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We propose here fast antisymmetrization procedures for the partially correlated wave functions that
appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the cor-
relation diagram, referred to as dot analysis, combined with the determinant update technique based
on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations.
When the complement functions include only up to single-correlated terms, the order of computa-
tions is O(N3), which is the same as the non-correlated case. Similar acceleration is obtained for gen-
eral correlated functions as a result of dot analysis. This algorithm has been successfully used in our
laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equa-
tions of atoms and molecules. The proposed method is general and applicable to the sampling-type
methodology of other partially correlated wave functions like those in the quantum Monte Carlo and
modern Hylleraas-type methods. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4815821]

I. INTRODUCTION

The Schrödinger equation (SE), Hψ = Eψ , is the most
fundamental equation that governs most physical and chemi-
cal phenomena of atoms and molecules with high predictive
power.1 In addition, the exact wave function ψ must satisfy
the Pauli exclusion principle.2 The ultimate goal of quantum
chemistry is to set up a general method of solving the SE un-
der the condition of the Pauli principle.3 We assume in this
paper that our Hamiltonian H is spin-independent.

When the wave function is constructed only with one-
electron orbitals, the antisymmetrization is done using the
Slater determinant,3–5

φ(1, 2, . . . , N )

= A [o1(1) · o2(2) · · · · · oN (N )]

= 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

o1(1) o1(2) o1(3) · · · o1(N )

o2(1) o2(2) o2(3) · · · o2(N )

o3(1) o3(2) o3(3) · · · o3(N )

· · · · · · · · · · · · · · ·
oN (1) oN (2) oN (3) · · · oN (N )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1)

where φ represents an N-electron single configuration, A the
antisymmetrizer, and oi( j ) a one-electron function of elec-
tron j with spatial and spin coordinates. As is well-known, the
evaluation of the Slater determinant of Eq. (1) (the evaluation

a)Authors to whom correspondence should be addressed. Electronic
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of the value in a full coordinate space) is an N3/3 process.
We refer to the antisymmetrization algorithm using the Slater
determinant as the “Det algorithm.”

In 1929, Hylleraas6 found that the inclusion of the two-
electron explicitly correlated term, r12, in the helium wave
function described very efficiently the major part of the
electron-electron correlation: he calculated an accurate he-
lium wave function only three years after the publication of
the SE. Recently, a general method of solving the SE has been
proposed by one of the authors.7–22 The antisymmetrization
method proposed here has been developed to be useful for
this general method applied to many-electron systems. The
review articles7, 8 published recently will be helpful for un-
derstanding the background of the present paper. There, we
first construct the wave function space that is guaranteed to
include the exact wave function. We call such space to have
an exact structure. It is spanned by the “complement func-
tions” {φi} that are produced by the Hamiltonian itself of the
system by applying to some approximate wave function ψ0.
We referred to the function φi as complement function, since
it is an element of the complete functions that describes the
exact wave function as

ψn =
Mn∑
i

ciφi, (2)

where n stands for the order (times) of applications of the
Hamiltonian to the function ψ0. As n increases, ψn ap-
proaches the exact wave function. We refer to the wave func-
tion given by Eq. (2) as free complement (FC) wave function.
Since the electronic Hamiltonian contains only one- and two-
body operators, the complement function generally has the
form,

0021-9606/2013/139(4)/044112/16/$30.00 © 2013 AIP Publishing LLC139, 044112-1
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φi(1, 2, . . . , N ) = A[{fkl(k, l) · · · · · fmn(m, n)}

· {o1(1) · o2(2) · · · · · oN (N )} · χi], (3)

where fkl(k, l) (k, l = 1, 2, . . . , N) are the two-electron
functions composed of the inter-electron coordinates rkl, and
{fkl(k, l) · · · · · fmn(m, n)} are the products of such two-electron
functions. We note that three-, four-, and more-electron cor-
related functions, fijk(i, j, k), fijkl(i, j, k, l), etc., are not neces-
sary for the exact structure. χ i is a spin function and should
be the exact spin eigenfunction of the target spin state. The
unknown coefficients {ci} in Eq. (2) are determined by the
variational method14–17 or by the local Schrödinger equation
(LSE) method.7, 8, 15, 19 The latter method is an integration-
free method using a sampling procedure and therefore can
be applied to any atoms and molecules. Other parameters
in φi like orbital exponents may be optimized for a fast
convergence.

The antisymmetrization operator A in Eq. (3) generally
involves N! permutations of electronic coordinates. This an-
tisymmetrization procedure is referred to as “NF-algorithm.”
It is straightforward but not practical when N becomes larger
than 8 or 9. However, when φi does not include any two-
electron function fkl, the antisymmetrization can be done us-
ing the Det algorithm of Eq. (1) that includes only N3/3 pro-
cesses. This implies that depending on the types of the fij
terms included in the complement functions φi, the antisym-
metrization procedure could be simplified to the procedure in-
cluding from N3/3 to N! processes. In the ordinary FC calcu-
lations of chemical accuracy, the wave function contains only
partially correlated complement functions, including usually
from zero to three or four fij terms at most, so that much reduc-
tion of the operation counts should be possible in actual anti-
symmetrization procedure, which is the subject of the present
paper.

In this paper, we propose new efficient algorithms for
the antisymmetrization of the partially correlated wave func-
tions of Eq. (3) at a given set of coordinates (grid or sam-
pling points). In the free complement-local Schrödinger equa-
tion (FC-LSE) calculations of many-electron systems, the
evaluations of φi and Hφi at the sampling points are the
rate-determining steps where the antisymmetrization for each
N-electron sampling point is the most time-consuming pro-
cess. So, the efficiency of the antisymmetrization process
is of crucial importance for solving the SE of many elec-
tron atoms and molecules. The operation counts of the al-
gorithms proposed here are much faster than the N! (NF)
ones and are in the lower polynomial orders of N. In our
approach, we start our formulation with the Laplace expan-
sion of a Slater determinant. We distinguish correlated and
non-correlated electrons, apply Laplace expansion, and use
the NF-algorithm for the correlated-electron part and the Det
algorithm for the non-correlated part. We refer to this simple
algorithm as “Nm-algorithm.” Because of the simplicity, the
similar methods have been used in various situations of the
treatment of the antisymmetrization. In 1960s, using the sim-
ilar treatment with the Laplace expansion, Szasz et al. formu-
lated the efficient evaluations of the integrals for the Hartree-
Fock-based singe correlated wave functions.23–26 However,

their purpose was to give the formulations of matrix elements:
they did not generalize his formulations for more highly cor-
related cases and did not mention the possibility of any further
acceleration.

The goal of this paper is to show that much further ac-
celeration of the antisymmetrization is possible than the Nm-
algorithm, using the fact that the wave function is composed
of only one- and two-body terms. We have developed a fur-
ther efficient algorithm introducing the pre-analysis named
dot analysis of the correlation diagram and the determinant
update technique. This algorithm can drastically reduce the
computational cost to a lower polynomial order. We refer to
this algorithm as “Nk-algorithm.”

The focus of this paper is the fast antisymmetrization pro-
cedure of the FC-LSE wave function;15 however, the proposed
methods are general and applicable to the sampling-type
methodologies using other partially correlated wave functions
like those used in the quantum Monte Carlo method,27–30

the Hylleraas-CI (Hy-CI)31–34 and extended (exponential)
Hylleraas-CI (EHy-CI) wave functions,20 and other explicitly
correlated wave functions.31, 35

II. TREATMENT OF THE SPIN PART

The non-relativistic wave function is often written
using a linear combination of the antisymmetrized N-
electron configurations. A single spin-adapted configura-
tion is expressed by using a spatial function ϕ and a spin
function χas

φ = A [ϕχ ] , (4)

where χ is the spin eigenfunction of the spin state we want
to solve. The antisymmetrization operator A applies to both
space and spin coordinates. Here, we first summarize the
treatment of the spin part.

Generally, χ is expressed by a linear combination of the
primitive spin functions composed of the one-electron spin
functions α and β. For N-electron cases, χ can be expressed
as

χ =
s∑
i

ξi(1, 2, . . . , N ), (5)

where ξ i(1, 2, . . . , N) is a single primitive spin function.
The number of terms that construct a single spin eigen-
function is denoted by s. For instance, one of the dou-
blet spin eigenfunctions of a three-electron system with
sz = 1/2 is given by χ = [α(1)β(2)α(3) − β(1)α(2)α(3)]/

√
2,

and so s = 2.
Once a spin function is given, it is possible to reorganize

the linear combination of the spin part to that of the spatial
part due to the equivalence of electrons in the antisymmetriza-
tion operator. For example, for the above three-electron
doublet case, the total wave function can be rewritten as
φ = A[ϕ(1, 2, 3) · [α(1)β(2)α(3) − β(1)α(2)α(3)]/

√
2] = A

[[ϕ(3, 2, 1) − ϕ(1, 3, 2)]/
√

2 · α(1)α(2)β(3)]. For general
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case, using Eq. (5), our wave function is expressed by

φ = A [ϕχ ] = A

[
ϕ(1, 2, . . . , N) ·

{
s∑
i

ξi(1, 2, . . . , N)

}]

= A

[{
s∑
i

(−1)qi Qiϕ(1, 2, . . . , N)

}
· α(1) . . . α(Nα)β(Nα + 1) . . . β(N )

]

=
s∑
i

A[λ(i)(1, 2, . . . , N) · α(1) . . . α(Nα)β(Nα + 1) . . . β(N )]

= A [ζ (r1, r2, . . . , rN ) · ϑ(σ1, σ2, . . . , σN )] , (6)

where the numbers of α and β spin electrons are denoted as
Nα and Nβ (N = Nα + Nβ), respectively, and Qi (with parity
qi) is a corresponding permutation operator which transforms
ξ i to α(1)α(2). . . α(Nα)β(Nα + 1)β(Nα + 2). . . β(Nα + Nβ).
{ri} and {σ i} represent the spatial and spin coordinates, re-
spectively. Thus, the linear combination in the spin part was
transformed into the linear combination in the spatial part as

λ(i)(1, 2, . . . , N ) = (−1)qi Qiϕ(1, 2, . . . , N), (7)

ζ (r1, r2, . . . , rN ) =
s∑
i

λ(i)(1, 2, . . . , N ), (8)

and

ϑ(σ1, σ2, . . . , σN ) = α(1)α(2) . . . α(Nα)β(Nα + 1)

×β(Nα + 2) . . . β(Nα + Nβ). (9)

Since most of the physical operators of interest are inde-
pendent of spin, we consider an expectation value (or matrix
elements) of a spin-free operator for ordinary non-relativistic
wave functions. This has been discussed in the spin-free
formalism36 and also realized with the Young operator.37 For
a spin-free operator, we only need to consider the permuta-
tions of the spatial coordinates within the same spin particles,
i.e., within α or β, as given by

φ′ = AαAβ [ζ (r1, r2, . . . , rN )]

=
s∑
i

AαAβ[λ(i)(1, 2, . . . , N )], (10)

instead of Eq. (6), where Aα and Aβ are the antisymmetriza-
tion operators within α and β spin electrons. φ′ here does not
contain any spin coordinates, but the expectation value of a
spin-free operator is the same as that of φ of Eq. (6).

For a singlet N-electron system (N is even) with the
spin eigenfunction of the form: (αβ − βα)(αβ − βα)(αβ

− βα). . . , the value of s in Eq. (6) or Eq. (10) becomes 2N/2.
However, when two paired α and β electrons occupy the same
special orbital, i.e., oα = oβ (closed shell), the spin-related
exchange can be omitted and the computation is greatly sim-

plified as

A[oα(1)oβ(2) · (α(1)β(2) − β(1)α(2)) /
√

2]

= A[(oα(1)oβ(2) + oα(2)oβ(1))/
√

2 · α(1)β(2)]

=
√

2 · A[oα(1)oβ(2) · α(1)β(2)]. (11)

The double occupancy of orbitals simplifies notably the spin-
related exchanges.

Thus, the antisymmetrized wave function including both
spatial and spin coordinates can be replaced by a linear com-
bination of the antisymmetrized spatial functions. Therefore,
our problem is reduced to developing the antisymmetrization
method for each spatial function to each of the Aα and Aβ

operators in Eq. (10). We shall formulate this in Sec. III.

III. FORMULATION OF THE ANTISYMMETRIZATION

First, let us define a general partially correlated function
ϕ, which is going to be antisymmetrized. It corresponds only
to α or β spin electrons, as explained in Sec. II. Each function
is represented by a Hartree product of one-electron functions
with some correlated terms over two- or more-electron func-
tions as

ϕ(1, 2, . . . , N) = f (m)(1, 2, . . . , m)

· d (N−m)(m + 1,m + 2, . . . , N), (12)

where f (m) is the m-electron correlated term which is com-
posed of the product of two-electron functions fkl(k, l) and
the one-electron terms of the first m electrons as described in
Eq. (3), and d(N−m) is constructed by the product of the rest of
the one-electron terms,

d (N−m)(m + 1,m + 2, . . . , N )

= om+1(m + 1) · om+2(m + 2) · · · · · oN (N ), (13)

where oi( j ) is the one-electron function oi occupied by elec-
tron j. For convenience, the electrons are numbered, without
loss of generality, so that the first m electrons are correlated.
We assume m � N, but we do not assume the orthogonality
between the one-electron functions oi. Any type of orbitals
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arising from the valence bond or molecular orbital methods is
acceptable for the proposed formulation.

We formulate an efficient antisymmetrization procedure
for ϕ defined in Eq. (12). We introduce three algorithms, NF-,
Nm-, and Nk-algorithms, in which N stands for the num-
ber of electrons N, “F” for “factorial”, “m” for the number
of correlated electrons as defined in Eq. (12), and “k” for
a number smaller or equal to m, as explained in detail in
Subsections III A–III C.

A. NF-algorithm: Straightforward application
of N ! permutations

The NF-algorithm performs N! straightforward permuta-
tions as defined by the antisymmetrization operator,

φ(1, 2, . . . , N ) = A [ϕ(1, 2, . . . , N)]

= 1√
N !

N!∑
I=1

(−1)pI · PI [f (m)(1, 2, . . . , m)

· d (N−m)(m + 1,m + 2, . . . , N)]

= 1√
N !

N!∑
I=1

(−1)pI · f (m)
(
t

(I )
1 , t

(I )
2 , . . . , t (I )

m

)
· d (N−m)

(
t

(I )
m+1, t

(I )
m+2, . . . , t

(I )
N

)
, (14)

where φ is an antisymmetrized single N-electron function or
a complement function and PI is the Ith permutation operator
defined by

PI =
⎛⎝ 1 2 · · · N

t
(I )
1 t

(I )
2 · · · t

(I )
N

⎞⎠ , (15)

with the corresponding parity (−1)pI . This representation of
PI is a two-line notation for permutation; the first row lists the
elements before permutation and the second row describes the
list after the permutation. This NF-algorithm is computation-
ally too expensive and in practice it is limited at most to 6- or
7-electron cases. The computational time grows in an order of
O(N!).

B. Nm-algorithm: Antisymmetrization for a general
partially correlated function

For partially correlated functions, we can avoid the NF-
algorithm. This idea is based on the Laplace expansion of the
determinant. We use the Det algorithm for the Slater deter-
minant, as explained for Eq. (1), and the NF-algorithm for the
correlated electrons. For this purpose, we introduce the partial
permutation operator defined by

P
(m)
I =

⎛⎝ 1 2 · · · m

t
(I )
1 t

(I )
2 · · · t (I )

m

;
m + 1 m + 2 · · · N

t
(I )
m+1 t

(I )
m+2 · · · t

(I )
N

⎞⎠,

(16)

where the electrons t
(I )
1 , t

(I )
2 , . . . , t (I )

m are chosen from the N
electrons (combination NCm) and the NF-algorithm is adopted
for this chosen m electrons (m! permutations). Thus, the total
number of the P

(m)
I operators is NCm · m! = NPm. The per-

mutations for the other electrons, t
(I )
m+1, t

(I )
m+2, . . . , t

(I )
N , are not

considered in the P
(m)
I operator; instead, the Det algorithm is

used for the antisymmetrization of t
(I )
m+1, t

(I )
m+2, . . . , t

(I )
N of the

N-m dimension. So, the antisymmetrization of ϕ can be per-
formed by

φ(1, 2, . . . , N) = A [ϕ(1, 2, . . . , N )]

=
√

(N − m)!

N !

NPm∑
I=1

(−1)p
(m)
I · P

(m)
I [f (m)(1, 2, . . . , m) · D(N−m)(m + 1,m + 2, . . . , N)]

=
√

(N − m)!

N !

NPm∑
I=1

(−1)p
(m)
I · f (m)

(
t

(I )
1 , t

(I )
2 , . . . , t (I )

m

) · D(N−m)
(
t

(I )
m+1, t

(I )
m+2, . . . , t

(I )
N

)
, (17)

where (−1)p
(m)
I is the parity of P

(m)
I , and D(N − m) is the Slater determinant for the N-m electrons,

D(N−m)(m + 1,m + 2, . . . , N) = A(N−m)[d (N−m)(m + 1,m + 2, . . . , N)]

= 1√
(N − m)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

om+1(m + 1) om+1(m + 2) om+1(m + 3) · · · om+1(N )

om+2(m + 1) om+2(m + 2) om+2(m + 3) · · · om+2(N )

om+3(m + 1) om+3(m + 2) om+3(m + 3) · · · om+3(N )

· · · · · · · · · · · · · · ·
oN (m + 1) oN (m + 2) oN (m + 3) · · · oN (N )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (18)

where A(M) denotes the M-electron antisymmetrization opera-
tor. Note that in this algorithm, the explicit form of f (m) does
not play any role. f (m) is not only limited to the two-electron

inseparable correlated term fij(i, j), but also three-, four-, and
more-electron inseparable correlated terms (fijk(i, j, k), fijkl(i,
j, k, l), etc.) are acceptable. Such a multi-particle interaction
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might be important in nuclear physics although it may cause
very complicated situations.38 In the FC method for solv-
ing the electronic SE, the complement function includes only
two-electron separable correlated term, fij(i, j), etc.

This algorithm of antisymmetrization of a partially corre-
lated function is referred to as the “Nm-algorithm.” The num-
ber of operation steps in Eq. (17) is NPm, in which the calcu-
lation order is much less than N!, as long as m is not large. If
m � N, then the operation count is roughly

NPm · O((N − m)3) ⇒ O(Nm+3), (19)

i.e., polynomial order operations, where the determinant eval-
uation in the summation loop requires O(M3) operations with
the matrix dimension M.

C. Nk-algorithm: Further efficient algorithm
with the pre-analysis of the correlation diagram

1. Simple example with three-electron correlated
term f12(1, 2) f13(1, 3)

Although the Nm-algorithm is a general method, the cal-
culation order depends directly on m, i.e., O(Nm+3); therefore,
the cost of the calculation grows rapidly as m increases. How-
ever, if one carefully analyzes the structure of the correlated
function f (m), then it is possible to achieve faster accelera-
tions. To illustrate this new algorithm, let us take a simple
example of Eq. (12), where f (3)(1, 2, 3) = f12(1, 2) f13(1, 3)

(i.e., m = 3: three electrons are correlated). fij(i, j) repre-
sents a two-electron inseparable correlated term such as rij,
exp (−αrij), log (riA + rjA), etc., where rij is the radial distance
between electrons i and j, and riA is the distance between elec-
tron i and nucleus A. We are going to antisymmetrize ϕ, which
is represented by

ϕ(1, 2, . . . , N ) = f12(1, 2) · f13(1, 3) · o1(1) · o2(2) · o3(3)

· o4(4) · · · · · oN (N ). (20)

If the Nm-algorithm is employed, then the calculation or-
der becomes O(N6) because m = 3. This computational cost
is still high. However, in the actual case where f (3)(1, 2, 3)
= f12(1, 2) f13(1, 3), there is no explicit correlation between
electrons 2 and 3, which correlate only through electron 1.
Therefore, we may rewrite the one-electron functions o2(2)
and o3(3) by o′

2(2; 1∗) = f12(1∗, 2) · o2(2) as a function of
electron 2, and similarly, o′

3(3; 1∗) = f13(1∗, 3) · o3(3) as a
function of electron 3. In o′

2(2; 1∗) and o′
3(3; 1∗), electron

1 is considered to be just a parameter in the Slater determi-
nant (we denote such a parametric electron with an asterisk).
When the parametric coordinate of electron 1 is fixed (by its
sampling), then o′

2(2; 1∗), o′
3(3; 1∗), o4(4), . . . , oN(N) can be

treated as one-electron functions and the antisymmetrization
within electrons 2 to N can be performed through the Det al-
gorithm. The function of electron 1, o1(1∗), must be out of the
determinant. Thus, the total antisymmetrization can be per-
formed as

φ(1, 2, . . . , N ) = A [ϕ(1, 2, . . . , N )]

=
√

(N − 1)!

N !

N∑
I=1

(−1)p
(1)
I · P

(1)
I [o1(1∗) · A(N−1)[o′

2(2; 1∗) · o′
3(3; 1∗) · o4(4) · · · · · oN (N )]]

=
√

(N − 1)!

N !

N∑
I=1

(−1)p
(1)
I · P

(1)
I [o1(1∗) · D̃(N−1)(2′, 3′, 4, . . . , N ; 1∗)]

=
√

(N − 1)!

N !

N∑
I=1

(−1)p
(1)
I · o1

(
t

(I )∗
1

) · D̃(N−1)
(
t

(I )
2′ , t

(I )
3′ , t

(I )
4 , . . . , t

(I )
N ; t

(I )∗
1

)
. (21)

We call these parametric electrons “dot electrons,” (electron 1 was the dot electron in the above example) and call the analysis
for these dot electrons the “dot analysis.” The number of dot electrons is defined as d, with d = 1 in the above example.
In Eq. (21), A(N−1) is the antisymmetrization operator for N − 1 electrons, electron 2 to N, and it can be replaced by the
Slater determinant which contains electron 1 as a parameter through f12(1∗, 2) and f13(1∗, 3). The primes for electrons 2 and
3 in D̃(N−1)(2′, 3′, 4, . . . , N ; 1∗) represent that these electrons correlate through the dot electrons (electron 1). In the present
example, D̃(N−1) is represented by

D̃(N−1)(2′, 3′, 4, . . . , N ; 1∗)

= 1√
(N − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

o′
2(2; 1∗) o′

2(3; 1∗) o′
2(4; 1∗) · · · o′

2(N ; 1∗)

o′
3(2; 1∗) o′

3(3; 1∗) o′
3(4; 1∗) · · · o′

3(N ; 1∗)

o4(2) o4(3) o4(4) · · · o4(N )

· · · · · · · · · · · · · · ·
oN (2) oN (3) oN (4) · · · oN (N )

∣∣∣∣∣∣∣∣∣∣∣∣∣
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= 1√
(N − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

f12(1∗, 2) · o2(2) f12(1∗, 3) · o2(3) f12(1∗, 4) · o2(4) · · · f12(1∗, N ) · o2(N )

f13(1∗, 2) · o3(2) f13(1∗, 3) · o3(3) f13(1∗, 4) · o3(4) · · · f13(1∗, N ) · o3(N )

o4(2) o4(3) o4(4) · · · o4(N )

· · · · · · · · · · · · · · ·
oN (2) oN (3) oN (4) · · · oN (N )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (22)

The determinant D̃(N−1) contains the explicitly correlated
functions in their matrix elements, and we call such a gener-
alized Slater determinant the “correlated Slater determinant.”
Figure 1 displays an example in the case of N = 6, where the
summation in Eq. (21) includes six terms.

For comparison, the evaluation of the present example by
the Nm-algorithm is given by

φ(1, 2, . . . , N )

= A [ϕ(1, 2, . . . , N )]

=
√

(N − 3)!

N !

NP3∑
I=1

(−1)p
(3)
I · P

(3)
I [{f12(1, 2) · f13(1, 3)

· o1(1) · o2(2) · o3(3)} · D(N−3)(4, 5, . . . , N )]. (23)

The number of steps of the summation loop is much re-
duced, from NP3 of Eq. (17) (Nm-algorithm) to just N of
Eq. (21). Thus, by analyzing the correlated function, the rank
of the determinant can be enlarged also by introducing the
correlated Slater determinant. As a result, the operation steps
that are O(N6) in the Nm-algorithm can be reduced to O(N4)
in the new algorithm, which is a big acceleration when N is
large. We refer to this new algorithm (generalized later) as the
“Nk-algorithm” (“k” appears faster than “m” in alphabetical
order).

2. Nk-algorithm for the general case

Here, we formulate the Nk-algorithm for the general
case. The most significant part of the Nk-algorithm is the anal-
ysis of the correlated function f (m) in a pre-calculation step,
which we call the dot analysis to create the connection map
of the correlated electrons. The number of dot electrons, d,
should be determined as small as possible, since d directly
corresponds to the number of electrons outside the determi-
nant, and it directly determines the calculation order.

Our interest is to solve the electronic Schrödinger equa-
tion in which the Hamiltonian contains only one- and

two-body operators. As a result, the correlated function is
composed of only inseparable two-electron terms as given by

f (m)(1, 2, . . . , m)

=
m∏

i<j

fij (i, j )

= f12(1, 2) · f13(1, 3) · · · · · fm−1,m(m − 1,m), (24)

where we assume fji(j, i) = fij(i, j) without loss of generality.
Equation (24) is a general expression; usually it does not con-
tain all the pair functions within 1 to m electrons: many of
fij(i, j) (i, j ∈ 1, 2, . . . , m) should be unity (fij(i, j) = 1).

Figure 2 shows the correlation diagrams for all the cases
in which one to four inseparable two-electron terms fij(i, j) are
included in the correlated function. In Fig. 2, the lines repre-
sent the existence of non-unity fij(i, j) and the edges of the line
represent electrons. After drawing the diagram, the dot elec-
trons are simply determined according to the following rules:
(i) the electron(s) of either (or both) side(s) of the line must be
set as dot electron(s), (ii) the number of dot electrons should
be set as small as possible, and (iii) the electron numbering
should be reordered, for convenience, as the dot electrons lo-
cate in the first d electrons without loss of generality. In Fig. 2,
the dot electrons are given by the black filled circles in each
diagram. For instance, for the simplest case f (2) = f12(1, 2), d
= 1. Even for the case f (4) = f12(1, 2) f13(1, 3) f14(1, 4), where
three inseparable correlated terms are included and four elec-
trons are correlated, the number of dot electrons is unity,
d = 1. The computer algorithm of the dot analysis is very
simple, looking at the correlation diagram, the electron that
connects to the larger number of other electrons is assigned
to the dot electron. This process is performed sequentially so
that it satisfies the above rules (i) to (iii). In some cases of the
above processes, there may be redundancies in the selection
of the dot electron, but this is not a problem and any patterns
will give the same result with the same calculation order.

After the dot analysis, a general expression of the anti-
symmetrization of the Nk-algorithm can be written by

φ(1, 2, . . . , N ) = A [ϕ(1, 2, . . . , N)]

=
√

(N − d)!

N !

N Pd∑
I=1

(−1)p
(d)
I · P

(d)
I [η(d)(1∗, 2∗, . . . , d∗) · D̃(N−d)(d + 1, d + 2, . . . , N ; 1∗, 2∗, . . . , d∗)]

=
√

(N − d)!

N !

N Pd∑
I=1

(−1)p
(d)
I · η(d)

(
t

(I )∗
1 , t

(I )∗
2 , . . . , t

(I )∗
d

) · D̃(N−d)
(
t

(I )
d+1, t

(I )
d+2, . . . , t

(I )
N ; t

(I )∗
1 , t

(I )∗
2 , . . . , t

(I )∗
d

)
. (25)
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FIG. 1. The example of the Nk-algorithm for the case f (3)(1, 2, 3) = f12(1, 2) f13(1, 3) and N = 6. Here, the antisymmetrization can be performed with six
terms. In the second to sixth terms, the first two rows (surrounded by red lines) and the single column (surrounded by blue dashed lines) show the difference
from the first term.

FIG. 2. Correlation diagrams for all the cases in which one to four inseparable two-electron terms fij(i, j) are included in the correlated function. For each
diagram, the lines describe the non-unity two-electron terms, the edges of the line show electrons, and the circle points describe the dot electrons.
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Equation (25) looks similar to Eq. (17), but m and f (m) in Eq. (17) are replaced by d and η(d) in Eq. (25), respectively, and
the correlated Slater determinant D̃(N−d) is newly introduced instead of D(N−m). η(d) is a function of 1

∗
, 2

∗
, . . . , d

∗
and does

not contain any coordinates of d + 1, d + 2, . . . , N. Thus, η(d) consists of the one-electron functions oi(i
∗
) and the inseparable

correlated functions fij(i∗, j∗) which cannot be included in the determinant. It is generally written as

η(d)(1∗, 2∗, . . . , d∗) =
∏

{(i<j )≤d}
fij (i∗, j ∗) ·

d∏
i=1

oi(i
∗)

= [f12(1∗, 2∗) · f13(1∗, 3∗) · · · · · fd−1,d ((d − 1)∗, d∗)] · [o1(1∗) · o2(2∗) · · · · · od (d∗)], (26)

where the brace notation under the multiplication of
∏

means that (i, j) pairs of non-unity fij are included. The correlated Slater
determinant D̃(N−d) is a function of d + 1, d + 2, . . . , N and it realizes the permutations of the electrons d + 1, d + 2, . . . , N,
but it also contains the coordinates 1

∗
, 2

∗
, . . . , d

∗
as parameters through the correlated terms. D̃(N−d) is generally expressed by

D̃(N−d)(d + 1, d + 2, . . . , N ; 1∗, 2∗, . . . , d∗)

= 1√
(N − d)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

o′
d+1(d + 1; 1∗, 2∗, . . . , d∗) o′

d+1(d + 2; 1∗, 2∗, . . . , d∗) o′
d+1(d + 3; 1∗, 2∗, . . . , d∗) · · · o′

d+1(N ; 1∗, 2∗, . . . , d∗)

o′
d+2(d + 1; 1∗, 2∗, . . . , d∗) o′

d+2(d + 2; 1∗, 2∗, . . . , d∗) o′
d+2(d + 3; 1∗, 2∗, . . . , d∗) · · · o′

d+2(N ; 1∗, 2∗, . . . , d∗)

o′
d+3(d + 1; 1∗, 2∗, . . . , d∗) o′

d+3(d + 2; 1∗, 2∗, . . . , d∗) o′
d+3(d + 3; 1∗, 2∗, . . . , d∗) · · · o′

d+3(N ; 1∗, 2∗, . . . , d∗)

· · · · · · · · · · · · · · ·
o′

N (d + 1; 1∗, 2∗, . . . , d∗) o′
N (d + 2; 1∗, 2∗, . . . , d∗) o′

N (d + 3; 1∗, 2∗, . . . , d∗) · · · o′
N (N ; 1∗, 2∗, . . . , d∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(27)

where o′
i(j; 1∗, 2∗, . . . , d∗) is a function of j but includes

parametrically the coordinates of electrons 1
∗
, 2

∗
, . . . , d

∗
. It

is composed of the one-electron functions oi( j ) and the cor-
related terms containing electron j as expressed by

o′
i(j ; 1∗, 2∗, . . . , d∗) = oi(j ) ·

∏
{k=1,2,...,d}

fkj (k∗, j ), (28)

where i and j run over d + 1, d + 2, . . . , N. The brace notation
under the multiplication of

∏
again means that (k, j) pairs for

non-unity fkj are included.
The operation count for Eq. (25) is given by

NPd · O
(
(N − d)3/3

) ⇒ O(Nd+3), (29)

which is actually much faster than that of Eq. (17), because
the inequality d < m is always satisfied (except for the two
extreme cases where all electrons correlate or no electron
correlates).

The present Nk-algorithm are applied independently to
the Aα and Aβ for the α and β spin electrons in Eq. (10), and
the additional formulations for the functions across different
spins are given in Appendix A.

The physically important many-electron correlated func-
tions often appear, for instance, for d-shell electrons in
transition metals. In the Nm-algorithm, however, their anti-
symmetrizations require very high computational costs. As
an example, the chromium atom has the septet ground state
whose six electrons singly occupy the 4s orbital and all the
d-shell orbitals (dxy, dxz, dyz, dx2−y2 , and dz2 ). Their radial
distributions are almost similar so that their electrons have
chances to be located close to each other. Therefore, even a
six-electron correlated function, r12r13r14r15r16, where elec-
tron 1 interacts with all others, would be still important. For
the antisymmetrization of this function, whereas the Nm-
algorithm requires O(N9) due to m = 6, the Nk-algorithm just

requires O(N4) because d = 1, their calculation orders can
be further improved to O(N3) using the determinant update
method described in Sec. IV.

Up to here, we have considered the partially correlated
functions of the type of Eq. (3) or Eq. (12). One may also
consider the wave function that contains the totally symmetric
term, exp ( J ),27–30 where J consists of the totally symmetric
two-body terms with respect to the permutations of electrons.
Since the antisymmetrization operator commutes with the to-
tally symmetric term exp ( J ), such a wave function can be
represented by

φi(1, 2, . . . , N ) = exp(J ) · A[{f12(1, 2)

·f13(1, 3) · · · · · fN−1,N (N − 1, N )}
· {o1(1) · o2(2) · · · · · oN (N )} · χi].

(30)

Note that in Eq. (30), exp ( J ) does not cause any additional
difficulties with respect to the antisymmetrization. This form
may have a merit that the electron dynamical correlations are
included in average through exp ( J ), but we believe that the
different contributions from the different electron pairs are
important: they are described by the partially correlated terms.

IV. FURTHER ACCELERATION WITH THE
DETERMINANT UPDATE METHOD

In both of the Nm- and Nk-algorithms (Eqs. (17) and
(25)), the determinant evaluation on each element of the per-
mutation loop requires a computation of O(M3) (M is the ma-
trix dimension). However, since each determinant in the loop
varies only in a few rows and/or columns, the so-called de-
terminant update technique based on the Laplace expansion
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is efficient and available for both Nm- and Nk-algorithms if
m � N. In the quantum Monte Carlo method, this method is
often used in sampling point differences.27–30

The key equations of the determinant update method
are well known by the matrix determinant lemma and the
Sherman-Morrison formula,39 and their mathematical formu-
lations are given in Appendix B. With this method, it is not
necessary to evaluate independently each determinant in the
permutation loop, but the sequential updates of only a few
lines are necessary. Therefore, the calculation order for the
determinant evaluation part can be reduced from O(M3) to
O(M2). In addition, there is another interesting property in the
case where only several rows (or columns) change (but not
both rows and columns): the calculation order becomes O(M)
instead of O(M2), because the evaluation of the matrix-dense
vector product vT D−1 or D−1u is not necessary (see Eq. (B6)).
In the Nm-algorithm, this property is available because only
columns change for each element of the loop (see Eq. (17))
and it can reduce the order from O(M3) to O(M) for the de-
terminant evaluation. In the Nk-algorithm, unfortunately, this
feature is not available and the reduction is to O(M2), since
both rows and columns simultaneously change even for the
simplest case.

Figure 1 shows a concrete example of the Nk-algorithm
for the case f (3)(1, 2, 3) = f12(1, 2) f13(1, 3) with N = 6. The
antisymmetrization can be accomplished with six terms. In
the second to sixth terms, the first two rows (surrounded by
red lines) and single column (surrounded by the blue dashed
line) are different from those of the first term, and the other
matrix elements are the same as those of first term. The deter-
minant update method is efficiently applicable for evaluating
the differences of these three lines.

V. SUMMARY OF THE CALCULATION ORDERS

As discussed above, the orders of the calculation for
the Nm- and Nk-algorithms without the determinant update
method were O(Nm+3) and O(Nd+3), respectively. In the case
where N is sufficiently large compared to m, these can be re-
duced to O(Nm+1) and O(Nd+2), respectively, with the deter-
minant update method, except for the non-correlated case. We
call the latter cases (with the determinant update method) the
“NmD-algorithm” and “NkD-algorithm” (“D” means “deter-
minant update”), respectively. Table I summarizes the calcu-
lation orders for the Nm- and Nk-algorithms without and with
the determinant update method for each type of the correlated
function shown in Fig. 2, where one to four inseparable two-
electron terms fij(i, j) are included.

For the non-correlated function, the evaluation of the de-
terminant is O(N3). For both the NmD- and NkD-algorithms,
the function that includes a single f12(1, 2) correlated term
is again evaluated only with O(N3); this is the same as the
non-correlated case, even in the existence of the correlated
function. For this simplest case, which is obviously the case
for the most dominant correlated functions in the FC or Hy-
CI and EHy-CI wave functions, the present algorithms do not
increase the computational cost for the antisymmetrization.

For more complicated correlated functions, the calcula-
tion order of the Nk-algorithm increases less rapidly than that
for the Nm-algorithm, both without and with the determi-
nant update method. In any case, the calculation order of the
Nk-algorithm is always equal to or less than that for the Nm-
algorithm. Even for the case in which eight electrons are cor-
related with four fij terms (see the last line in Table I), the eval-
uation can be performed with a calculation order of O(N6) in

TABLE I. The calculation orders of the Nm- and Nk-algorithms without and with the determinant update method for each type of correlated function.

Nm-algorithm Nk-algorithm

Correlated functions

m (Number of
correlated
electrons)

Without
determinant

update: O(Nm+3)

With determinant
update: O(Nm+1)
(NmD-algorithm)

d (Number
of dot

electrons)

Without
determinant

update: O(Nd+3)

With determinant
update: O(Nd+2)
(NkD-algorithm)

No correlated function: 0 O(N3) . . . 0 O(N3) . . .

One fij:
f12(1, 2) 2 O(N5) O(N3) 1 O(N4) O(N3)

Two fij:
f12(1, 2) f13(1, 3) 3 O(N6) O(N4) 1 O(N4) O(N3)
f13(1, 3) f24(2, 4) 4 O(N7) O(N5) 2 O(N5) O(N4)

Three fij:
f12(1, 2) f13(1, 3) f14(1, 4) 4 O(N7) O(N5) 1 O(N4) O(N3)
f13(1, 3) f14(1, 4) f25(2, 5) 5 O(N8) O(N6) 2 O(N5) O(N4)
f12(1, 2) f13(1, 3) f23(2, 3) 3 O(N6) O(N4) 2 O(N5) O(N4)
f14(1, 4) f25(2, 5) f36(3, 6) 6 O(N9) O(N7) 3 O(N6) O(N5)

Four fij:
f12(1, 2) f13(1, 3) f14(1, 4) f15(1, 5) 5 O(N8) O(N6) 1 O(N4) O(N3)
f13(1, 3) f14(1, 4) f15(1, 5) f26(2, 6) 6 O(N9) O(N7) 2 O(N5) O(N4)
f13(1, 3) f14(1, 4) f25(2, 5) f26(2, 6) 6 O(N9) O(N7) 2 O(N5) O(N4)
f12(1, 2) f13(1, 3) f14(1, 4) f23(2, 3) 4 O(N7) O(N5) 2 O(N5) O(N4)
f12(1, 2) f13(1, 3) f24(2, 4) f34(3, 4) 4 O(N7) O(N5) 3 O(N6) O(N5)
f14(1, 4) f15(1, 5) f26(2, 6) f37(3, 7) 7 O(N10) O(N8) 3 O(N6) O(N5)
f15(1, 5) f26(2, 6) f37(3, 7) f48(4, 8) 8 O(N11) O(N9) 4 O(N7) O(N6)
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the NkD-algorithm. The correlated functions shown in Table I
or in Fig. 2 cover all the complement functions in the ordinary
FC wave function up to order = 4, which is a sufficient order
to obtain chemical accuracy.7, 8, 16 Moreover, the numbers of
the correlated functions with the worst calculation order of
O(N6) are actually quite limited. Thus, for ordinary FC calcu-
lations, the antisymmetrization has the computational cost of
lower polynomial orders.

VI. EVALUATION OF THE HAMILTONIAN
APPLIED TO φ

To solve the SE with the FC-LSE method, we have to
evaluate Hφ or its local energy form Hφ/φ at the sampling
point, where the local energy is more feasible in the sampling
method than for Hφ itself. Although the evaluation of the lo-
cal energy requires more computational effort than for φ, the
present antisymmetrization techniques can also be combined
with the evaluation of the local energy.

The Hamiltonian of the SE for atoms and molecules is
written as

H = K + V = −1

2

∑
κ

1

Mκ

∇2
κ +

∑
κ<λ

ZκZλ

rκλ

, (31)

where Mκ and Zκ are the mass (or the reduced mass) and the
charge, respectively, of the particle κ . The first and second
terms (K and V) represent the kinetic and potential opera-
tors, respectively. Equation (31) is a general expression not
only for electron coordinates but also for general fermions,
and it is also valid for non-Born-Oppenheimer systems.22 For
electrons, Mκ is unity in atomic units. Note that the potential
term can be easily evaluated by V φ/φ = V , since it is a scalar
operator.

Because Hamiltonian is totally symmetric, the antisym-
metrization operator commutes with it,

[H,A] = 0. (32)

Therefore, we have two choices to apply the Hamiltonian ei-
ther after or before the antisymmetrization. The former algo-
rithm is more complicated than the latter but it is straightfor-
ward to implement and can also be extended to nonsymmetric
operators besides Hamiltonian. The calculation of the latter
algorithm is faster than the former, especially for the com-
plement functions with small partial correlation number m
in Eq. (12).

The former algorithm is given in Appendix C and we
show here the simpler latter case. Since the Hamiltonian and
the antisymmetrization operator commute, Hφ is given by

Hφ = H [Aϕ] = A[Hϕ]

= A[H [f (m)(1, 2, . . . , m)

· d (N−m)(m + 1,m + 2, . . . , N )]]. (33)

We should note that the differential operator of the kinetic
operator does not increase the complexity of the correlation
diagram. The number of the expanded terms in Eq. (33) is
not large if m is comparably smaller than N. Therefore, the
calculation order is an additional O(N) due to the summation

part of
∑

κ ∇2
κ . If m is not large, this order should be smaller

than that in the former algorithm (Appendix C).
In the case where exp ( J ) (exp(J ) = ∑

i,j u(i, j )) exists,
Eq. (33) becomes

Hφ = H [Aϕ] = A [Hϕ]

= A[H [exp(J ) · f (m)(1, 2, . . . , m)

· d (N−m)(m + 1,m + 2, . . . , N )]]. (34)

This requires the differentiation,

∇κ

⎡⎣∑
i,j

u(i, j )

⎤⎦ =
∑

i

∇κu(i, κ), (35)

but the right hand term can be considered to be a one-electron
function of κ due to the total symmetry of u(i, κ) in terms of
i, and so it does not increase the complexity.

In the evaluations of φ and Hφ, it is obviously efficient
to save all the elements of the primitive one- and two-electron
functions and their derivatives into core memory, since they
are used repeatedly in the complement functions. These are

oi(k), ∇2
k oi(k), ∇koi(k) (36)

with i = 1, 2, . . . , M1 and k = 1, 2, . . . , N for the one-electron
functions, and

f(i)(j, k), ∇2
k f(i)(j, k), ∇kf(i)(j, k) (37)

with i = 1, 2, . . . , M2 and j, k = 1, 2, . . . , N for the two-
electron functions. Here, {oi} and {f(i)} represent the differ-
ent types of one- and two-electron functions, respectively, that
appear in all the complement functions in the FC wave func-
tion, and M1 and M2 are their numbers. The inner products
∇koi(k) · ∇kf( j )(k, l) and ∇kf(i)(k, l) · ∇kf( j )(k, m) are evaluated
with the third elements of Eqs. (36) and (37). The evaluations
of the terms in Eqs. (36) and (37) cost O(M1N) and O(M2N2),
respectively, and they are not dominant in the total computa-
tional cost.

VII. PERFORMANCE

Here, we examine the performance of the proposed
antisymmetrization procedures: the NF-algorithm, the Nm-
algorithm without the determinant update method, the Nm-
algorithm with the determinant update method (NmD-
algorithm), the Nk-algorithm without the determinant update
method, and the Nk-algorithm with the determinant update
method (NkD-algorithm). Figures 3 and 4 show the timing
results (relative central processing unit (CPU) times) of the
antisymmetrization with the test functions:

ϕ = f12(1, 2)f13(1, 3) · o1(1) · o2(2) · o3(3)

· o4(4) · · · · · oN (N ) (38)

and

ϕ = f13(1, 3)f24(2, 4) · o1(1) · o2(2) · o3(3)

· o4(4) · · · · · oN (N ), (39)

respectively. Equation (38) contains two correlated terms with
the single linked electron (electron 1), i.e., the case m = 3
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FIG. 3. Timing test for the antisymmetrization of Eq. (38) with the five dif-
ferent algorithms: NF-algorithm (black line), Nm-algorithm without the de-
terminant update method (light blue dashed line), NmD-algorithm (blue line),
Nk-algorithm without the determinant update method (orange dashed line),
and NkD-algorithm (red line). The relative CPU time (the time in the NF-
algorithm (N = 10) is set to unity) is shown for N.

and d = 1 (see Table I and Fig. 2). Equation (39) is for the

case m = 4 and d = 2. Here, oi(r) =
√

α3
i /π · exp(−αir) with

αi = 1 + 0.2(i − 1) and fij(r1, r2) = r12 were used. The
N-electron coordinates (sampling points) are randomly gen-
erated in (x, y, z) = [0, 1]. The test was performed on a HP
Z800 Workstation (Intel Xeon CPU and 48 GB core memory)
with the test program written using the Maple13 package,40

where the matrix evaluation library “LinearAlgebra” was used
to evaluate the determinant.

In Figs. 3 and 4, as easily noticed, the NF-algorithm is
completely unusable. For Eq. (38) (Fig. 3), the Nm-algorithm
without the determinant update method still requires a high
computational cost, O(N6), but the additional determinant
update method (the NmD-algorithm) can greatly reduce the
cost to O(N4). The Nk-algorithm without the determinant up-
date method also requires O(N4), which is the same as the
NmD-algorithm, but the pre-factor is favorable for the Nk-
algorithm. The NkD-algorithm is most efficient with O(N3),
so that even for N = 100–200, the required computational

FIG. 4. Timing test for the antisymmetrization of Eq. (39) with the five dif-
ferent algorithms: NF-algorithm (black line), Nm-algorithm without the de-
terminant update method (light blue dashed line), NmD-algorithm (blue line),
Nk-algorithm without the determinant update method (orange dashed line),
and NkD-algorithm (red line). The relative CPU time (the time in the NF-
algorithm (N = 10) is set to unity) is shown for N.

cost is quite small. The same situation also occurred for
Eq. (39) (Fig. 4). The computational costs for the above
five algorithms are O(N!), O(N7), O(N5), O(N5), and O(N4).
Therefore, the evaluation requires more time than the case of
Eq. (38).

In the actual applications to general atoms and molecules,
the functions of one fij and two fij in Table I, i.e., non-
correlated case, f12(1, 2), f12(1, 2) f13(1, 3) (Eq. (38)), and
f13(1, 3) f24(2, 4) (Eq. (39)), should dominantly determine the
accuracy of the wave function. In the ordinary FC wave func-
tion, they are generated by order = 2. As shown in the above
examinations, the NkD-algorithm requires the computational
costs of only O(N3) or O(N4) even for the correlated functions
and so it realizes the applications to highly accurate calcula-
tions of many-electron systems. Although more complicated
correlated functions are generated at higher orders of the FC
method, their contributions are smaller than those of the lower
order ones.

VIII. CONCLUDING REMARKS

We have proposed here new antisymmetrization proce-
dures for the partially correlated wave functions that appear
in the FC-LSE method and other methods for accurately solv-
ing the Schrödinger equation. The Nm-algorithm is based on
the simple concept of the Laplace expansion: all the corre-
lated electrons are placed outside of the Slater determinant.
Although the Nm-algorithm can avoid N! operations, the cal-
culation order is still high. Alternatively, the Nk-algorithm
can minimize the number of electrons that must be put out-
side of the determinant by performing the dot analysis and in-
troducing the correlated Slater determinant. This pre-analysis
of the correlation diagram is based on the fact that the elec-
tronic Hamiltonian and its exact FC wave function of the SE
are composed of only one- and two-body inseparable terms.
By combining the determinant update method with the Nk-
algorithm, the computational cost could be further reduced.
In the case where the wave function includes only up to sin-
gle correlated terms (actually this type should be most impor-
tant for describing the correlations in the FC wave function
and the Hy-CI and EHy-CI wave functions), the computation
could be performed with only O(N3) (the same order as the
non-correlated case), despite of the existence of the correlated
terms. Even with the case that includes four kinds of corre-
lated terms with eight correlated electrons, the computational
cost is just O(N6). The evaluations of the Hamiltonian-applied
wave function and the local energy have been discussed for
practical applications. The handling of the spin part of the
spin eigenfunction wave function has also been discussed.

The presented methods are general and applicable not
only to the FC wave functions we have actually applied for
some years, but also to any partially correlated wave functions
that appear in the explicitly correlated wave function theo-
ries aiming to get highly accurate wave functions. In addition
to the antisymmetrization of electrons, the present methods
are applicable to any fermion systems, for example, like pro-
ton nuclear systems in the non-Born-Oppenheimer calcula-
tions and the antisymmetrization of the relativistic Dirac wave
functions including explicitly correlated terms.21
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The presented antisymmetrization algorithms have actu-
ally been used in our laboratory for some years since 2008
in practical applications of the FC-LSE calculations of many
different atoms and molecules. The FC-LSE method has been
shown to be very accurate for solving the SE of many-electron
atoms and molecules.7, 8, 15, 19 In addition, the sampling pro-
cedures in the FC-LSE calculations are very easily address-
able to massively parallel computing and the performance has
been proved to be actually very high. These facts shed a good
light to the future development of the method of solving the
Schrödinger equation.7, 8 For example, this method has re-
cently been applied to 42-electron benzene molecule, showing
that these size of molecules are really accessible from compu-

tational points of view. The achieved results for general atoms
and molecules will be discussed in forthcoming papers.41 We
hope that the present method will be useful in the develop-
ment of highly accurate quantum chemistry in Schrödinger
and Dirac accuracies.

APPENDIX A: ADDITIONAL FORMULATIONS OF THE
Nk-ALGORITHM FOR THE α AND β SPIN ELECTRONS

In the spin-free formalism, the dot analysis in the Nk-
algorithm is performed independently for α and β spin elec-
trons, and each term of Eq. (10) is expressed as

AαAβ [λ(1, 2, . . . , N )]

=
√

(Nα − dα)! · (
Nβ − dβ

)
!

Nα!Nβ!

Nα Pdα∑
I=1

Nβ
Pdβ∑

J=1

(−1)p
(dα )
I (−1)p

(dβ )

J

·P (dα )
I

[
η(dα )

α (1∗, 2∗, . . . , d∗
α)

·D̃(Nα−dα )
α (dα + 1, dα + 2, . . . , Nα; 1∗, 2∗, . . . , d∗

α, (Nα + 1)∗, (Nα + 2)∗, . . . , (Nα + dβ)∗)
]

·P (dβ )
J

[
η

(dβ )
β ((Nα + 1)∗, (Nα + 2)∗, . . . , (Nα + dβ)∗)

·D̃(Nβ−dβ )
β (Nα + dβ + 1, Nα + dβ + 2, . . . , N ; 1∗, 2∗, . . . , d∗

α, (Nα + 1)∗, (Nα + 2)∗, . . . , (Nα + dβ)∗)
]

·P (dα )
I P

(dβ )
J

[
η

(dα,dβ )
α,β (1∗, 2∗, . . . , d∗

α, (Nα + 1)∗, (Nα + 2)∗, . . . , (Nα + dβ)∗)
]

=
√

(Nα − dα)! · (
Nβ − dβ

)
!

Nα!Nβ!

Nα Pdα∑
I=1

Nβ
Pdβ∑

J=1

(−1)p
(dα )
I (−1)p

(dβ )

J

·η(dα )
α

(
t

(I,J )∗
1 , t

(I,J )∗
2 , . . . , t

(I,J )∗
dα

) · η
(dβ )
β

(
t

(I,J )∗
Nα+1 , t

(I,J )∗
Nα+2 , . . . , t

(I,J )∗
Nα+dβ

)
·η(dα,dβ )

α,β

(
t

(I,J )∗
1 , t

(I,J )∗
2 , . . . , t

(I,J )∗
dα

, t
(I,J )∗
Nα+1 , t

(I,J )∗
Nα+2 , . . . , t

(I,J )
Nα+dβ

)
·D̃(Nα−dα )

α

(
t

(I,J )
dα+1, t

(I,J )
dα+2, . . . , t

(I,J )
Nα

; t
(I,J )∗
1 , t

(I,J )∗
2 , . . . , t

(I,J )∗
dα

, t
(I,J )∗
Nα+1 , t

(I,J )∗
Nα+2 , . . . , t

(I,J )
Nα+dβ

)
·D̃(Nβ−dβ )

β

(
t

(I,J )
Nα+dβ+1, t

(I,J )
Nα+dβ+2, . . . , t

(I,J )
N ; t

(I,J )∗
1 , t

(I,J )∗
2 , . . . , t

(I,J )∗
dα

, t
(I,J )∗
Nα+1 , t

(I,J )∗
Nα+2 , . . . , t

(I,J )
Nα+dβ

)
, (A1)

where the index i for λ(i) was neglected for simplicity. In
Eq. (A1), α electrons are assigned to 1, 2, . . . , Nα and β elec-
trons to Nα + 1, Nα + 2, . . . , N. The α dot electrons are lo-
cated in the first dα electrons of the α electrons, and the β dot
electrons are in the first dβ electrons in the β electrons. η(dα )

α

and η
(dβ )
β correspond to Eq. (26) and D̃(Nα−dα )

α and D̃
(Nβ−dβ )
β

correspond to Eq. (27), each for α or β spin, but they may
also include the other spin dot electron indices. The additional

η
(dα ,dβ )

α,β consists of the inseparable terms between the α and β

dot electrons, given by

η
(dα,dβ )
α,β (1∗, 2∗, . . . , d∗

α, (Nα + 1)∗,

(Nα + 2)∗, . . . , (Nα + dβ)∗)

=
dα∏
i=1

Nα+dβ∏
j=Nα+1

fij (i∗, j ∗), (A2)
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where some of the fij(i∗, j∗) (i, j < d) would be constant. The

matrix element in D̃(Nα−dα )
α and D̃

(Nβ−dβ )
β is given by

o′
i(j ; 1∗, 2∗, . . . , d∗

α, (Nα + 1)∗, (Nα + 2)∗, . . . , (Nα + dβ)∗)

= oi(j ) ·
∏

{k=1,2,...,dα}
fkj (k∗, j ) ·

∏
{k=Nα+1,...,Nα+dβ}

fkj (k∗, j ),

(A3)

where j = dα + 1, dα + 2, . . . , Nα , Nα + dβ + 1, Nα + dβ

+ 2, . . . , N and some of the fij(i∗, j) would also be constant.

APPENDIX B: FORMULATION OF THE DETERMINANT
UPDATE METHOD

The well-known matrix determinant lemma and the
Sherman-Morrison formula39 are given by

D′ = ∣∣D′∣∣ = ∣∣D + uvT
∣∣ = [

1 + vT D−1u
] |D| , (B1)

and

D′−1 = (D + uvT )−1 = D−1 − (D−1u)(vT D−1)

1 + vT D−1u

= D−1 − |D|
|D′| (D−1u)(vT D−1), (B2)

respectively, where the updated and original determinants are
defined as D′ and D, and their matrices are defined as D′ and
D, respectively. u and v are the vectors that determine the up-
dated components in the matrix. As shown in Eq. (B1), the
new determinant can be evaluated using the original determi-
nant and inverse matrix. The updated inverse matrix can be
obtained using Eq. (B2). If the unit vector u is given, in which
only the nth component is unity and the others are zero, then
the updated matrix in which only the nth row changes is ob-
tained by v. Similarly, if the unit vector v is given, in which
only the nth component is unity and the others are zero, then
the updated matrix in which the nth column changes is ob-
tained by u, i.e.,

u = (0 0 · · · 0 1 0 · · · 0)
T
,

v = ( v1 v2 · · · vN )T ,

⇒ uvT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

v1 v2 · · · vN

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B3)

and

u = ( u1 u2 · · · uN )T ,

v = (0 0 · · · 0 1 0 · · · 0)
T
,

⇒ uvT =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 u1 0 · · · 0

0 0 · · · 0 u2 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 uN 0 · · · 0

⎞⎟⎟⎟⎟⎠ .

(B4)

Sequentially applying Eqs. (B1)–(B4), the updated determi-
nant and inverse matrix that change multiple lines are ob-
tained.

With the present formulas, the updated determinant and
inverse matrix can be evaluated with a lower-order computa-
tion than the full O(M3) (M is the matrix dimension). In case
only one line needs to be updated, then either u or v is just
a sparse unit vector given in Eq. (B3) or Eq. (B4), and there-
fore the evaluation of vT D−1u appearing in Eq. (B1) requires
just O(M). However, if another line needs to be changed, then
the updated inverse matrix is necessary and it requires O(M2).
This is because, in Eq. (B2), either D−1u or vT D−1 requires
O(M), but the other requires O(M2) due to the matrix – dense
vector (v or u) product. As a result, the calculation order for
the determinant update (a few lines updated) can be generally
reduced from O(M3) to O(M2).

For convenience, we formulate a recursion formula based
on Eqs. (B1) and (B2) to evaluate the updated determinant that
is changed by the multiple n lines from the initial matrix D0.
The determinant we want to evaluate is given by

Dn = |Dn| = ∣∣D0 + u1vT
1 + u2vT

2 + · · · + unvT
n

∣∣ , (B5)

where Dn is the matrix of the determinant Dn that changes n
lines from D0. We also define

F (k, i, l) = vT
k D−1

i ul , (B6)

where k, l = 1,2, . . . , n. Applying Eqs. (B1) and (B2), the
following sequence can be obtained:

F (k, i, l) = F (k, i − 1, l) − Di−1

Di

·F (k, i − 1, i) · F (i, i − 1, l). (B7)

With this F, one can easily obtain the recursion formula:

Dn = [1 + F (n, n − 1, n)] Dn−1. (B8)

APPENDIX C: EVALUATION OF Hφ WITH THE
ALGORITHM APPLYING THE HAMILTONIAN
AFTER THE ANTISYMMETRIZATION

Since the evaluation of the potential part is trivial, we
only need to formulate the kinetic part, i.e., the ∇2

κ operation.
In the kinetic operator, ∇2

κ is symmetrically summed over
electron κ , so that we may reorder the electron numbering as∑

κ

∇2
t

(I )
κ

=
∑

κ

∇2
κ . (C1)

In the Nm- and Nk-algorithms of Eqs. (17) and (25), respec-
tively, we can therefore apply ∇2

t
(I )
κ

to each term in the loop

after P I is applied. Herein we omit the index I to simplify the
expression. Fortunately, ∇2

tκ
does not increase the complexity

of the correlation diagram, since it is a one-electron operator.
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In the Nk-algorithm, the local energy form of each term in the summation loop of Eq. (25) is given by

∇2
tκ

[η(d) · D̃(N−d)]

η(d) · D̃(N−d)
= ∇2

tκ
η(d)(t∗1 , t∗2 , . . . , t∗d )

η(d)(t∗1 , t∗2 , . . . , t∗d )
+ ∇2

tκ
D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )

D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )

+ 2
[∇tκ η

(d)(t∗1 , t∗2 , . . . , t∗d )] · [∇tκ D̃
(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )]

η(d)(t∗1 , t∗2 , . . . , t∗d ) · D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )
. (C2)

In the case when tκ is not a dot electron (i.e., tκ ∈ {td + 1, td + 2, . . . , tN}), only the second term remains in Eq. (C2),
∇2

tκ
D̃(N−d)/D̃(N−d), because η(d) does not include the electron tκ . It is represented by

∇2
tκ
D̃(N−d)

D̃(N−d)
= 1

D̃(N−d)

1√
(N − d)!

∣∣∣∣∣∣∣∣∣∣∣∣

o′
d+1(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+1(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · ∇2
tκ
o′

d+1(tκ ; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+1(tN ; t∗1 , t∗2 , . . . , t∗d )

o′
d+2(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+2(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · ∇2
tκ
o′

d+2(tκ ; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+2(tN ; t∗1 , t∗2 , . . . , t∗d )

· · · · · · · · · · · · · · · · · ·
o′

N (td+1; t∗1 , t∗2 , . . . , t∗d ) o′
N (td+2; t∗1 , t∗2 , . . . , t∗d ) · · · ∇2

tκ
o′

N (tκ ; t∗1 , t∗2 , . . . , t∗d ) · · · o′
N (tN ; t∗1 , t∗2 , . . . , t∗d )

∣∣∣∣∣∣∣∣∣∣∣∣
,

(C3)
where it can be noticed that ∇2

tκ
changes only the single column from the original matrix. The determinant update method can

be used again here to evaluate the right hand side of Eq. (C3). Therefore, the calculation requires just an additional O(N). In
Eq. (C3), the local energy form of ∇2

tκ
o′

i(tκ ; t∗1 , t∗2 , . . . , t∗d ) (i = d + 1, d + 2, . . . , N) is evaluated by

∇2
tκ

[o′
i(tκ ; t∗1 , t∗2 , . . . , t∗d )]

o′
i(tκ ; t∗1 , t∗2 , . . . , t∗d )

= ∇2
tκ
oi(tκ )

oi(tκ )
+

d∑
j=1

∇2
tκ
fjκ (t∗j , tκ )

fjκ (t∗j , tκ )

+ 2
d∑

j=1

∇tκ oi(tκ ) · ∇tκ fjκ (t∗j , tκ )

oi(tκ )fjκ (t∗j , tκ )
+ 2

d∑
j<l

∇tκ fjκ (t∗j , tκ ) · ∇tκ flκ (t∗l , tκ )

fjκ (t∗j , tκ )flκ (t∗l , tκ )
, (C4)

where the (i, j) pairs for the constant fij are neglected in the loop.
In the case when tκ is a dot electron, i.e., tκ ∈ {t1, t2, . . . , td}, then the electron tκ is included in both η(d) and D̃(N−d), and

all three terms in Eq. (C2) are retained. The first term of Eq. (C2) is the differentiation of η(d)(t∗1 , t∗2 , . . . , t∗d ), which involves
one-electron and some correlated two-electron functions of dot electrons. Therefore, this term is expressed by

∇2
tκ

[η(d)(t∗1 , t∗2 , . . . , t∗d )]

η(d)(t∗1 , t∗2 , . . . , t∗d )
=

d∑
i=1

∇2
tκ
fiκ (t∗i , t∗κ )

fiκ (t∗i , t∗κ )
+

d∑
i=1

∇2
tκ
oi(t∗κ )

oi(t∗κ )

+2
d∑

i=1

∇tκ fiκ (t∗i , t∗κ ) · ∇tκ oi(t∗κ )

fiκ (t∗i , t∗κ )oi(t∗κ )
+ 2

d∑
i<j

∇tκ fiκ (t∗i , t∗κ ) · ∇tκ fjκ (t∗j , t∗κ )

fiκ (t∗i , t∗κ )fjκ (t∗j , t∗κ )
. (C5)

The second term of Eq. (C2) appears to be similar to Eq. (C3), but ∇2
tκ

is applied to the dot electron in the determinant and
therefore ∇2

tκ
D̃(N−d) changes some rows (not columns) that include tκ . It is given by

∇2
tκ

[D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )]

D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )

= 1

D̃(N−d)

1√
(N − d)!

N−d∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

o′
d+1(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+1(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+1(tN ; t∗1 , t∗2 , . . . , t∗d )

o′
d+2(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+2(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+2(tN ; t∗1 , t∗2 , . . . , t∗d )

· · · · · · · · · · · ·

∇2
tκ
o′

d+i (td+1; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d ) ∇2
tκ
o′

d+i (td+2; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d ) · · · ∇2
tκ
o′

d+i (tN ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )

· · · · · · · · · · · ·

o′
N (td+1; t∗1 , t∗2 , . . . , t∗d ) o′

N (td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
N (tN ; t∗1 , t∗2 , . . . , t∗d )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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+ 1

D̃(N−d)

2√
(N − d)!

N−d∑
i<j

∑
ξ=x,y,z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

o′
d+1(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+1(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+1(tN ; t∗1 , t∗2 , . . . , t∗d )

o′
d+2(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+2(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+2(tN ; t∗1 , t∗2 , . . . , t∗d )

· · · · · · · · · · · ·
∂

∂ξtκ
[o′

d+i (td+1; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )] ∂
∂ξtκ

[o′
d+i (td+2; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )] · · · ∂

∂ξtκ
[o′

d+i (tN ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )]

· · · · · · · · · · · ·
∂

∂ξtκ
[o′

d+j (td+1; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )] ∂
∂ξtκ

[o′
d+j (td+2; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )] · · · ∂

∂ξtκ
[o′

d+j (tN ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )]

· · · · · · · · · · · ·
o′

N (td+1; t∗1 , t∗2 , . . . , t∗d ) o′
N (td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′

N (tN ; t∗1 , t∗2 , . . . , t∗d )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(C6)

where each term for i and j runs over the case where o′
d + i (or o′

d + j) includes the electron t∗κ in o′
d+i(td+1; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d ).

Each term in Eq. (C6) can also be evaluated by the determinant update method, since only one or two lines are changed from
the original determinant. By the additional theorem of the matrix determinant lemma of Eqs. (B5)–(B8) in Appendix B, the
calculation can also be performed with the additional O(N). The differentiations of o′

d+i in Eq. (C6) (its local energy form) are
evaluated by

∇2
tκ

[o′
d+i(tl ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )]

o′
d+i(tl ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )

= ∇2
tκ
fκ,l(t∗κ , tl)

fκ,l(t∗κ , tl)
(C7)

and

∇tκ [o′
d+i(tl ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )]

o′
d+i(tl ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )

= ∇tκ fκ,l(t∗κ , tl)

fκ,l(t∗κ , tl)
(C8)

for Laplacian and nabla (first derivative), respectively, where i, l = d + 1, d + 2, . . . , N − d. For the third term of Eq. (C2), we
only have to evaluate the next two vectors of the first derivatives:

∇tκ [η(d)(t∗1 , t∗2 , . . . , t∗d )]

η(d)(t∗1 , t∗2 , . . . , t∗d )
=

d∑
i=1

∇tκ fi,κ (t∗i , t∗κ )

fi,κ (t∗i , t∗κ )
+

d∑
i=1

∇tκ oi(t∗κ )

oi(t∗κ )
(C9)

and

∇tκ [D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )]

D̃(N−d)(td+1, td+2, . . . , tN ; t∗1 , t∗2 , . . . , t∗d )

= 1

D(N−d)

1√
(N − d)!

N−d∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

o′
d+1(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+1(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+1(tN ; t∗1 , t∗2 , . . . , t∗d )

o′
d+2(td+1; t∗1 , t∗2 , . . . , t∗d ) o′

d+2(td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′
d+2(tN ; t∗1 , t∗2 , . . . , t∗d )

· · · · · · · · · · · ·
∇tκ [o′

d+i (td+1; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )] ∇tκ [o′
d+i (td+2; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )] · · · ∇tκ [o′

d+i (tN ; t∗1 , t∗2 , . . . , t∗κ , . . . , t∗d )]

· · · · · · · · · · · ·
o′

N (td+1; t∗1 , t∗2 , . . . , t∗d ) o′
N (td+2; t∗1 , t∗2 , . . . , t∗d ) · · · o′

N (tN ; t∗1 , t∗2 , . . . , t∗d )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(C10)

which are evaluated similarly to the Laplacian cases of Eqs. (C5) and (C6), respectively. With these first derivatives, the third
term is evaluated by the inner products for the x, y, and z coordinates.

In all cases of Eq. (C2), if N is sufficiently larger than
d, then the determinant update method is applicable and effi-
cient, with each term requiring only O(N).

Finally, we note the case when exp ( J ) exists in Eq. (C2),
where J is a totally symmetric operator with respect to the
electron permutations. In this case, Eq. (C2) becomes

∇2
tκ

[eJ · η(d) · D̃(N−d)]

eJ · η(d) · D̃(N−d)

= ∇2
tκ
η(d)

η(d)
+ ∇2

tκ
D̃(N−d)

D̃(N−d)
+ 2

∇tκ η
(d) · ∇tκ D̃

(N−d)

η(d)D̃(N−d)

+ ∇2
tκ
eJ

eJ
+ 2

∇tκ e
J · ∇tκ D̃

(N−d)

eJ D̃(N−d)
+ 2

∇tκ e
J · ∇tκ η

(d)

eJ η(d)
,

(C11)

where the first three terms are the same as those in Eq. (C2).
The latter three terms are also easily handled after performing
the analytic differentiations of exp ( J ).
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