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We derived the necessary conditions that the non-relativistic time-independent exact wave functions
for two-particle systems must satisfy at a coalescence (or cusp) point. Some of such necessary con-
ditions are already known to be Kato’s cusp condition (CC) and Rassolov and Chipman’s CC. In
the present study, we extended and generalized those conditions, calling them generalized coales-
cence conditions (GCCs). Kato’s CC and Rassolov and Chipman’s CC were shown to be specific
cases included in the GCCs. The GCCs can be applied not only to Coulombic systems but also
to any systems where the interaction between two particles is represented in a power series of the
inter-particle distance. We confirmed the correctness of our derivation of these GCCs by apply-
ing the free complement wave functions of a hydrogen atom in ground and excited states, a har-
monic oscillator, and a system with an interacting potential of V = r. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4816281]

I. INTRODUCTION

The coalescence region, where two charged particles
come very close to each other, is a special region in molec-
ular quantum mechanics because it is a singular point of the
Coulombic potential (V̂ ≡ ∑

i,j

ZiZj/rij ) in the Hamiltonian

Ĥ of the Schrödinger equation (SE):(
Ĥ − E

)
ψ = 0. (1)

Even so, the local energy defined by EL ≡ V̂ + K̂ψ/ψ ,
where K̂ is the kinetic operator, must be a constant given
by the energy E in Eq. (1) for the exact wave function ψ .
In other words, the kinetic local energy K̂ψ/ψ exactly can-
cels the divergence of the Coulomb potential V̂ , resulting in
the exact energy E. When a wave function, although approx-
imate, satisfies a special cusp condition (CC) called “Kato’s
cusp condition,”1 the local energy does not diverge even at
the singular points, although it is not necessarily equal to the
exact energy E.

There are two types of Kato’s CCs: one is the electron-
electron (e-e) CC,

∂ψ̄

∂r12

∣∣∣∣
r12=0+

= 1

2
ψ̄

∣∣
r12=0+ , (2)

where particles 1 and 2 are both electrons; and the other is the
nucleus-electron (n-e) CC,

∂ψ̄

∂r12

∣∣∣∣
r12=0+

= −Z1 ψ̄
∣∣
r12=0+ , (3)

where particles 1 and 2 are a nucleus and an electron, re-
spectively, rij is the distance between particles i and j, Zi is
the charge on particle i, and ψ̄ represents the wave function
spherically averaged over a small sphere centered at the point

a)Electronic mail: h.nakatsuji@qcri.or.jp.

r12 = 0. The Born-Oppenheimer (BO) approximation is as-
sumed in Eq. (3).

Pack and Byers-Brown (PB) unified Kato’s e-e and n-e
CCs and provided the following expression:2

(l+1)f (1)
lm = ζf

(0)
lm (for l = 0, 1, 2, · · · and m = − l, · · · , l),

(4)

where

f
(k)
lm ≡ 1

(k + l)!
lim

r→0+
∂k+l

∂rk+l

∫∫
d�Y ∗

lm (θ, φ) ψ, (5)

ζ ≡ Z1Z2μ12, μ12 is the reduced mass of particles 1 and 2,
and (r, θ , φ) are the polar coordinates of the vector r12. Y ∗

lm is
the complex conjugate of the spherical harmonics, and

∫∫
d�

= ∫∫
sin θdθdφ represents the integration over the angles. f (k)

lm

is the kth order coefficient of the radial part of the Ylm com-
ponent of the wave function. PB’s CC does not assume the
BO approximation, but the BO wave function also satisfies
the condition: If particles 1 and 2 are the nucleus and electron
and μ12 is set to unity instead of the true reduced mass, then
Eq. (4) holds for the BO wave function without any modifi-
cation. Kato’s CCs are a special case of PB’s CC when l = m
= 0 and the BO approximation is assumed for the n-e case.

Rassolov and Chipman (RC) extended Kato’s CCs to a
higher order:3

f
(3)
00 = 2ζ

3
f

(2)
00 − ζ 3

6
f

(0)
00 . (6)

This equation states the relation between the third and
second derivatives of the wave function. Tew derived similar
equations and examined different kinds of wave functions.4

Several authors investigated the various aspects of these
Coulombic CCs, such as for Gaussian functions with linear r
term,5 unnatural-parity state,6 combination with the boundary
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conditions,7, 8 three particle coalescence,9, 10 and the density
on nucleus,11 etc.

Loos and Gill studied the spherium “atom,”12, 13 in which
two electrons move on the surface of the sphere of radius R. It
is an interesting system because “Kato value” for this system
is not 1/2 but 1.12, 13 However, we do not deal with this system
in the present paper since the potential in this “atom” is com-
pletely different from those in ordinary atoms and molecules.

Silanes, Ugalde, and Boyd (SUB) derived Kato’s CCs for
non-Coulombic interactions;14 they considered the potential
to be not only Coulombic, but also any one written in general
as

V̂ ≡
N−1∑
i=1

N∑
j>i

A∑
a=−1

C
(a)
ij ra

ij , (7)

where N is the number of particles of the system, A is a finite
integer, and C

(a)
ij are linear combination coefficients. Various

types of potentials were represented; for example, setting
C

(a)
ij = ZiZj and A = −1 provides the Coulombic potential,

and setting C
(−1)
ij = C

(0)
ij = C

(1)
ij = 0, C

(2)
ij = 1

2ωij and A

= 2 provides the harmonic potential (V̂ = 1
2

∑N−1,N
i>j ωij r

2
ij ).

SUB’s CCs treat these potentials; however, they are limited
to the relations between the zeroth and first derivatives of
the wave function. Note that it is more appropriate to call
these a “coalescence condition” instead of a “cusp condition”
because there is no “cusp” in the exact wave function of the
harmonic oscillator, for example.

In our current study for solving the Schrödinger
equation,15–17 we use the local Schrödinger equation (LSE) as
the necessary conditions to calculate the variables included in
the potentially exact wave function.18 This is an integration-
free method and can be a general methodology for atoms and
molecules. In this method, the correct treatment of the coa-
lescence region is very important, and further studies into the
coalescence region are needed.

In this paper, we derive the relations among the higher-
order derivatives of wave functions for two-particle systems
at the coalescence point with a general form of the poten-
tial. This paper is organized as follows: In Sec. II A, we de-
rive “primitive generalized coalescence conditions” (pGCCs),
which are necessary conditions for the exact wave function
but include unknown terms. These unknown terms are elim-
inated to yield the generalized coalescent conditions (GCCs)
in Sec. II B. In Sec. III, we confirm the correctness of the
GCCs by applying the exact wave functions to them. Con-
clusions are presented in Sec. IV. Throughout this paper, we
mainly focus on two-particle systems. The GCCs for many-
particle systems will appear in a forthcoming paper.

II. DERIVATION OF GENERAL COALESCENCE
CONDITIONS

A. Derivation of the primitive generalized
coalescence condition

We first derive the pGCCs prior to deriving the GCCs.
Let us consider a system of two charged particles with the

Hamiltonian,

Ĥ ≡ −
2∑

i=1

1

2mi

∇2
i + V̂ , (8)

where mi is the mass of the particle i, and V̂ is the potential
of the general type given by Eq. (7) with N = 2. Particles 1
and 2 are not necessarily of the same type. Next, we focus
our attention on the solution of the SE where r12 is very small
(r12 < ε). Using the relative coordinate, r12 ≡ r2 − r1, and
the center of mass coordinate, G ≡ (m1r1 + m2r2) / m12, with
m12 ≡ m1 + m2, the SE can be written as(

− 1

2μ12
∇2

r12
+

A∑
a=−1

C
(a)
12 ra

12 + Ô

)
ψ = 0. (9)

The first and second terms in the bracket of Eq. (9) are
the kinetic operator and the potential acting between particles
1 and 2, respectively. The third term is the remaining part of
the SE,

Ô ≡ − 1

2m12
∇2

G − E, (10)

which includes the exact energy of the system, E. Since E is
generally unknown, Ô is also unknown. Now we can assume
that G is fixed since the center of mass of the whole system
is fixed, which allows us to neglect the first term in the rhs of
Eq. (10). Therefore, Ô is an unknown constant, i.e., Ô = −E.

For simplicity in the following discussion, we remove the
subscript “12” from C12, μ12, and r12 if it is not specifically
mentioned.

After some manipulation using these quantities, we ob-
tain the pGCCs represented as follows for n = −1, 0, 1, 2, . . .
(see the Appendix for detailed derivations):

2μ

A∑
a=−1

C(a)f
(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM

= −2μÔf
(n)
LM, (11)

where f
(n)
LM are associated with the wave function by Eq. (5)

with arbitrary quantum numbers L and M (L = 0, 1, 2, . . . and
−|L| ≤ M ≤ |L|). n means the number of differentiations
of the Ylm component of the wave function at a coalescence
point. Note that we defined f

(n)
LM ≡ 0 when n ≤ −1 for all L

and M (see the Appendix). The system of Eq. (11) is a series
of necessary conditions which the exact wave function must
satisfy at the coalescence region. The “primitive” included in
pGCC implies the presence of an unknown term Ô.

When n = −1 only, Eq. (11) is simplified to

μ

A∑
a=−1

C(a)f
(−1−a)
LM − (1 + L) f

(1)
LM = 0. (12)

In the case that particles 1 and 2 are both electrons
(μ = 1

2 ) and their interactions are Coulombic (A = −1, C(−1)

= Z1Z2 = 1), Eq. (12) reads

1

2
f

(0)
LM − (1 + L) f

(1)
LM = 0, (13)
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which is Kato’s e-e CC when L = M = 0. In the case that par-
ticles 1 and 2 are the nucleus and electron, respectively, with
Coulombic interaction (μ = 1, C(−1) = −Z1), Eq. (12) also
represents Kato’s n-e CC. Furthermore, the “cusp condition
for p-wave function” is also derived from Eq. (13) if we set
L = 1. Similarly, that of the d-, f-, g-, . . . wave function is
derived corresponding to L = 2, 3, 4, . . . , respectively.

B. Derivation of the general coalescence condition

One may think that Eq. (11) does not provide use-
ful information because it contains the unknown term Ô.
In order to eliminate this term, we divide both sides
of Eq. (11) for n = n − 1 by the equation for
n = n. This gives us

2μ
A∑

a=−1
C(a)f

(n−a−1)
LM − (n + 1) (n + 2 + 2L) f

(n+1)
LM

2μ
A∑

a=−1
C(a)f

(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM

= f
(n−1)
LM

f
(n)
LM

(n = 0, 1, 2, . . .), (14)

which does not include any unknown terms. This manipula-
tion is possible when f

(n)
LM �= 0.

For a Coulombic system and n = 0, Eq. (14) reduces to
the PB form of Kato’s CC (Eq. (4)). When n = 1 and L = M
= 0, Eq. (14) reads

ζf
(1)
00 − 3f

(2)
00

ζf
(2)
00 − 6f

(3)
00

= f
(0)
00

f
(1)
00

. (15)

If a wave function satisfies Kato’s CC, i.e., f
(0)
00 /f

(1)
00

= 1/ζ , coupling it with Eq. (15) provides RC’s CC (Eq. (6)).
Thus, Eq. (14) includes all the CCs ever reported. Using the
n value, then Kato’s CCs are zeroth-order CCs, RC’s CCs
are first-order CCs, and Eq. (14) represents nth order CCs. We
name Eq. (14) the GCC for two-particle systems. Any wave
functions of two-particle systems must satisfy Eq. (14); other-
wise the wave function never satisfies the SE. Strictly speak-
ing, RC’s CC and the first-order GCC are different equations
because RC’s CC holds true when a wave function satisfies
Kato’s CC; however, we would regard the first-order GCC as
RC’s CC since they are essentially the same.

It may be considered that more-than-third differentiations
of the wave function are physically meaningless, since the
Hamiltonian includes up to the second differentiation and the
derivatives do not influence the local energy at the coales-
cence region. However, the third- and higher-order derivatives
of the wave function are associated with the zeroth, first, and
second derivatives by Eq. (14). Consequently, such higher-
order derivatives indirectly influence the local energy at the
coalescence region.

The GCCs are the infinite numbers of necessary condi-
tions for the wave functions to be the exact solution of SE.
Now, is it possible to determine all of the f

(n)
LMs only from the

GCCs? The first- and higher-order GCCs for Coulombic sys-
tems are four-step recurrence relations among f

(n)
LMs (n = n

− 1, n, n + 1, and n + 2). So we need at least three start-
ing values to determine all f

(n)
LMs. If the normalization of the

wave function is not considered, we can assume the leading
term to be unity,f (0)

LM = 1, without loss of generality. Then,
the next coefficient is given as f

(1)
LM = ζ

L+1f
(0)
LM by the zeroth-

order GCC. If one of the second- and higher-order coefficients
is obtained by some other necessary conditions, for example,
by the LSE method,18 all the f

(n)
LMs are automatically deter-

mined by the GCC equations.
It should be noted that when the denominator of Eq. (14)

is zero, i.e., f
(n)
LM = 0, we employ Eq. (11) as the nth order

GCC equation, which then reads

2μ

A∑
a=−1

C(a)f
(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM = 0.

(16)

III. NUMERICAL EXAMINATION OF THE GCC
WITH THE FREE COMPLEMENT WAVE FUNCTIONS

In this section, we wish to numerically check the correct-
ness of the GCC. A straightforward numerical check would
be to apply the GCC to the exact wave functions; however,
they are generally not known except for very simple systems.
Therefore, here we employ the free complement (FC) wave
functions obtained in our laboratory.15–20 The FC method was
proposed by one of the authors to solve the SE in an ana-
lytical expansion form, and it is guaranteed to be exact at
convergence.15–17 The exactness of the FC wave functions
for small systems was examined and they were shown to
have high accuracy.19, 20 We previously showed that the FC
wave functions of the helium atom and hydrogen molecule
satisfy the zeroth-order CC.21, 22 It is well known that the
conventional Gaussian type wave function never satisfies the
zeroth-order CC (Kato’s CC), while the FC wave function
does satisfy the zeroth-order CC even when we use Gaus-
sian type functions as the complement functions.22 The FC
wave function employed in the present study is briefly ex-
plained in Subsection III A, and more details are provided in
the references.15–20, 23 The purpose of Secs. III A–III D is to
confirm the correctness of the GCC and to examine whether
the GCCs indicate the quality of the wave function under con-
sideration.

A. FC wave functions

Let us first introduce the iterative complement (IC)
wave function, which is guaranteed to become exact at
convergence.15–17, 24 This theory was first formulated in a sec-
ond quantized form and was originally named the iterative
configuration (complement) interaction (ICI) method.24 The
IC wave function in its simplest form (simplest IC) is given in
its recurrence form as15–17, 24

ψn
IC ≡ [1 + Cng(Ĥ − En−1)]ψn−1

IC , (17)

where g is the scaling operator that was introduced to cir-
cumvent the singularity problem caused by the diverging
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Coulomb potential.15–17 The parameters Cn are determined
variationally or by the local requirement of the SE (LSE
method),18 and En is given by En = 〈ψn

IC |H |ψn
IC〉. The ini-

tial wave function ψ0
IC is arbitrary if it has an overlap with the

exact wave function under consideration.
The IC wave function at the nth order is a sum of complex

analytical functions. In the FC method, we represent all the
linearly independent analytical functions included in the IC
wave function as {φi} and give an independent coefficient to
each, namely,

ψn
FC ≡

Mn∑
i=1

ciφi . (18)

We refer to {φi} as the complement functions because
they are elements of complete functions that describe the ex-
act wave function when n is large. With the variation method,
the solution is obtained by diagonalizing the secular equa-
tion composed of the Hamiltonian and overlap matrices, H
and S. These matrices have elements Hij ≡ 〈φi|H|φj〉. and
Sij ≡ 〈φi |φj 〉, respectively.

We apply the FC method to the 1s and 2p states of
a hydrogen atom, harmonic oscillator, and V = r system.
The initial wave functions of the FC wave functions em-
ployed in Secs. III C and III D are ψ0

1s ≡ exp(−1.1r) and
ψ0

2p ≡ exp (−0.6r) Y10 (θ, φ) for the 1s and 2p states of a
hydrogen atom, respectively; ψ0

Harmonic ≡ exp(−0.6r2) for
the harmonic oscillator; and ψ0

V =r ≡ exp(−3.5r) for the
V = r system. The g factor was used for the Coulom-
bic system and is set to g = 1 + r. The exact energies
of those systems are, in atomic units, E(H(1s)) = −0.5,
E(H(2p)) = −0.125, E(harmonic) = 1.5, and E(V = r system)
= −1.855 757 081 489 238 478 416. . . (the maximum neg-
ative solution of Ai(21/3E) = 0, where Ai is Airy’s Ai
function25). The calculated energies have accuracy of more
than 20 digits (see Fig. 1). It should be noted that this is the
first study that solves the SE of the V = r system with the FC
method.

FIG. 1. The total energy (a.u.) of the FC wave function for the hydrogen
atom in the 1s and 2p states, the harmonic oscillator, and the V = r sys-
tem. The differences from the exact values are shown on a logarithm scale.
The exact values for these systems are, respectively, −0.5, −0.125, 1.5,
and −1.855 757 081 489 238 478 416. . . (the maximum negative solution of
Ai(21/3E) = 0), in a.u.

B. Coalescence values for two-particle systems

In order to examine how accurately the GCCs are satis-
fied by the wave function, we define the “nth order coales-
cence value” F for a two-particle system by

F
(n)
LM ≡

2μ
A∑

a=−1
C(a)f

(n−a−1)
LM − (n + 1) (n + 2 + 2L) f

(n+1)
LM

2μ
A∑

a=−1
C(a)f

(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM

− f
(n−1)
LM

f
(n)
LM

, (19)

when f
(n)
LM is nonzero, and by

F
(n)
LM ≡ 2μ

A∑
a=−1

C(a)f
(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM ,

(20)
when f

(n)
LM is equal to zero. If the employed wave function

satisfies the GCC, the coalescence value becomes zero; in-
versely, if the coalescence value becomes zero, then the wave
function satisfies the GCC.

C. Hydrogen atom

The hydrogen atom is the simplest Coulombic two-
particle system (μ = 1, A = −1, C(−1) = −1), and the ex-
act wave functions are known to be ψ1s = N00e−r and ψ2p

= N1M(1 − r / 2)e−r / 2Y1M(θ , φ) for the 1s and 2p states, re-
spectively, where NLM are the normalization factors. One can
confirm that any order of the coalescence values of these wave
functions are exactly zero, because the exact 1s wave function
gives f

(n)
00 = 2(−1)n

n! and f
(n)
LM = 0 when L �= 0, and the exact 2p

wave function gives f
(n)
1M = (−1)n+M

2
√

6
1

(2n)!! and f
(n)
LM = 0 when

L �= 1. Thus, the exact wave functions of these states satisfy
the GCC equations at any order.

Next, we examine the GCC with the FC wave functions.
Figure 2 shows the coalescence values of the FC wave func-
tions for the hydrogen atom in the 1s (L = 0) and 2p (L = 1)
states. Note that the 1s and 2p states have nonzero coalescence
values only for the L = 0 and L = 1 components, respectively.

FIG. 2. Coalescence values of the FC wave functions of the hydrogen atom
in the (a) 1s (L = 0) and (b) 2p (L = 1) states. “n” represents the order of the
coalescence value. In the 2p state, the zeroth-order coalescence value of the
zeroth-order FC wave function is minus infinity, and that of the fourth-order
FC wave function is −58.8.
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Any order of coalescence value of the low-order FC
wave functions is far from zero in both the 1s and 2p states.
However, as the wave function becomes exact, the coales-
cence values at any order converge to zero. For example,
the error of the total energy and the coalescence values for
n = 0–4 calculated with the first-order FC wave function
are ca. 3.1 × 10−5 a.u., 3.3 × 10−2, −2.0 × 10−2, −8.8
× 10−2, −2.0 × 10−1, and −4.2 × 10−1, respectively,
whereas those of the sixth-order wave function greatly de-
crease to ca. 1.0 × 10−15 a.u., −6.8 × 10−8, 1.2 × 10−6,
7.1 × 10−6, 2.8 × 10−5, and 9.0 × 10−5, respectively. It
is observed that the convergence speed of the low-order
(small n) coalescence values is faster than that of the high-
order (large n) coalescence values, and the convergence
speed of the total energy is faster than that of the zeroth-
order coalescence values. Thus, even a good wave func-
tion in the variational sense is not good enough from the
viewpoint of the GCCs. Generally speaking, in the varia-
tional method, the energy error is roughly the square of
the wave function error. Similarly, the convergence speed
of the first- and higher-order GCCs is much less than that
of the variational energy. These tendencies apply not only
to the hydrogen atom but also to other systems, as seen
below.

It is very interesting that the converged FC wave func-
tions automatically satisfy the GCC equations, even though
the parameters in the FC wave functions are determined using
completely different conditions, i.e., the variation principle.
This is one of the numeric proofs showing that the FC wave
function becomes exact at convergence.

D. Harmonic oscillator (V = r2/2) and the linear
potential (V = r) system

For the harmonic oscillator, we employ the potential
V = r2/2, which is expressed by C(−1) = C(0) = C(1)

= 0, C(2) = 1/2, μ = 1, and A = 2. In this case, the pGCC
equations (Eq. (11)) become

f
(n−2)
LM − (n + 2)(n + 3 + 2L)f (n+2)

LM

= −2Ôf
(n)
LM (n = −1, 0, 1, 2, . . .). (21)

Inserting n = −1 and n = 1 into Eq. (21) yields f
(1)
LM = 0

and f
(3)
LM = 2+L

3 Ôf
(1)
LM = 0, because we previously defined

f
(p)
lm ≡ 0 when p ≤ −1. If we insert n = 3, 5, 7, . . . suc-

cessively, we can easily derive that f
(n)
LM = 0 for odd n. Thus,

the coalescence values for the harmonic oscillator should be
given by Eq. (20) when n is odd; otherwise, Eq. (19) is em-
ployed.

The exact wave function of the harmonic oscillator in
the ground state (L = 0) is known to be ψ = N exp (− 1

2 r2).
Figure 3 shows the coalescence values of the FC wave func-
tions of the harmonic oscillator. As the wave function be-
comes exact, the coalescence values of any order converge
to zero similarly to the hydrogen atom case.

A system with a linear potential of V = r(C(−1) = C(0)

= 0, C(1) = 1, μ = 1, and A = 1), namely, a constant force
system, is unreal but we can derive its GCCs because the SE

FIG. 3. Coalescence values of the FC wave function of the harmonic oscil-
lator in the ground state (L = 0). “n” represents the order of the coalescence
value.

of such a system exists. In this system, the pGCC equations
become

2f
(n−1)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM

= −2Ôf
(n)
LM (n = −1, 0, 1, 2, . . .). (22)

Inserting n = −1 gives f
(1)
LM = 0, which means that we

should employ Eq. (20) as the first-order coalescence value
F

(1)
LM , and Eq. (19) as the other order coalescence values.

The wave function of this system in the L = 0 state is
expressed as

ψ ≡ r−1Ai (ar + b) . (23)

The bounded discrete solution that gives the lowest en-
ergy is realized with a ≡ 21/3 and b as the largest negative
solution of Ai(ab) = 0. Figure 4 shows the coalescence values
of the FC wave functions in this state. As the wave function
becomes exact, the coalescence values at any order converge
to zero such as in the cases of the hydrogen atom and the har-
monic oscillator.

In both systems, low-order coalescence values converge
quickly to zero, while high-order ones converge slowly. In
conclusion, the GCC equations for some two-particle systems
are correctly derived, and the GCCs indicate the accuracy of
the wave function.

FIG. 4. Coalescence values of the FC wave function of the V = r system in
the ground state (L = 0). “n” represents the order of the coalescence value.
The first-order coalescence values of the zeroth- and first-order FC wave
function are −45.8 and −15.2, respectively.
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IV. CONCLUSION

In this paper, we began by deriving the pGCCs that in-
clude an unknown term such as the total energy of the sys-
tem. Then, by omitting these unknown terms, we derived the
GCCs for two-particle systems. These GCCs are identified by
three integers, n, L, and M. The order of the GCCs, repre-
sented by n, is related to the number of differentiations of the
wave function. L and M represent the angular components of
the wave function. The zeroth-order (n = 0) and first-order
(n = 1) GCCs for the Coulombic system are just the Kato’s
and the Rassolov and Chipman’s cusp conditions, respec-
tively. The second- and higher-order GCCs are newly derived
in the present study. The GCCs can be applied not only to
Coulombic systems but also to any systems that have poten-
tials written in a power expansion form, such as a harmonic
oscillator and a V = r system. By applying the FC wave func-
tions for the hydrogen atom, harmonic oscillator, and V = r

system, we confirmed that our formulation of the GCCs is nu-
merically correct. We observed that even a good wave func-
tion in the variational sense is not good from the viewpoint of
the GCCs. Thus, the GCCs can be used to indicate the accu-
racy of a given wave function.
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APPENDIX: DETAILED DERIVATION OF THE
PRIMITIVE GENERALIZED COALESCENCE
CONDITION

We derive pGCCs (Eq. (11)) in this Appendix. The
derivation follows those in Pack and Byers-Brown’s and Ras-
solov and Chipman’s papers.2–4

The most general bounded solution of Eq. (9) can be writ-
ten in the form

ψ ≡
∞∑
l=0

l∑
m=−l

r lflm(r)Ylm (θ, φ), (A1)

where the dependence of G is buried in flm(r).
Substituting Eq. (A1) for Eq. (9), the SE reads

[
−∇2

r + 2μ

A∑
a=−1

C(a)ra + 2μÔ

]

×
[ ∞∑

l=0

l∑
m=−l

r lflm(r)Ylm (θ, φ)

]
= 0. (A2)

Note that∇2
r ≡ 2

r
∂
∂r

+ ∂2

∂r2 + 1
r2 


2 and 
2 operate only
on the angular part as 
2Ylm(θ , φ) = −l(l + 1)Ylm(θ , φ).

Operating Y ∗
LM (θ, φ) d� with arbitrary non-negative in-

tegers L and M (−|L| ≤ M ≤ |L|) on Eq. (A2) from the left
and integrating over the angles, we get the equation for the

radial part,

∞∑
l=0

l∑
m=−l

[
− 2

r

∂

∂r
− ∂2

∂r2
+ 2μ

l(l + 1)

r2

+ 2μ

A∑
a=−1

C(a)ra + 2μÔ

]
rlflm(r)δlLδmM = 0. (A3)

Equation (A3) is not an eigenvalue problem, but a
second-order differential linear equation in terms of flm(r)
with the regular singular point at r = 0. There must exist at
least one flm of the form

flm(r) ≡
∞∑

k=0

f
(k)
lm rk, (A4)

with f
(0)
lm �= 0, where each f

(k)
lm is a function of positions of

G, and are obtained by Eq. (5). For convenience, we define
f

(n)
LM ≡ 0 when n ≤ −1for all L and M.

Substituting

∂

∂r
flm(r) =

∞∑
k=0

kf
(k)
lm rk−1,

(A5)
∂2

∂r2
flm(r) =

∞∑
k=0

k (k − 1) f
(k)
lm rk−2,

Eqs. (5) and (A4) for (A3) leads to

∞∑
k=0

[
2μ

A∑
a=−1

C(a)rk+a−k (1 + k + 2L) rk−2 + 2μÔrk

]
f

(k)
LM

= 0. (A6)

Now, terms in Eq. (A6) are ordered by k (or f(k)). Let us
reorder and collect terms with the same power of r in Eq.
(A6). Then we get

∞∑
n=−1

[
2μ

A∑
a=−1

C(a)f
(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM

+ 2μÔf
(n)
LM

]
rn = 0. (A7)

Because the [] part in Eq. (A7) is independent of small r, the
[] part must be zero for all n in order that Eq. (A1) satisfies
the SE. Therefore, {flm(k)} must satisfy

2μ

A∑
a=−1

C(a)f
(n−a)
LM − (n + 2) (n + 3 + 2L) f

(n+2)
LM

= −2μÔf
(n)
LM for n = −1, 0, 1, 2, . . . , (A8)

with arbitrary n larger than −1. Equations (A8) are the
pGCCs, which are the same as Eq. (11) in the main text.
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