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We here give a review of our studies of hydrogen molecular ion ðHþ2 Þ based on the accurate solutions of
the Schrödinger equation (SE) and Dirac equations (DE) obtained by the free-complement (FC) method-
ology developed in our laboratory. We summarize the results of non-relativistic and relativistic studies of
Hþ2 and its isotopomers HD+, and HT+, under the Born–Oppenheimer (BO) and non-BO treatments and
with and without external magnetic field. Hþ2 is a simple one-electron molecule, and so has basic impor-
tance in quantum chemistry. Further, it is stable and of rich history of studies, particularly in interstellar
science. For the non-relativistic SE, the convergence speed to the exact solution of the FC method is faster
than that of the ‘‘exact’’ expansion, exhibiting high efficiency of the FC method. For the relativistic DE, not
only accurate energy upper bounds but also lower bounds are calculated. The potential energy curves are
also calculated at the non-relativistic and relativistic levels for all isotopomers, and chemically interesting
information such as spectroscopic constants and transition frequencies are provided. The non-BO prob-
lem is also successfully solved for all isotopomers, and extremely accurate 11S and 13P energies, expec-
tation values of interparticle distances are calculated for the ground and excited vibrational states. In the
magnetic field calculation, our method is accurate in any strengths and any directions of the magnetic
field. The gauge-origin problem is also investigated, and has shown that the gauge-origin dependence
of the energy becomes smaller and smaller when the FC order is increased. All these results are clear
example that the FC method combined with the variational principle gives very accurate analytical wave
functions of Hþ2 in any cases and situations. Our investigations on Hþ2 and its isotopomers revealed the
significant and accurate deterministic powers of the FC method in any situations of the problems: this
methodology is reliable and stable to provide exact solutions for various types of non-relativistic and rel-
ativistic equations and problems appearing in the atomic and molecular physics and chemistry.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Hydrogen molecular ion ðHþ2 Þ is recognized as the simplest mol-
ecule. Despite of its simplicity, however, the physical and chemical
studies of this molecule are surprisingly versatile. The primary rea-
son lies in its simplicity; it consists of two nuclei and one electron.
Further, Hþ2 is the only one example in which the exact ‘‘molecular’’
wave function is known. This is for the non-relativistic Schrödinger
equation (SE) with the Born–Oppenheimer (BO) approximation.
Owing to this, extensive theoretical works have been carried out
for this molecule from the early times of the quantum chemistry.
For example, various forms of wave function have been proposed
for Hþ2 , ranging from an accurate wave function that has a similar
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form to the exact wave function, to a simple LCAO-MO wave
function [1–13]. Insights obtained with this molecule have been
extended to larger molecules. Thus, Hþ2 has played a crucial role
in the development of the quantum chemistry.

Not only theoretically, but also experimentally, Hþ2 has been
extensively studied. For example, many works on vibrational–
rotational spectrum of Hþ2 and its isotopomer HD+ were carried
out [1,2,14]. Experimental work on Hþ2 by pulse laser experiment
was reported as a challenge of experimental accuracy
(�10�2 cm�1) for the dissociation energy [15]. Hþ2 is also interested
in the field of astronomical physics and chemistry, because it is
recognized as one of the most important interstellar molecules
[16–27]. Theoretical works also played important roles on this is-
sue, since highly accurate results are necessary for the assignment
of astronomical spectroscopy. Thus, Hþ2 molecule has provided an
excellent playground for both theoretical and experimental physi-
cists and chemists in terms of the comparisons between theoretical
and experimental results.

http://dx.doi.org/10.1016/j.chemphys.2011.09.013
mailto:h.nakatsuji@qcri.or.jp
http://dx.doi.org/10.1016/j.chemphys.2011.09.013
http://www.sciencedirect.com/science/journal/03010104
http://www.elsevier.com/locate/chemphys


A. Ishikawa et al. / Chemical Physics 401 (2012) 62–72 63
When fine detailed comparisons to experimental results are in-
tended, many physical effects not included in the primitive SE in
the BO approximation should be taken into account; relativistic ef-
fects, adiabatic or non-BO corrections, finite nuclear mass effect,
quantum electrodynamics (QED) effects, and so on. Among them,
leading terms are the relativistic and the non-BO corrections.
Unfortunately, the exact wave functions of the Dirac equation
(DE) and the non-BO SE are not known.

Many relativistic calculations on Hþ2 were made, not only by the
variational method but also numerical methods like the finite dif-
ference method or the finite element method [28–35]. Major
emphasis was on the accuracy of the calculated energy and quite
accurate results were obtained. However, the analytical expression
of the relativistic wave function was rather insufficient.

The non-BO problem of Hþ2 , i.e. solving the SE without the BO
approximation is also very active area for theoretical study. The
quantum effect of nuclear motion could be significant for Hþ2 be-
cause it consists of the lightest nuclei. There are various high pre-
cision calculations of Hþ2 with the non-BO Hamiltonian [36–44]
However, although their basis functions showed very rapid conver-
gence to the exact solution, it is difficult to handle and generalize
their functions for general molecules because their functions are
arbitrary and complicated. Furthermore, the optimizations of large
number of non-linear parameters are necessary for these types of
wave functions, which often lead to extensive computational cost.

Another interesting example associated with Hþ2 is the effect of
external magnetic field. This is also the case where the exact wave
function is not known. A great deal of motivation for studying such
strong magnetic fields comes from astronomical interests; extre-
mely strong (1012–1015 G) magnetic fields are observed in the
vicinity of astrophysical objects such as neutron stars or magnetar.
In fact, recent X-ray data have revealed certain irregularities in the
spectrum of a neutron star, and these can be interpreted as due to
absorptions by interstellar atoms or molecules [17–27]. Aside from
astrophysical viewpoints, atoms and molecules in magnetic fields
are also interesting from theoretical atomic/molecular physics or
chemistry [45–55]. However, none of the previous theoretical
works appear to be highly accurate over various strengths of mag-
netic field because most of the wave functions are not guaranteed
to converge to the exact wave function of the SE with the magnetic
field.

According to the above stated situations of Hþ2 , highly accurate
wave functions for the relativistic DE, the non-BO SE, and the SE
under the magnetic field are desired for further development of
the Hþ2 chemistry and physics. We have been working on these
problems by our general, simple, and uniform methodology. In this
review article, we summarize our theoretical studies on Hþ2 and its
isotopomers performed with the Free-Complement (FC) methodol-
ogy. First, we will briefly introduce our FC method that was
introduced to solve the SE accurately and then we explain its appli-
cations to the non-relativistic, relativistic, and non-BO problems of
Hþ2 . Finally, Hþ2 in magnetic field is addressed for its importance in
astrophysics.

2. The Free-Complement method for solving the Schrödinger
and Dirac equations

Recently, we have proposed and developed a general methodol-
ogy for solving the SE in an analytical expansion form. We called
this method as the Free-Complement (FC) method, and have been
successfully applied to various atoms and molecules [56–80]. Such
applications are realized by overcoming many difficulties that
were existed before in solving the SE.

An important characteristic of our formalism lies in starting
from the wave function having ‘‘exact structure’’, so that it is
guaranteed that the exact wave function is obtained at conver-
gence of our calculations. Next important feature is an overcome
of the singularity difficulty, i.e. the divergence of higher-power
integrals of Hamiltonian. This was done by introducing inverse
Schrödinger equation (ISE) and the scaled Schrödinger equation
(SSE), which are equivalent to the original SE [60,62]. Between
the two, the SSE was simpler and easier to use for analytical calcu-
lations. This has enabled us to solve many atomic and molecular SE
[65–68,71–78] or the relativistic DE or Dirac–Coulomb equations
(DCE) [64,70,79,80], since these equations include singular Cou-
lomb potentials. Some were actually the most accurate solutions
so far obtained, not only for the energies but also for the satisfac-
tions of the several conditions that the exact wave function must
satisfy, such as the cusp conditions and the constancy of the local
energy [67–69].

These results clearly show that the FC method gives extremely
accurate wave functions that are guaranteed to converge to the ex-
act wave function. In addition to its power to provide the exact
wave function, another important character of the FC method is
its wide applicability: The only one requirement for the applicabil-
ity of the FC method is the existence of the analytical form of the
Hamiltonian. Then, the Hamiltonian automatically generates the
complement functions with which the exact wave functions are
expanded. The undetermined parameters involved are calculated
by applying the variation principle or by applying the local Schrö-
dinger equation (LSE) method that is the integration-free method
[69]. Due to its simplicity and generality, the FC method can be ex-
tended and applied to various types of problems in atomic and
molecular physics and chemistry.

In the following, we briefly summarize how the FC method is
employed to solve the SE and DE, focusing on the Hþ2 problems.

The SE is written as

Hw� Ew ¼ 0: ð1Þ

The atomic or molecular Hamiltonian basically includes the Cou-
lomb potential, which becomes infinite at particle coalescence
points: this causes the singularity difficulty. This is avoided by
introducing the SSE

gðHw� EwÞ ¼ 0; ð2Þ

which is equivalent to the original SE [62,66]. The positive function
g(r) scales the singularities of the Coulomb potential to be finite.

Our basic idea is that the exact solution of the SE, DE, and DCE
should be a function of its Hamiltonian, i.e. w = f(H)w0, where w0 is
the initial function. Such sufficient functions that are guaranteed to
become exact when solved by the variation method or other con-
ditions equivalent to the SE, DE, and DCE (for example, LSE) are
called to have ‘‘the exact structure’’. A simple function that has
the exact structure is the iterative complement (IC) function given
by

wnþ1 ¼ ½1þ CngðH � EnÞ�wn: ð3Þ

We call n as the FC order, which determines the quality of the FC
wave function. This wave function is proved to become exact at
convergence without encountering the singularity problem owing
to the presence of the g function. We further generalized our meth-
od by collecting all the independent analytical functions on the rhs
of Eq. (3) as f/kg

ðnÞ ðk ¼ 1; . . . ;MnÞ and giving independent freedom
(this is the origin of ‘‘free’’) to each function /k, which we call ‘‘com-
plement function’’, as

wnþ1 ¼
XMn

k¼1

ck/k: ð4Þ

This is the FC wave function. The functions {uk} are called comple-
ment functions because they are the elements of the complete func-
tions that expand the exact solution as expressed by Eq. (4).
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Obviously, this formalism can be applied directly to other equations
like the DE, the non-BO SE, and the SE under the external field
[70,75,87].

In the FC formalism, we basically have two freedoms; the choice
of the initial function (w0) which is the starting function for the
expansion of Eq. (3) and the choice of the g function. How to choose
the proper initial function and the g function is not at all compli-
cated; The initial function w0 needs to be proper as a starting point
in generating the exact wave function; for example, the initial
function for solving the DE must be four-component spinor as
the exact relativistic wave function must be. For the non-BO SE,
the initial function should include the nuclear degrees of freedom
so does the exact solution. The g function should be chosen as a
functional of the inverse of the Coulomb potential, in order to
eliminate its singularity. Note that one can reach the exact wave
function with any selection of the g and initial functions. The con-
vergence speed, however, depends on the selection.

Since the FC wave function is given as a sum of analytical func-
tions (Eq. (4)), any properties can be calculated from them. One
such property useful to examine the quality of the wave function
is the variance of the energy given by

r2 ¼ wh jH2 wj i
wh wj i �

wh jH wj i
wh wj i

� �2

: ð5Þ

For the exact wave function, r2 becomes zero. In standard quantum
chemistry, r2 is rarely calculated, seemingly because of the diffi-
culty associated to the evaluation of H2 integrals. Even if r2 is cal-
culated, it would be meaninglessly bad when inaccurate wave
function is employed. r2 is also important in practical sense since
it is related to the lower bound of the energy; for details see Refs.
[81–83]. In this paper, the energy lower bound is calculated accord-
ing to the Temple’s form [83] as

Elow ¼ wh jH wj i � r2

Eex � wh jH wj i ; ð6Þ

where Eex is the energy of the first excited state of the same symme-
try as the ground state, and this is easily calculated by the FC meth-
od since the excited states are obtained, at the same time as the
ground state, as the higher-energy solutions of the diagonalization.
The energy lower bound is more important in the relativistic case
than in the non-relativistic case, because the variational principle
has problems in the DE or DCE cases.

Obvious from the above formalism, the FC method is quite sim-
ple and general, therefore can be extended to various types of
problems. To see its wide applicably, Hþ2 is an excellent target be-
cause of its simplicity and abundance of experimental information.
In this paper, we briefly summarize our calculations of Hþ2 employ-
ing the FC methodology. Our effort includes the non-relativistic
and relativistic calculations, the non-BO calculation, and calcula-
tions under the magnetic field.
3. Solving the Schrödinger equation by the Free-Complement
method

The SE of Hþ2 in the BO approximation (fixed nuclei SE) and
without any external field is a good starting point for all the prob-
lems we will investigate in this paper. Furthermore, the exact solu-
tion is known in this case which enables the direct comparison
between the exact wave function and our accurate wave function.
Since both are given in infinite expansion forms, and both ap-
proach the true exact wave function, the point is which is easier
and which converges faster.

In the following, we mention how to apply the FC method for
solving the SE of Hþ2 in practice. The SE for Hþ2 is written in the form
of Eq. (1) and the Hamiltonian is given under the BO approximation
as

H ¼ �1
2
r2

e �
1
ra
� 1

rb
þ 1

R
; ð7Þ

where a and b denote two nuclei, and R represents the internuclear
distance. Throughout this paper, we use these notations. Owing to
the BO approximation, this three-body problem is converted into
a two-center one-particle problem, for which one favorably uses
elliptic coordinate

k ¼ ra þ rb

R
; l ¼ ra � rb

R
; x: ð8Þ

In this coordinate, the kinetic operator is written as

�1
2
r2

e ¼ �
2

R2ðk2 � l2Þ
@

@k
ðk2 � 1Þ @

@k
þ @

@l
ð1� l2Þ @

@l

�

þ ðk2 � l2Þ
ðk2 � 1Þð1� l2Þ

@2

@x2

)
ð9Þ

and the electron–nuclear Coulomb potential by

V ¼ Ven ¼ �
4k

Rðk2 � l2Þ
: ð10Þ

As explained in the previous chapter, an important freedom
associated with the FC method is the choice of the scaling function
(g) and the initial function (w0). Basically, the g function should be
chosen so as to eliminate the singularity included in the Hamilto-
nian. In the current case, we choose it as the inverse of the elec-
tron-nuclear Coulomb potential. It is written in the elliptic
coordinate as

g ¼ � 1
Ven
¼ Rðk2 � l2Þ

4k
: ð11Þ

As for the initial function, we must employ the function that has the
same symmetry as the electronic state we want to calculate. This is
because the Hamiltonian is totally symmetric and does not change
the symmetry of the wave function during the IC procedure. For the
gerade state of Hþ2 , we employed the following Slater-type function
as the initial function

w0 ¼ exp½�a0ðra þ rbÞ� ¼ expð�akÞ; ð12Þ

where a and a0 are nonlinear parameters with a0 = a /R. The unger-
ade state like 1ru can also be calculated when we choose the initial
function as

w0 ¼ l expð�akÞ: ð13Þ

For both gerade and ungerade states, the g function is the same,
since the singularity of Hamiltonian is common to all the electronic
states.

Next, we move to computational results calculated by the FC
method. First, we discuss the form of the FC functions automati-
cally generated by the Hamiltonian. For the fixed nuclei SE, the
above choice of g and w0 gives the following form of the FC wave
function

w ¼
X

i

cik
milni expð�akÞ; ð14Þ

where ci is the variational parameter and mi is positive or negative
integer. For the gerade states, ni is zero or positive even integer and
for the ungerade states, ni is positive odd integer. This form of the
wave function is similar to that by Hylleraas [8]. However, an
important point is that the Hamiltonian generates not only the
complement functions with the positive powers of k (mi P 0) but
also those with the negative power of k (mi \ 0). These functions
take large value at the internuclear region, so our wave functions



Fig. 1. The efficiency comparison between the FC and ‘‘exact’’ wave functions. The
digits in x-axis is defined as the energy eigenvalue that has 10�N (in a.u.) accuracy.
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are expected to be more accurate than the Hylleraas form particu-
larly at the internuclear region.

Calculated energies for the 1rg and 1ru states are shown in Ta-
ble 1 for different FC orders n. The dimension i.e. the number of
complement functions, rapidly grows with increasing the FC or-
der. This larger freedom of the higher order FC wave function en-
ables the accurate solution toward the exact solution of the SE. In
our experience, the convergence of the FC energy as n increases is
quite good, and our best energies are better than previously cal-
culated energies for both 1rg and 1ru states. This result clearly
exhibits the convergence of the FC function toward the exact
wave function.

In the SE, the convergence toward the exact wave function can
be shown not only from the energy but also from the wave func-
tion itself. Note that this is possible for Hþ2 because its exact wave
function is known for the fixed nuclei SE. So, we make a compari-
son between the FC and exact wave functions.

The exact wave function of Hþ2 in the BO approximation is given
by [3,9–13]

wðk;l;xÞ ¼ KðkÞMðlÞ expðimxÞ; ð15Þ

where

KðkÞ ¼ ð1þ kÞrðk2 � 1Þj
m
2 j expð�akÞ

X1
k¼0

gk
1� k
1þ k

� �k

r ¼ R
a
� jmj � 1

MðlÞ ¼
X1
l¼0

flPlðlÞ:

ð16Þ

As seen from Eq. (16) this ‘‘exact’’ wave function also includes infi-
nite number of analytical terms, similar to our FC wave function. In
Eq. (16), m corresponds to the magnetic quantum number and zero
for the 1rg state. Pl(l) is associated Legendre function. gk and fl are
the coefficients determined by the differential equations obtained
from the SE by separating the variables. For the determination of
these coefficients, we followed the method described by Hunter,
Gray, and Pritchard [10]. In actual calculations using Eq. (16), we
have to truncate at some order of k and l polynomials. Thus, we
compare this ‘‘truncated exact’’ wave function with the FC wave
function.

First, we calculated the wave function error defined as

D ¼
Z
ðwFC � wexactÞ

2ds; ð17Þ

where wFC is the FC function, and wexact is the truncated exact wave
function in which maximum orders of k and l are taken as
kmax ¼ 23 and lmax = 14, respectively. At different orders, n = 1, 2,
and 3, the D values were D ¼ 1:07� 10�3; 2:49� 10�6, and
Table 1
The convergence of non-relativistic energy (in a.u.) for 1rg and 1ru states o

Order Dimension Ene

1rg

0 1 �1.
1 4 �1.
2 13 �1.
3 26 �1.
4 43 �1.
5 64 �1.
Our best result (1rg: order = 15, 1ru: order = 14) �1.
‘‘Exact’’ wave function [9] �1.
Finite element method [28] �1.
Finite difference method [34] �1.
7.03 � 10�10, respectively. These values show a rapid convergence
of the FC wave function toward the exact wave function.

Interestingly, the exact wave function is given in the analytical
expansion form in the ‘‘exact’’ form [3,9–13], and also as the FC
wave function. Thus, the ‘‘exact’’ and FC expansions should be re-
garded as two different expression forms of the one unique exact
wave function. So, a question arises; which is more efficient expan-
sion for the exact wave function? To answer this, we estimated
how many functions are necessary for obtaining the similar accu-
racy with the FC and the exact expansions. Fig. 1 shows a compar-
ison between the truncated exact and the FC expansions to get the
similar energy accuracy. The abscissa corresponds to the energy
accuracy in the number of correct figures. Apparently, the conver-
gence of the FC wave functions is faster and quite efficient. In addi-
tion, to calculate the truncated exact wave function, one must
iteratively solve the eigenvalue equations and estimate the k and
l truncation error. They are not an easy task as the dimension
grows. Therefore, we could say that the FC procedure is much more
efficient way of solving the non-relativistic exact wave function of
Hþ2 than even the exact treatment of the SE of Hþ2 .

4. Solving the Dirac equation by the Free-Complement method

The SE of Hþ2 is efficiently solved by the FC method as shown in
the previous chapter. The applicability of the FC method is not lim-
ited to the non-relativistic case at all [64,70,79,80]. In this chapter,
we discuss the FC method applied to the relativistic DE of Hþ2 .

The extension to the relativistic DE is quite simple, since the
DE is written in the form equivalent to the SE (Eq. (1)). In this
case, the Hamiltonian is defined in a four-dimension matrix form
as

H ¼ ðV þ c2ÞI2 cr � p
cr � p ðV � c2ÞI2

" #
; ð18Þ
f Hþ2 (R = 2.0 a.u.).

rgy

state 1ru state

079 384 965 831 435 080 �0.662 993 039 443 155 452
101 421 270 731 672 256 �0.667 236 686 962 501 148
102 627 432 357 876 892 �0.667 534 068 275 070 663
102 634 208 423 548 446 �0.667 534 392 107 704 479
102 634 214 493 685 465 �0.667 534 392 202 280 580
102 634 214 494 945 584 �0.667 534 392 202 382 893
102 634 214 494 946 462 �0.667 534 392 202 382 930
102 634 214 494 9 �0.667 534 392 202 4
102 632 7 �0.667 533 1
102 634 214 497 �0.667 534 392 205



Table 2
Calculated energy upper and lower bounds (in a.u.) for the ground state (1rg) of Hþ2
with the g function given by Eq. (19) and the w0 given by Eq. (22) (R = 2.0 a.u., a = 2.0):
The numbers of the spinor components are shown in parenthesis.

Order Dimension Upper bound Lower bound

0 8 (2,2,2,2) �0.943 164 843 437 �4924.519 845 377
1 40 (16,8,8,8) �1.102 590 742 250 �1.953 823 274 365
2 186 (52,38,50,46) �1.102 641 578 459 �1.102 654 667 382
3 392 (112,90,98,92) �1.102 641 580 990 �1.102 642 557 369
4 672 (180,152,176,162) �1.102 641 581 007 �1.102 642 197 633
5 1024 (282,244,252,246) �1.102 641 581 015 �1.102 642 014 004
6 1448 (382,334,372,360) �1.102 641 581 020 �1.102 641 881 501
7 1950 (524,468,484,474) �1.102 641 581 023 �1.102 641 827 195
8 2524 (660,594,642,628) �1.102 641 581 026 �1.102 641 777 580

Finite element method [28] �1.102 641 581 033 8
Direct perturbation theory [29] �1.102641579453
Monte Carlo method [30] �1.102565
Minimax theory [32] �1.102481
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where V is the same as the non-relativistic SE (Eq. (10)), and p = �ir
is the momentum operator, r the Pauli matrix, and I2 the 2 � 2 unit
matrix. The speed of light is taken as c = 1/a = 137.0359895 [84].
The wave function w here is four-component spinor.

Although the basic formalisms of the non-relativistic SE and the
relativistic DE are equivalent, they have an important difference,
that is, the variational property of the energy. In the non-relativis-
tic case, the energy calculated by the variational procedure be-
comes upper bound to the exact energy, while in the relativistic
case this no longer holds because of the presence of the positronic
states in the DE. Many studies have been explored to overcome this
problem [85]. Among them, we employed the inverse Hamiltonian
method [60,86] in which the Ritz-type variational property is sat-
isfied in a rigorous sense.

The variational collapse means also that the quality of the rela-
tivistic wave function cannot be identified just from the energy;
the relativistic wave function with lower energy does not mean
its better accuracy, unlike the non-relativistic case. For this reason,
the energy lower bound is significantly important to examine the
quality of the relativistic wave function. We also carried out the
calculation of energy lower bounds according to Eq. (6).

Next, we discuss the choice of the g and initial functions. We se-
lected the g function as

g ¼ 1� 1
Ven
¼ 1þ Rðk2 � l2Þ

4k
ð19Þ

in the relativistic calculations. Note that the g function is different
from that of the non-relativistic SE (Eq. (11)). The unity in the g
function is related to ‘‘the balancing condition’’ that the relativistic
wave function should satisfy. The balancing condition only arises in
the relativistic DE since it comes from the exact relationship be-
tween the large and small components of the wave function.
Although the FC method can provide the exact relativistic wave
function for any proper choice of the g function, we found that, in
the relativistic case, the g function of Eq. (19) gives better conver-
gence toward the exact wave function than the g function of Eq.
(11); for detailed discussions, see our original paper [70].

In selecting the initial function, a notable difference from the
non-relativistic case is that the wave function is composed of four
components. The simplest initial function for the gerade and ung-
erade states would be

w0 ¼

expð�akÞ
ðk2 � 1Þ1=2ð1� l2Þ1=2 expð�akÞ expðixÞ

i � expð�akÞ
i � ðk2 � 1Þ1=2ð1� l2Þ1=2 expð�akÞ expðixÞ

2
66664

3
77775 ð20Þ

and

w0 ¼

l expð�akÞ
ðk2 � 1Þ1=2ð1� l2Þ1=2l expð�akÞ expðixÞ

i � l expð�akÞ
i � ðk2 � 1Þ1=2ð1� l2Þ1=2l expð�akÞ expðixÞ

2
66664

3
77775; ð21Þ

respectively. Although accurate energies can be calculated with
these initial functions [70], we employed, in actual calculations of
the 1rg state, the initial function of

w0 ¼

expð�a1kÞ þ expð�a2kÞ
ðk2 � 1Þ1=2ð1� l2Þ1=2fexpð�a1kÞ þ expð�a2kÞg expðixÞ

i � fexpð�a1kÞ þ expð�a2kÞg
i � ðk2 � 1Þ1=2ð1� l2Þ1=2fexpð�a1kÞ þ expð�a2kÞg expðixÞ

2
66664

3
77775:

ð22Þ

This is because we also need to calculate the first excited state (2rg)
energy in order to have the energy lower bound of the ground 1rg
state. The 2rg state is calculated at the same time as the ground 1rg

state as the second lowest state. a1 and a2(=a1/2) in Eq. (22) corre-
spond to the exponents of the ground and excited states, respectively.

Now we move to our computational results of the DE. First, we
show the generated FC functions in the relativistic case. With the g
and initial functions given above, the FC functions have the follow-
ing form

w¼
X

i

cð1Þi kmilni expð�akÞ=ðk2�l2Þli

cð2Þi ðk
2�1Þ1=2ð1�l2Þ1=2kmilni expð�akÞexpðixÞ=ðk2�l2Þli

i �cð3Þi kmilni expð�akÞ=ðk2�l2Þli

i �cð4Þi ðk
2�1Þ1=2ð1�l2Þ1=2kmilni expð�akÞ=expðixÞðk2�l2Þli

2
666664

3
777775;

ð23Þ

where cðkÞi ðk ¼ 1;2;3;4Þ are variational parameters and mi is posi-
tive or negative integer, li is positive integer. Likewise to the non-
relativistic case, ni is zero or positive even integer for the gerade
state and positive odd integer for the ungerade state.

Relativistic energy upper and lower bounds for the 1rg state at
different FC orders are shown in Table 2. Clearly, the upper and
lower bounds converged to the exact energy from above and be-
low, respectively. As the FC order increases, the width between
the lower and upper bounds becomes narrower and narrower.
Considering the fact that the lower bound corresponds to the var-
iance of the energy, the present results indicate that a quite accu-
rate wave function is obtained by the FC method. Not only the
ground state but also the excited states of the DE can be easily cal-
culated by the FC method; our best relativistic energies of the 1ru

and 2rg states are �0.667 552 771 995 5 and �0.360 871 070 578
4 a.u., respectively. Throughout this paper, converged values are
written in bold face. These energies are most accurate energies ob-
tained so far. The detailed discussion of the excited state calcula-
tions can be found in our original paper [70].

Up to here, the energy calculations at the fixed geometries are
shown. As the matter of fact, the FC method can be applied to arbi-
trary geometries since it provides the exact wave function in any
case. This enables accurate calculations of the potential energy
curve (PEC) by the FC method, as already provided for several mol-
ecules [69,78]. Here, the non-relativistic and relativistic PECs cal-
culated by the FC method are discussed; numerical values of the
PECs and details are given in a separate paper [87].

First, the relativistic effect, i.e. the energy difference between
the non-relativistic and relativistic calculations is shown in Fig. 2
at different internuclear distance. As clearly seen in Fig. 2, the rel-
ativistic effect is large when R is small, while it gradually decreases
as R increases, and take the minimum value at R = 3.70 a.u.
However, it increases again for larger R. These results have shown
that the relativistic effect is largest at the united atom limit, and



Fig. 3. Electronic density difference (w2
rel � w2

non-rel) between relativistic and non-
relativistic wave functions (order = 10, R = 2.0 a.u.) of Hþ2 . The three-dimensional
electronic density is projected onto (x,y) = (0,0) plane and plotted along the z-axis.
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also large at the infinite separation limit. This result indicates that
the relativistic effect is large when the electron density at nucleus
is high, since the velocity of electron becomes larger and conse-
quently, a larger relativistic effect is induced.

We also carried out the detailed calculation of the equilibrium
distance (Req) of Hþ2 ; our calculations present that Req for non-relativ-
istic and relativistic cases are 1.99719 and 1.99716 a.u., respectively.
Therefore, the relativistic effect tends to shorten the chemical bond
of Hþ2 by 3 � 10�5 a.u. The shorter chemical bond of Hþ2 in the relativ-
istic case can be accounted from the electron density: the electron
density difference between the relativistic and non-relativistic wave
functions is shown in Fig. 3. Clearly, the electronic density is most
different at the position of two nuclei. This also leads to the higher
electron density in the internuclear region in the relativistic case,
and accordingly, to a shorter chemical bond of Hþ2 in the relativistic
case. These results also show that the electron density difference is
quite small (order of 10�5 e), so that highly accurate wave function,
like the FC wave function, is required to discuss the relativistic effect
on the chemical bond of Hþ2 .

Next, based on these PECs, spectroscopic constants are evalu-
ated. We calculated harmonic frequency (xg), anharmonicity con-
stant (xgve), rotational constant (Be), and rotational–vibrational
coupling constant (ae), and transition frequency by using the ex-
tended Rydberg polynomial (ER) [88], extended Morse polynomial
proposed by Hulburt and Hirschfelder (EM–HH) [89], and extended
Morse polynomial proposed by Dunham (EM–D) [90,91]. The same
PECs were also used to calculate rovibrational energy levels and
spectroscopic constants for the isotopomers, HD+ and HT+.

Non-relativistic and relativistic spectroscopic constants and their
differences are summarized in Table 3. The relativistic effect tends to
decrease xe when the EM-type polynomials were used, while xe is
slightly increased when the ER-type polynomial was used. In con-
trast to xe, xgve is decreased by the relativistic effect with all poly-
nomials, indicating that the anharmonicity is smaller for the
relativistic PEC than for the non-relativistic one. The relativistic ef-
fects on the other two spectroscopic constants (ae and Be) are rather
smaller than xe and xgve. In contrast to the spectroscopic constants,
the relativistic effect on the transition frequency is uniform irrespec-
tive of the fitting polynomials; in the relativistic calculations, the
transition frequencies increased for all polynomials.
5. Non-Born–Oppenheimer calculation by the Free-
Complement method

In the previous chapter, the SE and the DE with the BO approx-
imation are accurately solved by the FC method. However, the FC
Fig. 2. The difference between the non-relativistic and the relativistic electronic
energies along the different internuclear distances of Hþ2 . For calculations of potential
energy curves, we employed the FC function of order = 4 in which 43 and 336 independent
functions are included in non-relativistic and relativistic cases, respectively.
method does not assume the BO approximation at all, and thus
straightforwardly extended to the SE without assuming the BO
approximation [75]. Note that the one-particle problem of Hþ2 in
the non-BO case becomes three-particle problem in the non-BO
case.

The non-BO Hamiltonian can be written in the general form as

H ¼ �
X

i

1
2me
r2

i �
X

A

1
2mA
r2

A þ
X

i

X
A

ZeZA

riA
þ
X

i

X
i<j

� ZeZe

rij
þ
X

A

X
A<B

ZAZB

RAB
; ð24Þ

where i and A denote electrons and nuclei, me and mA their masses,
and Ze and ZA their charges, respectively. After the center-of-mass
motion is separated out, the Hamiltonian can be expressed by the
interparticle coordinates (r1, r2,R) with angular factors. We intro-
duce here the (s, t,R) coordinates for the present three-body sys-
tems, that is

s ¼ r1 þ r2; t ¼ r1 � r2; R: ð25Þ

This coordinate set is equivalent to the (s, t,u) coordinate set for the
helium atom used by Hylleraas [68,92].

Next, we discuss the choice of the g and initial functions. The g
function appropriate for the non-BO SE is

� 1
VNe
þ 1

VNN
¼ s2 � t2

4sZ
þ R; ð26Þ

where VNe and VNN represent nuclear–electronic attraction (with
Z = Z1 = Z2 = +1) and nuclear–nuclear repulsion potentials,
respectively.

In the non-BO calculation, we have to choose the initial function
so as the generated FC functions properly describe the electronic
and nuclear freedoms. For the nuclear part of the initial function,
we employed the Gaussian function exp(�c(R � Re)2), which would
be proper as a vibrational function. In this case, the initial function
w0 for Hþ2 becomes

w0 ¼ ð1þ P12Þ expð�ar1Þ expð�ar2Þ � expð�bðR� ReÞ2Þ � Yl1 ;l2
L;M

h i
¼ ð1þ P12Þ expð�asÞ � expð�bðR� ReÞ2Þ � Yl1 ;l2

L;M

h i
; ð27Þ

where P12 represents the permutation operator of two nuclei. a and
b are nonlinear variational parameters and Re is also a variational
parameter but we fix it at Re = 2.0 a.u. from the equilibrium distance
of the nuclei of Hþ2 . (L,M, l1, l2) of Yl1 ;l2

L;M is (0,0,0,0) for the ground
states. For Hþ2 , because the proton is a fermion as is the electron,



Table 3
Non-relativistic and relativistic spectroscopic constants, transition frequencies, and zero-point energies (ZPE) (in cm�1) of Hþ2 , HD+, and HT+. Upper, middle, and lower lines
represent non-relativistic, relativistic, and their differences, respectively.

xe xgve ae Be Transition frequency ZPE

0–1 1–2 2–3

Hþ2 ER 2324.363 68.849 1.60332 29.95560 2190.43 2058.37 1921.02 1145.155
2324.378 68.613 1.60157 29.95623 2190.89 2060.33 1927.21 1145.211
0.014 �0.236 �0.00175 0.00063 0.46 1.95 6.19 0.056

EM–HH 2324.135 68.307 1.60100 29.95509 2191.19 2061.88 1932.01 1145.157
2323.928 67.741 1.59610 29.95506 2191.76 2064.62 1941.45 1145.164
�0.207 �0.566 �0.00490 �0.00003 0.57 2.74 9.44 0.007

EM–D 2323.941 67.994 1.60154 29.95488 2191.17 2061.46 1930.94 1145.118
2323.857 67.708 1.59779 29.95519 2191.44 2062.75 1935.61 1145.130
�0.084 �0.287 �0.00375 0.00031 0.26 1.29 4.68 0.012

Ref. [93] 2323.98 67.3 1.597 29.9626
Ref. [94] 2324.07 67.51 1.5962 29.9626
Ref. [95] 2191.13 2063.92
Exp. [96] 2321.8 29.8 2191.2 2064

HD+ ER 2012.975 51.452 1.04085 22.46892 1912.65 1814.21 1713.65 993.747
2013.005 51.310 1.03995 22.46947 1912.92 1815.24 1716.93 993.791
0.030 �0.142 �0.00090 0.00055 0.27 1.03 3.28 0.044

EM–HH 2012.823 51.124 1.03964 22.46863 1913.04 1816.01 1719.41 993.739
2012.690 50.774 1.03687 22.46881 1913.32 1817.33 1724.15 993.739
�0.133 �0.350 �0.00277 0.00018 0.28 1.31 4.74 0.000

EM–D 2012.692 50.933 1.03984 22.46851 1912.99 1815.64 1718.49 993.709
2012.641 50.748 1.03771 22.46888 1913.13 1816.27 1720.84 993.718
�0.051 �0.185 �0.00213 0.00037 0.14 0.63 2.35 0.009

Ref. [95] 1913.00 1816.86
Exp. [96] 1913.01 1816.7 1723.7

HT+ ER 1898.131 45.693 0.87252 19.97880 1808.95 1721.55 1632.78 937.745
1898.165 45.577 0.87183 19.97931 1809.17 1722.35 1635.31 937.785
0.034 �0.116 �0.00069 0.00051 0.22 0.80 2.53 0.040

EM–HH 1897.954 45.278 0.86980 19.97823 1809.40 1723.78 1640.31 937.740
1897.891 45.136 0.86937 19.97879 1809.45 1723.88 1640.74 937.735
�0.064 �0.142 �0.00043 0.00056 0.05 0.10 0.43 �0.005

EM–D 1897.852 45.198 0.87078 19.97831 1809.18 1722.50 1636.29 937.702
1897.849 45.113 0.87001 19.97885 1809.31 1723.05 1638.12 937.717
�0.004 �0.086 �0.00077 0.00053 0.12 0.54 1.82 0.015

Ref. [95] 1809.22 1723.51
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the permutation symmetry of Eq. (27) (a plus sign before P12) cor-
responds to the singlet state of 1S.

We also calculated the triplet state 3P with w0 given by

w0 ¼ ð1� P12Þ ð1þ tÞ expð�asÞ � expð�bðR� ReÞ2Þ � Yl1 ;l2
L;M

h i
ð28Þ

with a minus sign before P12 and (L,M, l1, l2) of (1,0,1,0). The term
(1 + t) in Eq. (28) is introduced to generate additional spatial anti-
symmetrized functions including odd powers of t. For the heteronu-
clear ions (HD+ and HT+), there is no need to symmetrize the wave
function and so

w0 ¼ expð�asÞ � expð�bðR� ReÞ2Þ � Yl1 ;l2
L;M ð29Þ

is employed with Re = 2.0 a.u. and Yl1 ;l2
L;M : (0,0,0,0).

Not only the vibronic ground state but also the vibronic excited
states can be calculated simultaneously. A few vibronic excited
states are also calculated as second and third solutions in the diag-
onalization process.

Next, we discuss the computational results of the non-BO calcu-
lations. The FC functions generated from the g and w0 of Eqs. (26)–
(29) are expressed as

w ¼ ð1� P12Þ
X
ði;j;kÞ

sitjRk expð�asÞ � expð�bðR� ReÞ2Þ � Yl1 ;l2
L;M ; ð30Þ

where both i and k run over integers including negative integers,
and the index j runs only over nonnegative even integers for the
ground state of Hþ2 . For HD+ and HT+, in addition to the even integers
of j, the wave function also involves odd-integer powers of t derived
from the heterosymmetric Hamiltonian.
Calculated non-BO energies of the 11S and 13P states are shown
in Table 4. For the 11S and the 13P states, we obtained our best en-
ergy of �0.597 139 063 123 405 074 834 134 096 025 974 142 and
�0.596 873 738 832 764 735 920 744 893 a.u. for the 11S and 13P
states, respectively. Comparing these energies with the previous
works, they should be regarded as the best energy. The energy dif-
ference between the 11S and 13P states was calculated to be 0.000
265 324 a.u. (58.231 941 cm�1).

Since we have quite accurate wave function in analytic form,
any properties other than energy can be calculated in extreme
accuracy. A good example to investigate the nature of the non-
BO wave function is the reduced density function f(R) which is de-
fined by

f ðRÞ ¼
Z

w�wds�R; ð31Þ

where ds0R means that the integrations are over the coordinates ex-
cept for the internuclear distance, R. Therefore, the rhs of Eq. (31)
becomes a function of R and can be expressed as

f ðRÞ ¼
X

k

CkRke�2bR2�ð2a�4bReÞR: ð32Þ

Fig. 4 shows the plots of f(R) for the ground, first, and second excited
states of 1S Hþ2 . We compare them with the densities calculated
from the vibrational wave function of the harmonic oscillator on
the BO potential curve. For the ground and second excited states,
the number of maximum peaks is odd and the plots are roughly
symmetric about the central peak position (which should be very
close to the equilibrium distance), i.e., the gerade mode of the vibra-



Table 4
The convergence of non-Born–Oppenheimer energy (in a.u.) of Hþ2 in 11S and 13P states. The g function of Eq. (26) is used, and w0s are Eqs. (27) and (28) for 11S and 13P states,
respectively. The proton mass mH = 1836.152 701 was used to compare with the previous reference.

Order 11S state 13P state

Dimension Energy Dimension Energy

0 1 �0.573 217 2 �0.534 562
1 7 �0.596 661 16 �0.596 331
2 30 �0.597 133 402 66 �0.596 870 838
3 83 �0.597 139 017 109 180 �0.596 873 713 262
4 179 �0.597 139 062 391 378 �0.596 873 738 458
5 330 �0.597 139 063 103 997 690 �0.596 873 738 824 230

..

. ..
.

10 2273 �0.597 139 063 123 405 073 177 4656 �0.596 873 738 832 764 735 144
11 2981 �0.597 139 063 123 405 074 767 6094 �0.596 873 738 832 764 735 875
12 3822 �0.597 139 063 123 405 074 831 055 7800 �0.596 873 738 832 764 735 917 782
13 4808 �0.597 139 063 123 405 074 833 976 9798 �0.596 873 738 832 764 735 920 539
14 5950 �0.597 139 063 123 405 074 834 125 011 12110 �0.596 873 738 832 764 735 920 730
15 7260 �0.597 139 063 123 405 074 834 133 503 14760 �0.596 873 738 832 764 735 920 743 846
Our best result 19,286 (order = 21) �0.597 139 063 123 405 074 834 134 096 025 17,770 (order = 16) �0.596 873 738 832 764 735 920 744 893
Ref. [40] �0.597 139 063 123 405 074 834 134 096 021 �0.596 873 738 832 764 735 920 744 98
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tion. In contrast, for the first excited state, the number of maximum
peaks is even and the plot is roughly antisymmetric, i.e., the unger-
ade mode. Obviously, the plots for the harmonic oscillator are com-
pletely symmetric about the minimum position of the harmonic
potential but the plots from the present non-BO calculations are
not completely symmetric and are distorted because of the anhar-
monicity of the vibrational motion and the non-BO effects, which
come from the coupling of electron and nuclei motions. Unsurpris-
Fig. 4. Plots of the reduced density given by Eq. (31) for the ground and vibronic
excited states of Hþ2 of 1S symmetry. The solid lines represent the reduced density
functions of the ground, first, and second excited states from the bottom. The dotted
lines represent the density plots for the harmonic vibrational wave functions.

Fig. 5. Expectation values of nucleus–electron distances (r1,r2) and internuclear distance
Eqs. (27) and (29) for homo- and hetero-nuclear molecules, respectively. Calculated
respectively. The nuclear mass data used were mH = 1836.152 672 47, mD = 3670.482 96
ingly, the anharmonicity is automatically included in the non-BO
calculations.

Another important properties calculated from the non-BO wave
function is the expectation values of hr1i, hr2i, and hRi. Here, for het-
eronuclear systems, r1 is defined as the distance between the elec-
tron and the lighter nucleus and r2 as the distance between the
electron and the heavier nucleus. These expectation values are
interesting properties to be compared among the isotopomers.
hr1i, hr2i, and hRi values of Hþ2 , HD+, and HT+ calculated by the FC
method are summarized in Fig. 5. hr1i and hr2i values were slightly
less than 1.7 a.u. for the ground states of all the systems. Although
the Coulomb potentials are the same for both homo- and heteronu-
clear systems, hr1i (the electron–light nucleus distance) is slightly
larger than hr2i (the electron–heavy nucleus distance) for HD+

and HT+. These results indicate that the electron tends to be more
attracted to the heavier nucleus. The electron near the heavier nu-
cleus is more stable because the heavier nucleus does not easily
move or flicker because of its heavy weight, so that the electron
can exist nearer the heavier nucleus than near the lighter nucleus.
The expectation value for the internuclear distance hRi is close to
2.0 a.u. for the ground states of all the systems, which is very close
to the equilibrium distance obtained from the BO calculations. This
value of hRi becomes slightly shorter as the nuclear mass becomes
heavier for the same reason as those for hr1i and hr2i, which can
never be explained in the BO approximation.
6. Solving the Schrödinger equation under the magnetic field by
the Free-Complement method

In this chapter, we see that the FC method can also be applied to
the SE under the external field, where various physically and
chemically interesting phenomena take place [55,79,80]. The SE
with external field provides another example in which the exact
(R) of Hþ2 (1S), HD+, and HT+ molecules. The g function of Eq. (26) is used, and w0’s are
values are those of order = 14 and 11 for homo- and hetero-nuclear molecules,
54, and mT = 5496.921 5269.
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wave function is not known although the analytical form of the
Hamiltonian is uniquely defined. Here, the FC method is applied
to the SE of Hþ2 under the magnetic field, with various strengths
and directions of the field [87].

The SE of Hþ2 under the magnetic field has the following
Hamiltonian

H ¼ 1
2
½�irþ AðrÞ�2 � 1

ra
þ 1

rb

� �
þ 1

R
; ð33Þ

where A(r) represents the external vector potential. When the sys-
tem possesses a rotational symmetry, one favorably use the sym-
metric gauge and in this case [54,55]

AðrÞ ¼ 1
2
ðB� rÞ; ð34Þ

where B is the magnetic field vector. For the direction of the mag-
netic field, we choose two extreme cases, either parallel or perpen-
dicular to the molecular axis. Parallel and perpendicular magnetic
fields are written in Cartesian coordinate as

B ¼ ½0 0 B �T ð35Þ

and

B ¼ ½B 0 0 �T ; ð36Þ

respectively, where we assume the internuclear axis is along the z-
axis.

Here, our main interest is a moderate magnetic field strength in
which chemical interests often appears. In this case, we can choose
the same initial function as in the field-free case, that is,

w0 ¼ expð�akÞ ð37Þ

for both parallel and perpendicular cases. We also take the same g
function as in the field-free case (Eq. (11)), because no additional
singularity arises from the magnetic field part.

Next, we discuss our computational results. In the parallel field,
the generated FC wave function form can be written as

w ¼
X

i

cik
milni expð�akÞ; ð38Þ

where ci is a variational parameter and mi is a positive or negative
integer. The index ni is zero or positive even integer for the gerade
states. This wave function form is the same as for the field-free case
(Eq. (14)), however, the number of functions is larger since A(r) con-
tributes to the wave function generation.
Table 5
Total energy (in a.u.) for the ground state (1rg) of Hþ2 in the parallel and perpendicular m

Order Dimension Magnetic

109 G

Parallel field 0 1 �0.481 9
1 8 �0.574 8
2 36 �0.575 3
3 81 �0.575 3
4 144 �0.575 3
Our best result (order = 10) 900 �0.575 3
Ref. [51] �0.575 3
Ref. [54] �0.575 3

Perpendicular field 0 1 �0.475 5
1 14 �0.568 3
2 122 �0.569 1
3 421 �0.569 1
4 1016 �0.569 1
Our best result (order = 6) 3510 �0.569 1
Ref. [51] �0.569 1
Ref. [54] �0.568 6
The generated FC wave function form for the perpendicular field
is, on the other hand,

w ¼
X

i

cik
milni ðk2 � 1Þ

M
2 ð1� l2Þ

M
2 expð�akÞ expðiMxÞ; ð39Þ

where M is the magnetic angular momentum quantum number. In
Eq. (39), the range of ni index is related to M; ni is zero or even po-
sitive integer for even M, and odd positive integer for odd M. The
perpendicular field FC function is different from the parallel field
one because the rotational symmetry with respect to the internu-
clear axis is no longer held in the perpendicular field. Thus, M is
no longer a good quantum number so that the exact wave function
would be the mixture of the functions with various M numbers.
Interestingly, the expansion by M is automatically introduced, in
the complement function generation step, by the perpendicular
field Hamiltonian, even though the same initial function (Eq. (37))
was employed.

Ground state total energies of Hþ2 in various strengths of parallel
and perpendicular magnetic fields are summarized in Table 5. De-
spite of the simplicity of the initial function, our results are impres-
sive in all the calculated cases. The calculated energies are more
accurate in weak fields than in strong fields, reflecting the form
of the initial function. However, when sufficient FC order is em-
ployed, the wave function becomes accurate even in strong fields.
Our calculated energies are variational in all cases and some of
them are of the lowest energies so far obtained.

It is well known that the vector potential for a given magnetic
field is defined ambiguously up to a gradient of an arbitrary scalar
function. In addition, there is another ambiguity where to set the
gauge-origin, i.e. the point where the vector potential vanishes.
In Hþ2 under the parallel magnetic field, as long as the symmetric
gauge is employed (Eq. (34)), the calculated energies are invariant
to the gauge-origin. On the other hand, in the perpendicular case,
the calculated energy depends on the gauge-origin. This fact gives
rise to the gauge-origin dependence of the observables. In fact, this
provides another condition that the exact wave function should
satisfy, that is, the observables are invariant to the gauge-origin
if the employed wave function is truly exact.

So, we investigate here the gauge-origin dependence of the FC
function with two different cases; (i) the gauge-origin is placed
on the midpoint of two nuclei, and (ii) the gauge-origin is placed
on one nucleus. The Hamiltonian of the former and later cases
are denoted as Hmid and Hnuc, respectively. Note that the parallel
agnetic fields (1 a.u. = 2.35 � 109 G).

field strength

1 a.u. 1010 G 10 a.u.

76 �0.235 391 4.491 26.067
40 �0.474 946 0.682 748 3.281
58 923 943 �0.474 987 590 0.545 783 2.832
58 927 862 336 �0.474 988 243 105 0.545 159 616 2.825 200
58 927 863 067 �0.474 988 244 639 0.545 151 266 2.825 017
58 927 863 071 �0.474 988 244 647 0.545 151 122 2.825 014
6 0.545 155 2.825
5 �0.474 955 0.545 22 2.825 12

18 �0.209 312 4.615 26.212
76 �0.443 555 0.913 907 3.793
54 452 429 �0.450 622 627 0.689 428 3.203
54 949 854 049 �0.450 684 160 814 0.679 744 557 3.141 846
54 952 148 180 �0.450 685 613 141 0.678 475 853 3.119 157
54 952 168 045 �0.450 685 661 585 0.678 045 524 3.111 913
60 0.678 060
71 �0.449 555 0.681 035 3.115 85



Table 6
Total energy (in a.u.) for the ground state (1rg) of Hþ2 in the perpendicular magnetic field where gauge-origin is placed on one of two nuclei (Hnuc Hamiltonian)
(1 a.u. = 2.35 � 109 G).

Magnetic field 109 G 1 a.u. 1010 G 10 a.u.
Internuclear distance (a.u.) 1.875 1.635 1.059 0.772

Order Dimension

0 1 �0.433 �0.291 1.715 9.013
1 18 �0.564 825 �0.443 1.026 4.684
2 190 �0.569 153 2 �0.450 553 0.707 3.268
3 726 �0.569 154 949 �0.450 681 06 0.684 3.157
4 1828 �0.569 154 952 133 �0.450 685 38 0.679 060 3.127 8
5 3704 �0.569 154 952 167 4 �0.450 685 639 0.678 254 3.117 205
Ref. [54] �0.568 671 �0.449 555 0.681 035 3.115 85
Hmid �0.569 154 952 168 020 �0.450 685 661 0.678 045 3.111 727
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and perpendicular field calculations up to here correspond to the
calculations employing the Hmid Hamiltonian.

The perpendicular field FC function generated by the Hnuc can be
written as follows;

w ¼
X

i

cik
milni ðk2 � 1Þ

M
2 ð1� l2Þ

M
2 expð�akÞ expðiMxÞ; ð40Þ

where mi and ni are positive and negative integer. We employed the
g and initial functions of Eqs. (14) and (37), respectively. Notable
difference with the perpendicular field FC function generated by
Hmid (Eq. (39)) is that odd number of ni is allowed for all M numbers.
This is because, for Hnuc case, mirror symmetry is broken because
the gauge-origin is placed at one nucleus. The wave function form
of Eq. (40) reflects that this symmetry-breaking is automatically ta-
ken into account by the Hnuc Hamiltonian, even when we start from
the simple initial function.

Next, ground state total energies with different gauge-origins
are compared in Table 6. At smaller FC orders such as n = 1, the cal-
culated energies are dependent on the gauge-origin. However,
when the FC order is increased, energy differences decrease sub-
stantially; for example, at 109 G, energy difference between Hmid

and Hnuc is 4.33 � 10�3 a.u. at n = 1, while it deceases to
6.02 � 10�13 a.u. at n = 5. These results show that the wave func-
tion provided by the FC method converges towards the exact wave
function, also from the viewpoint of the gauge-origin.
7. Conclusions

In this paper, we have summarized our theoretical investiga-
tions on Hþ2 using the potentially exact wave function generated
by the FC method. Our works include the non-relativistic SE, rela-
tivistic DE, the non-BO problem, and the SE under the magnetic
field. We have successfully shown that the FC method combined
with the variational principle gives very accurate analytical wave
functions of Hþ2 in all the cases.

For all the examples discussed in this paper, the FC method pro-
vides successful results because the wave function form suitable
for the problem is automatically generated by the Hamiltonian of
the equation we want to solve. More importantly, these wave func-
tions are potentially exact, i.e. they are guaranteed to converge to-
ward the exact wave function. This character is indeed strong
when the exact wave function form is not known, such as the
DE, the non-BO SE, and the SE under the magnetic field.

In this paper, we employed the FC method combined with the
variational principle because analytical integrations over the FC
functions are possible. For larger atoms and molecules, such inte-
grations are no longer possible. To overcome this ‘‘integration dif-
ficultly’’, we proposed the local Schrödinger equation (LSE) method
[69], and we expect that the FC method combined with the LSE
would be the dominant approach to provide the analytical solution
of the SE, DE, and DCE in various situations and approximations
(like the BO approximation).
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