region of 8 - 11 eV, the excitation is essentially within the ligands, i.e., from the ligand lone-pair
MO to the ligand Rydberg orbitals. The knowledge of the nature of the excitation is useful for
understanding the reaction and the dynamics in which the excited state is involved.

We have studied the excitation spectra of many highly symmetric compounds, Tq and O,
where the excitations often involve the transitions between degenerate orbitals. For example, the
transitions t1 <> 2¢ give T1 and T2 symmetries. An important observation was that Tp is always
lower than T2 as seen here for TiCls. This fact can be explained using the frozen orbital
approximation (FZOA) and the orders of magnitudes of the repulsion integrals involved in the
splitting of the degenerate transitions.!17 We have systematically shown the validity of FZOA in
understanding the ordering and the intensities of the transitions involving two degenerate orbitals,
and an example is given for the Op complexes like MoFs.117

We studied further the excitation and ionization spectra of TiBr4 and Tils.'% For these
molecules, an interesting point is the effect of the spin-orbit interaction on the excitation and
ionization spectra. On the right-hand-side of Figure 3, we show the SAC-CI excitation spectra of
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Figure 3: Left, Excitation spectra of TiCl4 (a) experimental (b) SAC-CI theoretical. For the 8T2 and
9T, states the intensities given for the SAC-CI spectrum are 1/5 and 2/5 of the calculated values.

Right: Theoretical excitation spectra of Tils (a) without spin-orbit interaction [singlet (*) and triplet
(A) states]; (b) with spin-orbit interaction; and (c) experimental excitation spectrum.

Til4 without and with the spin-orbit interaction. We see that the spin-orbit interaction is very large
and without it the peaks in the experimental spectrum are not well understood. For TiBrs, the spin-
orbit effect was not so large.

The spin-orbit interaction was considered in a very simple way. After finishing the SAC-CI
calculations of the singlet and triplet excited states, we add spin-orbit integrals additionally and
diagonalize again. For more details, see refs. [93] and [106].

10.2. CrO2Ch2

Figure 4 shows the experimental spectrum of chromyl chloride CrO2Cly compared with the
theoretical spectrum calculated by the SAC-CI method.!%* The right-hand side is the spectrum in
the lower-energy region and the left-hand side is for higher-energy region. Though we refer to the
original paper for the detailed analysis, we see that the overall features of the experimental spectra is
well reproduced by the SAC-CI theoretical spectra. For this molecule is Czv, we have many dipole-
allowed peaks in comparison with those of the highly symmetric molecules. Partially for this

reason, the observed peaks are composed of many transitions. The nature of these transitions were
given in ref. [104].
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Figure 5: Summary of the ab initio calculations for the excitation energies of CrO2Clz; (a) Jasinski
et al.134 (b) Miller, Tinti, and Case!33

Figure 5 shows a comparison of the various ab initio theoretical results for the excitation
spectrum of CrO2Cly with the experimental spectrum. Among the theoretical spectra, only the SAC-
CI result agrees with the experimental peaks. The previous theoretical results are totally different
from the experimental spectrum. This is one example showing why the spectra of transition-metal
complexes were left unstudied before the SAC-CI method had appeared.
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10.3. Sn(CH3)4

Lastly, we show an example of the Rydberg transitions. Figure 6 shows a comparison of the
experimental and SAC-CI theoretical spectra of Sn(CH3)4 in 6 - 10 eV region.!%® The insct shows
the spectrum calculated by Fernandez et al.!3¢ For calculating Rydberg transitions we have to
include Rydberg basis sets: we included three Rydberg orbitals for each of the s, p, d orbitals of Sn
and one Rydberg s, p orbitals for C. We see that the 1T2 and 8T2 excitations have very strong
intensities, implying strong admixtures of valence excitations. Actually, the 1T2 state has a mixed
nature of the 6s Rydberg orbital and Sn(s)-C(s) antibonding orbital. The 8T state also has a mixed

nature of the 6d Rydberg orbital and the Sn(5p)-C(p) antibonding orbital. Other T2 states are
essentially the Rydberg states.

Fernandez et al.
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Figure 6: SAC-CI theoretical excitation spectrum of Sn(CH3)4 below the first IP, 9.70 eV,
compared with the observed spectrum.!36 Inset is the spectrum calculated by Fernandez et al.136

We think that our SAC-CI spectrum compares well with the experimental spectrum. The first
peak is the transition to the 1T state and the second broad peak includes a large number of Rydberg
states, but the peak position corresponds to the 8T state. In the Fernandez theoretical spectrum, no
peaks were calculated for the second broad peak, probably because of the lack of the Rydberg basis
set in the calculations.

The above quick overview of the SAC-CI study of the excitation spectra of metal complexes
show the applicability, reliability, and usefulness of the SAC-CI method. Actually, these

calculations are now small and easy ones in comparison with our recent calculations on porphyrins,
for example.

11. Photochemical reactions and dynamics

Since the SAC method is a single reference theory, the SAC SD method is not applicable to
quasi-degenerate electronic states which often appear in the dissociation of homolytic bonds. In
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order that the SAC SD method is safely applicable, the HF configuration should be dominant
throughout the process. Such cases are often found in isomerization processes, ionic dissociation
processes, and van der Waals interactions, and for them we can calculate the potential curves of the
ground, excited, ionized and electron attached states throughout the processes. The SAC/SAC-CI
gradient technique should be useful for studying the dynamics involving the ground, excited,
ionized and electronic attached states of a molecule and the coding has been finished very recently in
our laboratory.

We show here, in some detail, the study of the collision-induced absorption spectra of the
CsXe system, which is a typical van der Waals system.

11.1. Collision-induced absorption spectra of CsXe system

The optical S-S and S-D transitions of alkali atoms are dipole forbidden. However, when
noble gas is admitted into alkali vapor, collisional interaction between alkali atom and noble gas
makes these transitions dipole-allowed and new absorption bands are observed near the position of
the originally forbidden line.!37 This phenomena is called collision-induced absorption. The
position and the profile of the collision-induced absorption sensitively reflect the interatomic
potentials of the ground and excited states of the alkali-noble gas system and the (induced) transition
moments between them. We were very interested in this aspect of the collision-induced absorption.
Moe et al 137 reported the detailed absorption spectra for the Cs-noble gas systems.

We explain here our studies®%-70 on the collision induced absorption spectra of Cs-Xe. This
system shows relatively strong interactions and its spectra represent most of the features common to
the alkali-noble gas systems. We are interested in the Cs-Xe interactions in a relatively shorter
region (RCs-Xe < IOA), so-called wing region where the van der Waals interactions, overlap
interactions, and repulsive interactions cooperatively determine the interatomic potentials. Since the
spectral profiles depend very sensitively on the potential energy curves of the ground and excited
states and on the induced transition dipole moments between them, we need a theory which is able
to describe both ground and excited states in a considerable accuracy.

As such a theory, we use the SAC/SAC-CI theory. A proper choice of the basis set is quite
important for obtaining reliable results particularly for the excited states. In the first calculations,%®
we used the relativistic ECP and the basis set of Wadt and Hay!38 augmented with the diffuse
functions presented by Langhoff et al.13° However, we could not reproduce the proper ordering of
the 5D and 7S states of the Cs atom, which is quite important for correctly reproducing the collision-
induced spectra. In the refined calculations, we used the all-electron basis set of Huzinaga et al.,140
after examining whether the reasonably correct result is obtained with this basis set for the excitation
spectrum of the Cs atom. The basis set of Cs is composed of [7s5p2d] set for the valence part and
augmented with the primitive (3s3p3d) set of Langhoff et al.139 for the Rydberg part. The Xe basis
set is [6s5p2d] set of Huzinagal4? augmented with the primitives (3s2p) of Ermler et al.14! The
basis set superposition error (BSSE) was also taken into account in a usual way.
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The quasistatic approximation'4? is adopted for calculating the reduced absorption
coefficients. This approximation seems to be reliable and useful for understanding the mechanism
of the collision-induced absorption process. Assuming binary collision between Cs and Xe atoms
in the canonical distribution, the reduced absorption coefficient is given by

k) i

- 25 DRY

4R (_V;(Rc)—w.,))’ )

Tt
-y, ®far, |\ kT

where ng and na are the densities of the perturber Xe and the absorber Cs, respectively, D(R)
denotes the induced transition dipole moment at internuclear distance R, and Vg and Ve are the
energies of the ground and excited states, respectively.

Thus, the collision induced absorption spectra are determined by the following three
quantities, (1) excitation energies, (2) Boltzmann distribution of the ground state, and (3) induced
transition moments, as the functions of the internuclear distance.

Figure 7 shows the calculated potential curves of the 6S, 6P, 5D, and 7S states of CsXe. The
calculated potential curve of the ground state of CsXe has a flat shape with a shallow minimum of
30 cm-! at 4.97 A in comparison with the experimental values of 110 cm at 5.45 A.

The 6pZ and 5d states are due to the excitations from the 6s non-bonding MO to the weakly
anti-bonding 6pc and 5do MO's, so that the system becomes unstable and the potential curves are
repulsive. The repulsive interaction in the 5dZ state seems to be larger than that in the 6pZ state,
starting from a larger internuclear distance. The 5d2 state has a characteristic hump at 4.6 A and the
6pZ state has a shoulder at 5.0 A. The hump of the 5d state is caused by the avoided crossing
with the 7sZ state, so that the natures of these states are reversed at this point, though in Figure 7
the upper curve is still called 7sZ state and the lower one 5dZ state even in the shorter region.

The 6pI1, 5dI1, and SdA states have shallow minima in their potential curves. The Rydberg
orbitals of these states of the Cs atom are not directed towards the rare gas atom, but the ion core of
the Cs atom polarizes the electron density of the rare gas atom, which is responsible for the attractive
force. The potential curve of the 7sZ state also has a well at 4.61 A which is due to the avoided
crossing with the 5dZ state, as noted above. The calculated spectroscopic constants were compared
in ref. [70] with the experimental values.

From the potential curves shown in Figure 7, the excitation energies of the various states as
functions of the internuclear distances are calculated. Figure 8 shows the Boltzmann distribution of
the ground state as a function of the internuclear distance. Because of the repulsive nature of the
potential curve in the shorter region than 4.5 A, the probability of finding the ground state in this
region becomes very small.

The absolute values of the induced dipole moments are shown in Figure 9 as a function of the
internuclear distance. These induced moments are mainly due to the intra-atomic orbital mixing of
the p-component of the Cs atom, caused by a reduction of the spatial symmetry of the system. The
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SdA state does not have an induced transition dipole moment and therefore gives no contribution to

the induced absorption spectra.
The induced transition moment is an important factor, as seen from Eq. (59), in determining

the intensity of the induced absorption. The 6sZ-5dZ transition moment is induced at larger
internuclear distances than that of 6sZ-7sZ: the p-component of the Cs atom interacts more readily
in the 5dZ state than in the 7sZ state. Since the Boltzmann factor of the ground state sharply
decreases in the repulsive region, R < 4, this explains the observation that the intensity of 6sZ-5d=
are larger than those of 6sZ-7sZ. The magnitude of the transition moment is reversed between the
5dZ and 7sX states at the avoided crossing point. The 6sZ-7sZ transition moment shows an
oscillatory structure, reflecting the nodal property of the p-component mixed into the 7sZ state. Due
to this nodal property, the CsXe interaction at around 5 - 6 A has only a small contribution to the
collision induced absorption around the 7S line. The calculated transition moments seem to be
underestimated in comparison with the experimental results as discussed below.
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The collision induced absorption spectra are calculated from the quasistatic approximation, Eq.
(59) using the quantities given in Figures 7, 8, and 9. The calculated spectra associated with the 5D
line are shown in Figure 10 together with the experimental one. The 6S-5D transition of the Cs
atom is calculated at 697 nm in comparison with the experimental value of 692nm. The
experimental peak in the blue side of this transition is attributed to the 6sZ — 5dZ transition of the
collision complex. In the theoretical spectra, R denotes, in the classical picture, the internuclear
distance of the collision complex at which the absorption of the light of a given wavelength occurs.
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Figure 10: Reduced absorption coefficients for  Figure 11: Reduced absorption coefficients for
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The theoretical curve shows that it is a sum of the two absorptions of the complex at different
distances, R. The steep cusp exists in both experimental and theoretical spectra and is due to the
extremum in the excitation energy dependence on R: in Eq. (59), the intensity diverges at this
extremum. From the R-values in the theoretical spectrum and from the potential curves shown in
Figure 7, we see that this extremum is due to the hump of the 5dZ potential lying between 4.5 and
5.0A. Namely, the cusp in the spectrum is assigned as being due to the hump of the SdZ potential.

Both experimental and theoretical spectra have shoulders on the right-hand-side of the cusp.
From the theoretical spectra, we see that this shoulder is due to the absorptions in the region of R =
5-6 A. From Figure 9, we see that this large intensity is due to the large transition dipole moment
of the 6sZ — 5dZ transition in this region of R, which is due to the avoided crossing between the
5dZ and 7sZ sates. Namely, the shoulder of the 6sZ — 5dZ line is a proof of the avoided crossing
between the SdE and 7sZ states in the 5 - 6 A region.

The absorption band observed in the red side of the 6S-5D transition of Cs is due to the 6sZ
— 5dII transition of the collision complex. This transition is calculated to have smaller intensity
than the 6sZ — 5dX transition, in agreement with the experiment. Our theoretical transition has at
least two peaks, due to the absorptions at R=5.5 and 4.5 A, and vanishes at about 720 nm.
However, experimentally, this transition is difficult to observe precisely because of the existence of
the absorption band of Cs; in this region.

Figure 11 shows the collision induced absorption spectra owing to the 6sZ — 7sZ transition
of the collision complex. The 6S-7S atomic line is calculated at 607 nm in comparison with 540 nm
of the experimental spectrum. The induced absorption peak separated by about 30 nm in the
experimental spectrum is reproduced in the theoretical one separated by 23 nm. This peak is due to
the potential minimum of the 7sZ state. The vibrational structure of the experimental spectrum
indicates an existence of the attractive well in the excited state, which certainly exists in the potential
curve shown in Figure 7.

Thus, from the present study of the collision induced absorption spectra, we could show that
the spectral peaks, shoulders and shapes reflect the detailed behaviors and characters of the CsXe
collision complex. Having such an understanding on the absorbed spectra, we can increase the
insight about the nature of the collision dynamics and the formed complexes.

12. Excited states of porphyrins

Recently, the SAC-CI method has been applied to porphyrins to understand their electronic
structures and the excited states. Porphyrins are key compounds in biology: there are rich chemistry
and physics involving porphyrins. Porphyrins appear in many key biological processes.
Therefore, correct understanding of their energy levels and electronic structures is quite important.
For example, the excitation and electron transfer processes occurring in the photosyhthetic reaction
center are quite interesting subject from the quantum-chemical point of view. Furthermore,
porphyrins are moderately large and moderately complex from the standpoint of the accurate ab
initio computational method like SAC-CI, and therefore give nice challenging subjects. We study
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porphyrin chemistry from the interests of both biological chemistry and computational chemistry.
This is certainly a new trend fitting to the subject of this book.

12.1. Free base porphin

Our first SAC-CI calculations on porphyrins were done for free base porphin (FBP),
C20N4H14.4° The geometry was assumed to have D2n symmetry with Dap skeleton. The basis set
is valence p-double quality; Huzinaga's (63/5)/[2s2p] set for carbon and nitrogen and (4)/[1s] set for
hydrogen. The total number of Hartree-Fock SCF MOs are 206. In the SAC/SAC-CI calculations,
the active orbitals consist of 156 MOs, the higher 42 occupied and lower 114 unoccupied MOs. The
number of the linked operators are reduced by using the configuration selection procedure.

Table 11 shows the HF orbitals of FBP. We see that the HOMO (2ay) and the next HOMO
(Sb1u) are quasi-degenerate and LUMO (4b2g) and next LUMO (4b3g) are almost degenerate. These
four orbitals are well separated from the others, so that they play a crucial role in the lower excited
states. The importance of these four orbitals was first notified by Gouterman in his 'four orbital'

model.143
Table 11: HF orbital energy and orbital nature of porphin.

MO orbital energy (eV) character
Higher occupied orbitals
Tag -14.661 o
6b2y -14.646 o
Tb3u -14.480 [y}
Tbig -14.355 o
1ay -12.216 n
Tb2u -11.415 n
8ag -11.263 n
3b1u -10.679 n
2bag -10.632 n
2b3, -10.590 n
3b2g -10.321 n
4b1u -9.327 n
3b3g 9.122 n
5b1u -6.686 n
2a -6.521 n
Lower unoccupied orbitals
4bgg -0.069 n
4b3g 0.141 n
3a 2.842 n
6b1y 5.064 n
Sbag 5.698 n
Sb3g 5.702 b4
4au 6.177 n
8b3y 6.852 o
8boy 7.437 [o]
8big 8.046 o




106

Table 12 summarizes the SAC-CI results for the excited states of FBP. It also gives the
experimental excitation energy and the results of other ab initio calculations. Figure 12 shows the
gas-phase experimental spectrum!44 compared with the SAC-CI result.
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Figure 12: Electronic spectra of free base porphin. (a) Gas-phase experimental spectrum due to
Edwards et al.1#4 and (b) SAC-CI theoretical spectrum. The optically forbidden states are indicated
by open circles.

In the previous ab initio studies, only the lower four states were reported.!45-148 Nagashima
et al.145 were the first who performed MRSDCI within the 7t-space. Though the results were not
very satisfactory due to the smallness of the basis set and the active space, their calculation was
certainly pioneering in those days and they clarified the essential features of the excited states of this
molecule. Yamamoto et al.147 further carried out MRSDCI using improved basis and including o
space: their results agree well with the experimental values. Foresman et al.!46 performed CIS
calculations. More recently, Roos et al.14® performed CASPT2 calculations: probably this was the
best calculation performed on this molecule before SAC-CI was done. However, all of the previous
calculations were limited only to the lower 4 states: this limitation may be good for the Q band but
not for the B band, because our results show that the main configurations of the B band strongly
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interact with those of the higher excited states: calculating both states adequately, letting them
interact properly, is important.

The SAC-CI method is effective and straightforward, so that we need not to restrict only to the
lower four excited states. Table 12 shows the SAC-CI result of not only the optically allowed
states, but also the optically forbidden states below 5.5 eV. The optically allowed eight 7t-t* and
one n-* excited states and the dipole-forbidden six m-m* and three n-mt* states were calculated.
Main configurations, natures, excitation energies and oscillator strengths are also given.

Referring to Table 12 and Figure 12, we see that the present SAC-CI results reproduce well
the experimental spectrum in both excitation energy and oscillator strength. The average
discrepancy from the observed peaks is 0.14 eV.

The Q band is composed of the two weak peaks Qx and Qy at 1.98 and 2.42 eV, respectively,
and Qy has a larger intensity than Qx. By the SAC-CI calculations, Qx and Qy are assigned to the
1B3y and 1By, states calculated at 1.75 and 2.23 eV, respectively. No other excited states including
forbidden states are found in this area. They are polarized in x and y directions, respectively, in
consistent with the polarization experiment. The main configurations are composed of the
excitations within 'four-orbitals': two configurations mix in a quasi-degenerate manner.

A strong B (Soret) peak and a shoulder N is observed in the higher energy side of the
spectrum. The four-orbital model of porphin explained that the B band consists of the two
degenerate states. In some previous theoretical studies,145-148 the B band was assigned to the two
nearly degenerate 2B3y and 2B2y states, and the N band was left unassgined. However, our SAC-
CI results indicate different assignment. The excitation energies of the 2B3y and 2B2y states are
calculated at 3.56 and 3.75 eV, respectively and no other peaks are calculated in the 3 ~ 4 eV region.
Then, we assign the 2B3y and 2B2y states to the B and N bands, respectively. The calculated
excitation energies are larger than the experimental values by 0.23 and 0.10 eV, respectively. The
energy splitting between the B and N bands, which is 0.32 €V, is calculated to be 0.20 eV.
Furthermore, if the conventional assignment is adopted, no assignment is possible for the N band.
Namely, the present proposal for the B and N bands are based not only on the calculated excitation
energies for the 2B2y and 2B3y states, but also on the comparison of our result, as a whole, with the
peaks in the experimental spectrum. The present assignment is supported also by the following
observations.

The main configurations of the 2B3u and 2B2y states shown in Table 12 include not only the
excitations within the 'four-orbitals', but also the excitations from the lower 4b1y orbital, which has
a large amplitude on N's not bonded to H, and the extent of mixing is largely different between the
2B3y and 2Bgy states, so that these states are no longer quasi-degenerate. The natures of the B
(2B3u) and N (2B2u) bands are different in this point from that of the Q band. In the CASPT2F
calculation, which give very close Bx and By states, the 4bjy MO was not included in the active
space of CASSCF, though as shown here it strongly perturbs the picture of the four orbital model of
the B band.
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The polarization studies for the free base tetraphenylporphin!4%-150 showed that the sharp B
band and the shoulder are polarized perpendicular to each other and have the same polarizations as
the Qx and Qy peaks, respectively. This is consistent with our assignment.

Referring to Figure 12 and Table 12, we see that the calculated intensity is larger for the 2B2y
(N) states than for the 2B3y (B) states. This may contradict with the observed spectrum shown in
Figure 12. However, we may interpret the observed spectrum as follows. The N band is a broad
band, the B band is sharp, and the B band lies on the right-hand side of the broad N band, so that
the N band looks like a shoulder of the B band.

The effects of the o electron-correlation were found to be important for the description of the
7-;* excitations of the & conjugated systems. We have pointed out this fact many years ago in the
SAC-CI study of benzene.8® It was also pointed out by CASPT2,148.151-153 and other
calculations134-156 in particular for larger m-electron molecules. Our calculations show that the
mixing of the 6-0* excitations is large for the B and N states, but small for the Qx and Qy states.

For the L and M bands, no ab initio calculations have been reported except for the semi-
empirical treatments.157-158 The L bands at 4.25 and 4.67 €V are assigned to the 3B3y and 3B2y
states calculated at 4.24 and 4.52 eV, respectively, since these two states have relatively large
intensities (for the 1B1y state, see below). The polarizations of these states, including 1B1u, are all
different, so that a detailed experimental study is interesting. Since the intensity of the 3B3y state is
larger than that of the 3By state, the shape of the L band is unsymmetric with higher intensity in the
lower energy side in agreement with experiment. The main configurations of the 3B3y and 3Bgy
states are the transitions from the 4b1y MO to the 4bzg and 4b3g MOs, respectively, which are the
mixing configurations to the four orbital model in the B and N bands. Therefore, it is necessary to
describe all these states in the same approximation.

It is interesting to note that we have obtained several n-mt* transitions. Among these, the
optically allowed one is the 1B1y state calculated at 4.5 eV, but the calculated intensity is very small.
In the experimental spectrum, this peak may be concealed by the L band. Since the 7bzy MO is the
lone pair orbital on nitrogen, it will be blocked by forming metal porphyrins, so that this peak will
disappear. We have obtained several other n-7t* states at 4.05 ~ 4.37 eV, but they are all optically
forbidden.

The M band at around 5.3 eV in the experimental spectrum is composed of the two 5-t*
transitions due to the 4By and 4B3y states. They are the transitions from the 3biy MO to the 4b3g
and 4bzg MOs, respectively. In comparison with the L band, the starting MO is lower but the
ending MOs are the same. Note that the order of the polarizations is different: x and y in the
increasing energy for the L band and y and x for the M band. Experimental examination of such
polarization property is also interesting.

12.2. Tetrazaporphin
Free base tetrazaporphin (FBTAP) (also called porphyrazine or tetraazaporphyrin) C16NgH10
is a tetraaza-derivative of porphin. Phthalocyanine, which is a much more popular compound, is
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regarded as a tetrabenzo-derivative of TBTAP. Science of porphins and phthalocyanines have a rich
accumulation, while tetrazaporphins have been left out of the interest for a long time. In the past,
FBTAP is mainly considered as a model compound of phthalocyanine, especially in theoretical
studies. Phthalocyanines have intense absorption bands in the visible region, so that they are used
as commercial pigments. Since FBTAP has similar intense bands in the visible region (so called Q
bands), it is important to clarify the reason why FBTAP has such intense Q bands, in contrast to
FBP studied above.

We review here the SAC/SAC-CI calculations of the ground and excited states of FBTAP,114
which was the first ab initio study of the excited states of FBTAP. The basis set is of double-C
quality for the valence 2p orbitals and then the SCF MOs consist of 81 occupied and 121
unoccupied MOs. In the SAC/SAC-CI calculations, only the 1s core orbitals of carbons and
nitrogens were frozen; the higher 57 occupied and 121 all unoccupied MOs were included in the
active space. The total number of active orbitals is 178.

Figure 13 is an illustration of the four orbitals in the HOMO-LUMO region and the two lower
MOs. The energy levels of these MOs are shown in Figure 14, together with those of the free base
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Figure 13: Occupied and unoccupied orbitals of FBTAP. All MOs have 7 character except for the
11byy orbital, which is n orbital.
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Figure 14: Orbital energies of the four orbitals and the lower 4b1y MO of FBP and FBTAP.

porphin (FBP) for comparison. The ordering of two LUMOs is different, but they are almost
degenerate. What is prominently different is the energy level of the Sbjy MO. This MO has large
amplitudes on the meso nitrogens, so that it is much lowered in FBTAP. Namely, the quasi-
degeneracy of the two HOMOs in FBP is destroyed in FBTAP, which leads to the breakdown of the
four orbital model in FBTAP. The next lower by orbital, 4b1y MO is the MO which mixes strongly
in the main configurations of the B band of FBP.

Table 13 summarizes the excited states of FBTAP calculated by the SAC-CI method. The
electronic spectra of FBTAP are shown in Figure 15. The upper one is experimental,!>® and the
lower one is the SAC-CI theoretical spectrum. The most important feature of the FBTAP spectrum
is that the Q bands have much larger intensities than those of FBP. The observed intensity ratio of
the Q band/B band is 0.02 for FBP in benzene but 0.9 for FBTAP in chlorobenzene.

The Q band is composed of the two strong peaks Qx and Qy at 2.01 and 2.27 eV,
respectively. By the SAC-CI calculations, Qx and Qy are assigned to the 1B3y and 1By states
calculated at 1.88 and 2.26 eV, respectively. No other allowed excited states are found in this
region. The error in the excitation energy is within 0.13 eV. The oscillator strengths of the Qx and
Qy bands are calculated to be 0.152 and 0.220, respectively, which are quite large in comparison
with those of FBP, 1.13x10"3 for Qx and 5.66X10 for Qy. The 1B3y and 1By, states are
polarized in the x and y directions, respectively (the x axis is along the N-H H-N bonds), in
agreement with the experiment.



112

Table 13: Excited states of FBTAP calculated by the SAC-CI method

SAC-CI Exptl.
State Main cofiguration Nature Excitation Polari- Oscillator  Excitation
(C=030) energy zation strength energy
V) V)
1B3u(Qx) 0.79(2au—>4b3g)-0.54(5b1u—>4b2g) n—enx 1.8  x 0.152 201 &
1B2u(Qy)  0.83(2ay—4b2g)+0.47(Sb1y—4b3g)  n—mx 226 y 0.220 227
2B3y(By) -0.63(4p1y—4b2g)-0.56(5b1y—>4b2g)  m—em*  3.56  x 0.500 3.3
-0.41(2au—>4b3g)
1B1y -0.86(11b2y—>4b3g)}+0.32(11b3y—4b2g) n—sa* 381 2 0.016
2Boy(By) -0.73(Splu—4b3g)-0.47(4b1y—»db3g) m—emx 3.93 y 0.804 372 B
+0.37(2au—*4b2g)
2Ag 0.93(3b3g—>4b3g) n—n*  4.26 forbidden
3By -0.70(3p1u—>4b3g)+0.57(4b1y—>4b3g) m—sn* 432 Y 0.412
3B3u 0.66(4blu—4b2g)-0.44(3b1u—4b2g) m—sm* 452 X 1.091
-0.43(5b1y—+4b2g)-0.31(2ay—4b3g)
4By -0.61(3b1u—4b3g)-0.59(db1u—4b3g)  m—en* 493 Y 1.056
+0.38(5b1u—>4b3g)
4B3, 0.83(3b1y—+4b2g)-0.34(Sb1y—+db2g)  m—en* 5.09 X 0.816
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Figure 15: Electronic excitation spectra of FBTAP observed in chlorobenzene!59 and calculated by
the SAC-CI method. The optically forbidden 2Ag state is indicated by the open circle.
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Now, why are the intensities of the Q bands so strong in contrast to those of FBP? This point
is important since it is related with the reason why phthalocyanines are useful as pigments. In both
FBP and FBTAP, the Q band is written by a superposition of two configurations. For example, the
1B2y state representing the Qy band is written by a superposition of the two configurations,
2ay—>4b2g and 5b1u—>4b3g, as shown in Table 13. In FBP, the absolute values of the coefficients
of the two main configurations are approximately equal (e.g., 0.70 and 0.66 for Qy) reflecting the
validity of the four orbital model. The transition dipole moment is expressed by a sign-reversed
superposition of these two configurations, and therefore, when the weights of the configurations are
equal, the moment is canceled out. This is why the Q band of FBP is weak. On the other hand, in
FBTAP, the coefficients of the two main configurations in the Q band are unbalanced by the
lowering of the 5b1y MO. For example, the Qy band of FBTAP consists of the superior (0.83)
(2au—>4b2g) and the inferior (0.47) (Sbiu—>4b3g) configurations, because the energy difference
between 2ay and 4b2g is smaller than that between Sbiu and 4b3g. This unbalanced superposition of
the configurations results in a large net transition moment. In ref. [114], this situation was
explained using an illustrative diagram.

Thus, the strong intensity of the Q band of FBTAP is due to the breakdown of the four orbital
model by the lowering of the next-HOMO which is localized on the meso nitrogens.

The Q band is in the visible region, therefore its strong intensity colors the molecule. In fact, a
solution of FBTAP is violet-blue for transmitted light. Phthalocyanines, which have a common
skeleton to FBTAP, are widely used as pigments due to their intense Q bands.

We have shown recently!16 by the SAC-CI calculation of phthalocyanine that the reason of the
strong Q band of phthalocyanine is two-fold. One is the meso-N substitution, likewise in FBTAP,
and the other is the tetra-benzo substitution to FBTAP which leads to the four outer benzene rings.
Though we can not explain here in detail for the lack of space, two effects are cooperative to
increase the intensity of the Q band. For more details, see ref. [116].

The B band of FBTAP is strong and broad; Dvomnikov et al. suggested that the band may
include some overlapping components.160 The present SAC-CI study reveals that three allowed
transitions exist in this area. The 2B3y, 1B1u, and 2By states are calculated at 3.56, 3.81, and 3.93
eV, respectively. The 2B3y (Bx) state is polarized in the x direction, and its oscillator strength is
calculated to be 0.500. It would correspond to the shoulder at around 3.3 eV on the right-hand side
of the main peak. The 1B1y state is the first n-w* transition and polarized in the out-of-plane z
direction. This is. a weak transition, whose oscillator strength is calculated to be 0.016. The 2B2u
(By) transition is polarized in the y direction, and its oscillator strength is the largest of the three
allowed transitions in the B band, namely 0.804; it would correspond to the main peak lying at 3.72
eVv.

Dvormnikov et al. observed the fluorescence polarization spectrum of FBTAP160 and showed
that the B band was composed of a superposition of the transitions polarized in the x and y
directions. They further proposed two possibilities that the y-component is predominant in the
whole region from 2.95 to 4.13 €V and that the out-of-plane z-component exists. The present study
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elucidates the existence of both x- and y-components, the predominance of the y-component, and
the existence of the z-component, supporting the conjecture of Dvornikov et al.

The Bx band in the lower energy side has a smaller intensity than the By band in the higher
energy side, which is supported by the experimental spectrum shown in Figure 15. Similar
ordering of the intensities of the Bx and By bands was also seen in the SAC-CI result of FBP shown
in the preceding section.

In FBP144 the first allowed n-* transition was calculated as one component of the L bands,
which lie higher than the B band. In FBTAP, the first allowed n-xt* transition appears relatively low
and included in the B band. This n-mt* state consists of the major contribution representing the
transition from the pyrrole N lone pair orbital and the minor contribution representing the transition
from the meso N lone pair orbital. Such an interaction between the meso and pyrrole nitrogen lone
pairs makes the n-7t* state stabilized in FBTAP.

In higher energy region of the B band, no experimental spectrum is reported. However, we
calculated other four allowed transitions in this energy region; 3B2u, 3B3u, 4B2u, and 4B3y excited
states calculated at 4.32, 4.52, 4.93, and 5.09 eV, respectively. Since large oscillator strengths are
calculated for these transitions, 0.412, 1.091, 1.056, and 0.816, respectively, we predict an
existence of the intense bands in this area. Actually, for phthalocyanines the absorption spectra
were observed beyond 4 eV, and the strong L and C bands were reported.!6! In FBP, we also
obtained similar bands beyond the B and N bands, but the intensities were smaller there, and they
were assigned to the relatively weak L and M bands of the experimental absorption spectrum.*?

12.3. Carboxyheme and oxyheme

Hemoglobin and myoglobin play an important role in mammalian life through the transport
and the storage of oxygen. Iron-porphyrin complex, called heme, constitutes their reaction center.
In oxyheme, oxygen is at the distal site and imidazole is at the proximal site, while in carboxyheme,
CO is replaced with Oz of oxyheme. A poisoning molecule CO binds to iron porphyrin much more
strongly than Op.

We have studied the ground and excited states of oxyheme!!3 and carboxyheme!!5 using the
SAC/SAC-CI method. We here introduce mainly the result on carboxyheme, and for oxyheme, we
refer to ref. [113].

Carboxyheme, FeC24N6OHjs6, consists of 48 atoms and 236 electrons, and its geometry is
assumed to have Cs symmetry as shown in Figure 16. Note that the Fe-C1 bond deviates from the
normal line of the porphyrin ring by 6’ and the Fe-C1-O1 angle is 170°.

The quality of the GTO basis functions used is the same as those used previously for the
calculations of porphyrins.#9:112-116  For the Fe atom, we use the Huzinaga's (5333/53/5)/
[53321/53/41] set'40 plus p-type polarization function (0.082), for C, N, and O, the (63/5)/[63/41]
set plus p-type anion basis (0.059) for oxygen, and for H the (4)/[4] set.162 The basis set for
imidazole is minimal; for C and N, the (63/5)/[63/5] set and for the H (4)/[4] set. The total number
of the contracted GTOs is 278.
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Figure 16: Geometry of carboxyheme.

In the SAC/SAC-CI calculations a total of 229 MOs were used as active MOs: all valence
orbitals were included in the active space and only the 1s orbitals of C, N, and O atoms and the core
orbitals (1s ~ 3p) of Fe were treated as frozen cores. All the single excitations and the selected
double excitations within this active space constitute the linked operators and their products the
unlinked operators. The perturbative configuration selection procedure was performed to reduce the
size of the matrices involved in the calculations.

The Hartree-Fock orbitals of carboxyheme imply the validity of the four orbital model.
Namely, the HOMO, next-HOMO, LUMO, and next-LUMO were well separated from the other
MOs. These MO's are mainly porphyrin mt-type, though some mixing of the Fe dm orbitals is
observed for the LUMO and next-LUMO. The HOMO is a1y like MO and the next-HOMO is a2y
like in agreement with experiments.163-166 The orbitals of the CO ligand do not appear in the
HOMO-LUMO region. This is different from oxyheme. In oxyheme, LUMO was the orbital
localized on Fe and O and characterized not only the biological activity but also some aspect of the
excitation spectrum of oxyheme.167 In some lower occupied space, there exist the MOs that
delocalize over the entire molecule, porphin ring, Fe, CO, and imidazole.

We calculated the excited states of carboxyheme in a wide energy range from visible to UV
region, up to 7.8 eV, but the experimental spectrum!67 covers only up to 4.9 eV.

Figure 17 shows the electronic absorption spectrum of carboxyheme observed for the horse
carboxyhemoglobin!67 compared with the excitation spectrum calculated by the SAC-CI theory in
the UV and visible energy region, and Table 14 gives more detailed information on the excited
states. The calculated spectrum well reproduces the experimental one in both the excitation energy
and the oscillator strength, though horse carboxyhemoglobin is much different from the
carboxyheme molecule calculated here. The first and second absorption peaks called Qp and Qv
bands are assigned to the 1A' and 1A" states, respectively. These Q bands are well described, as
seen from Table 14, within the 'four orbital' model, and the calculated intensities are very small by
the reason clarified in the previous section. In oxyheme, however, the Fe-O2 7 antibonding orbital,
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which is LUMO, affects the nature of the Q bands.!!3 Further, a weak band was observed in th
spectrum of horse oxyhemoglobin at 1.34 €V in a lower energy region of the Q band:167 it wa
assigned by the SAC-CI calculations as being due to the excitation within the O ligand.113
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Figure 17: Electronic absorption spectra of carboxyheme. (a) Experimental spectrum of
horsehemoglobin.167 (b) SAC-CI theoretical spectrum. Open circles indicate singlet states with
small oscillator strengths.

The B (Soret) band of carboxyheme is observed at around 3 eV of the experimental spectrum
and it is assigned to the 3A' and 5A" states calculated at 3.36 and 3.41 eV with the large oscillator
strengths of 1.04 and 1.13, respectively. These two peaks would explain the main peak and the
shoulder at the higher energy side. Theoretically this shoulder corresponds to the N band of FBP,
which also appears as a shoulder of the B band. We see again that the lower porphyrin 7t orbitals
(MOs 74 and 73) mix into the B bands.
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Table 14: Excited states of carboxyheme calculated by the SAC-CI method.

SAC-CI Exptl.C
State Main configuration 2 Nature b Excitetion  Polari-  Oscillator Excitation
(ICl>0.25) energy  zation  strength energy
(eV) (eV)
1A' -0.77(77 - 80)+0.65(78 - 79) n-m* 1.84 x 0.00139 2.18 Q
1A"  0.70(77 - 79)+0.65(78 - 80) n-m* 1.94 y 0.00110 230 Qv
2A"  -0.86(75 - 79)-0.27(63 - 79) n-m* 2.72 y 0.00144
3A"  0.55(76 - 80)+0.47(68 - 102)  d,m,0-d*w*,0*  2.96 y 0.00037
+0.42(69 - 108)+0.23(68 - 115)
4A"  -0.68(76 - 80)+0.40(68 - 102) n-me 3.00 y 0.00003
+0.36(68 - 108)
2A'  0.64(75 - 80)-0.58(76 - 79) n-mt 3.15 x 0.00742
3A'  0.65(78 - 79)+0.51(77 - 80) n-m* 3.36 x 1.04 296 B
-0.34(74 - 80)+0.26(73 - 80)
5A"  0.66(78 - 80)-0.53(77 - 79) n-m* 3.41 y 1.13 296 B
-0.39(73 - 79)
4A' 0.64(76 - 79)+0.59(75 - 80) n-n* 3.52 X 0.0179
5A'  -0.46(63 -101)+0.28(63 - 113) d,o- d*,0*,CO* 3.63 X 0.0359
-0.27(75 - 101)-0.25(63 - 112)
6A"  0.39(62- 101)-0.32(69 -101)  d,g- d*,0*,CO* 3.72 y 0.0544
+0.29(76 - 101)-0.27(64 - 101) .
6A'  -0.85(74 - 80)-0.35(77 - 80) n-m* 3.98 x 0.350 360 N
TA"  -0.86(74 - 79)-0.35(73 - 79) - 4.06 y 0.0397
8A"  -0.72(68 - 101)+0.34(68 - 113) d,o- d*,c*,CO*  4.65 y 0.00043
-0.29(68 - 105)
9A"  -0.77(73 - 79)+0.39(74 - 79) n-m* 4.7 y 0.928 453 L
+0.33(77 - 79)
TA'  -0.93(78 - 81) n-x* 5.01 X 0.00549
8A'  0.91(73 - 80) n- 5.12 x 0.655 M

2 For MOs shown in the parentheses, see ref. 115.

b " and "x" denote porphyrin o and xx MOs, respectively. "d" denotes Fe d orbital and "CO" the CO n
antibonding orbital.

C Reference 167

The 4A', 5A', and 6A" states, which have small intensities, would exist near this shoulder
and the N band. The SA' and 6A" states have d,0 to d*,o*,CO* nature (CO* is C-O =
antibonding), so that these excited states may be connected with the photodissociation of CO in
flashphotolysis experiments.168-170

The next strong band, called N band is assigned to the 6A' state. It originates from the
excitation from the MO lower than the four orbitals and mixing into the B band. The nature of this
state is just similar to the L band of FBP as seen from Tables 12 and 14.

The L band denoted in the experimental spectrum is assigned to the 9A" state. The nature of
this state is also similar to that of the 6A' state: the excitation from the MO still lower is the main
configuration. This state corresponds to the M band of FBP shown in Table 12. The 8A' state
calculated at 5.12 eV also cormresponds to the M band of the FBP. Thus, we conclude that the
naming of the experimental band is different between FBP and carboxyheme.

In our calculations, the excited states lying higher than 5.2 eV were also calculated and given
in ref [115]. The SAC-CI method is quite straightforward, so that there are no limitations for the
number of states to be calculated. The natures of the excited states were very different from those
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for the states lower than 5.2 eV. The main configurations could not be written using the four
orbitals plus some lower orbitals: they include excitations involving Fe d orbitals and CO 7t* orbitals
in addition to the porphyrin 7, and 7t* MOs. For this reason, the intensities of the transitions lying
higher than 5.2 eV were small. We predict that no intense band exists in the region above the L(M)
band.

13. Remarks

In this review on SAC-CI, some theoretical aspects and some recent topics of interest were
explained. Though the essential part of the theory of SAC/SAC-CI was established in 1978, it is
still actively growing up as a methodology for studying chemistry and physics involving many
different electronic states. Our current code is probably the fourth version, but still far from
complete. We have recently finished the SAC/SAC-CI gradient code!?! which should be useful for
studying the dynamics involving many different electronic states. We have a lot of charming
subjects and dreams in the future of this SAC/SAC-CI project. In this situation, a review is only a
progress report, and it is happy if the readers can feel something growing up in future.

This review has concerned only with the SAC/SAC-CI method. Interesting generalizations of
this method were already published as the EGWF (exponentially generated wave function)
approach,5 which includes MRSAC,%465 EGCL 67 and M(multi-)EG/EX(excited)-MEG
methods.66  Coding of these methods was completed®’ and very accurate results were
obtained.56-57:64-66 These methods also have high potentiality but left undeveloped for the lack of
man power mostly of myself.

I also could not explain the SAC-CI applications to many interesting subjects, particularly to
catalysis, surface chemistry, and surface photochemistry. However, I will be able to summarize it
in a forthcoming review article.!’2 Readers may also refer to the previous reviews on SAC-CI,8-13
however many were written in Japanese.
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