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Although the concept of a potential energy curve (PEC) originates from the outgrowth of the Born-
Oppenheimer (BO) approximation, we propose the application of analysis methods for the physi-
cal PEC with non-Born-Oppenheimer (non-BO) wave functions. A numerical examination was per-
formed with the highly accurate non-BO vibronic wave functions of hydrogen molecular ion, which
were obtained in our previous studies with the free complement method. The reduced density func-
tion integrated over the electron coordinates plays an important role in understanding nuclear motion
dynamics, since it corresponds to the wave function density of the vibrational and rotational mo-
tions. The maximum positions of this density indicate the high existence probability of nuclei and
can be considered as a discrete representation of the PEC. Whereas an ordinary PEC with the BO
approximation is obtained as a numeric curve after multiple electronic state calculations at fixed nu-
clear coordinates, we propose a new analytical expression of the PEC from a non-BO wave function.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818161]

I. INTRODUCTION

The potential energy curve (PEC) plays an important role
in understanding chemical reactions and it is a corollary of
the Born-Oppenheimer (BO) approximation at fixed nuclear
coordinates.1 In actual molecular calculations on the BO ap-
proximation, however, the PEC is usually described as an ac-
cumulation of numerical discrete points which are evaluated
by solving the electronic Schrödinger equation at fixed nu-
clear coordinates. Some analytical fitting functions2–5 or nu-
merical procedures, such as the discrete variable representa-
tion method,6–8 are required to proceed to a vibrational and/or
rotational mode analysis. On the other hand, the non-Born-
Oppenheimer (non-BO) or non-adiabatic wave functions in-
clude the coupled motion effects of every particle and can
be considered to be the limit of nonrelativistic quantum me-
chanics. Compared to ordinary electronic state calculations
on the BO approximation, however, the fully non-BO calcu-
lations are infrequently performed due to the difficulties of
their computation and analysis. Their use has especially been
avoided for understanding molecular reaction dynamics, as
they are considered to possibly destroy an important feature
typified by the PEC. Thus, novel analysis methods of the non-
BO wave functions are required to extract important physical
properties related to the PEC.

In a series of articles,9, 10 we performed highly accu-
rate non-BO calculations of hydrogen molecular ions for
the ground and electronic, vibrational, and rotational excited
states with the free complement (FC) method.11–20 One of
the present authors proposed the FC method to accurately
solve the Schrödinger equation of atoms and molecules. A

a)Authors to whom correspondence should be addressed. Electronic
addresses: h.nakashima@qcri.or.jp and h.nakatsuji@qcri.or.jp. Telephone:
+81-75-634-3211. Fax: +81-75-634-3211.

significant feature of this method is that the wave function
is automatically constructed from the system’s Hamiltonian.
Therefore, it is applicable not only to the Schrödinger equa-
tion on the BO approximation but also to the relativistic Dirac
equation,16 and it can be extended to non-BO calculations
since each Hamiltonian takes care of its appropriate wave
functions.9, 10

In the first paper of this series,9 very accurate non-BO
wave functions of the ground and lower vibrational excited
states for H2

+ and its isotopomers (D2
+, T2

+, HD+, HT+,
and DT+) were obtained with the correct energies with up to
more than 30 digits. That provides numeric proof that the FC
method is applicable to the non-BO system and guaranteed
to converge to the exact solutions without any theoretical dif-
ficulty. In our second paper,10 we extended these highly ac-
curate calculations to the electronic, highly vibrational, and
highly rotational (angular momentum) excited states. There
have been few reports of these in the literature especially for
the electronic and highly rotational excited states, even in the
simplest H2

+ system. The precise theoretical spectra includ-
ing nuclei in motion are valuable for the studies of astronomy
observations and cryogenic science, where various quantum
mechanical effects clearly appear.21–36

Most quantum chemists believe that the non-BO calcula-
tion is difficult. However, using the above important feature
of the FC method, the non-BO computation would be made
much easier in some sense than the PEC analysis on the BO
approximation. This latter case rather has a high computa-
tional cost for determining various molecular properties, such
as the energy minimum structure, transition state, and vibra-
tional frequency.

In the present study, we attempt to obtain a result from
the analysis of physical properties related to the PEC using the
highly accurate non-BO vibronic wave functions of hydrogen
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molecular ion. It is natural to imagine that the reduced den-
sity function integrated over the electron coordinates plays an
important role in the present problem because the remaining
coordinates consist of the nuclear coordinates. Several nota-
tions for the analysis can be defined for the non-BO PEC; for
example, Hunter and Wilson provided their own definitions
of the non-adiabatic PECs.37–40 Their PEC definitions, how-
ever, contained the molecular or pseudo-electronic Hamilto-
nian and the formulations are difficult. Here, we propose an
alternative definition of the non-BO PEC using the property of
the reduced density function. This is different from Hunter’s
and Wilson’s definitions, and our definition of the PEC is
rather straightforwardly obtained based on the Schrödinger
equation of the nuclear motions.

The present paper is organized as follows. The theoreti-
cal formulations for the analysis methods of the non-BO PEC
are provided in Sec. II. For the reference, Sec. III provides the
highly accurate PECs of hydrogen molecular ion on the BO
approximation, where the FC method is used again. Numeri-
cal examinations of the non-BO PECs of hydrogen molecular
ion with the highly accurate non-BO wave functions are given
in Sec. IV. We present concluding remarks in Sec. V.

II. THEORY: NON-BORN-OPPENHEIMER POTENTIAL
ENERGY CURVE

A. Reduced density function with integration over
the electron coordinates

Principally in the non-BO calculation, the electronic and
nuclear motions are coupled together and their coordinates
are not separable. After obtaining the accurate non-BO wave
functions, the reduced density function with integration over
the electron coordinates is a physical quantity related to the
nuclear motion dynamics corresponding to the internal vi-
brational and/or rotational motions. The wave function of the
simplest hydrogen molecular ion with angular momentum S
is represented by the internal radial coordinates r1, r2, and R,
where r1 and r2 are the electron-nucleus distances and R is the
nucleus-nucleus distance.9, 10 The reduced density function of
the S sates of hydrogen molecular ion, therefore, is given by9

f (R) =
∫

dτ ′
R · ψ(r1, r2, R)∗ψ(r1, r2, R), (1)

where ψ(r1, r2, R) is a normalized S-symmetry non-BO wave
function and dτ ′

R is defined as the integration over the elec-
tron coordinates. The density f (R) is a function of R and cor-
responds to the density of the vibrational motion (due to the
S symmetry), where f (R) spontaneously contains the anhar-
monicity and non-BO effects originating from the much faster
electron motion. Therefore, f (R) becomes nonsymmetric to
the equilibrium position, especially for the highly vibrational
levels due to their large anharmonicity close to the dissocia-
tion. The regions with large f (R) amplitude indicate the high
existence probabilities of nuclei. The left and right maximum
positions to the equilibrium, therefore, can be considered to be
discrete representations corresponding to the PEC, and they
should be used as one of the measurements of the PEC from
the non-BO wave functions.

B. Analytical potential energy curve from the non-BO
wave function

For the BO approximation, we first need to evaluate the
electronic wave functions at various fixed nuclear coordinates,
and then obtain a numerical PEC composed of the electronic
total energies. The vibrational analysis which follows the PEC
requires some analytical fitting or numerical procedures.2–8

Even in this manner, we cannot evaluate any non-BO effect
coming from the negligible coupling between the electrons
and nuclei motions. In contrast, with the non-BO case, we
first obtain the physical reduced density function, defined in
Eq. (1), including the anharmonicity and non-BO effects. At
that stage we still do not have a PEC. However, by solving
an inverse problem to determine an unknown potential func-
tion, V (R), it is possible to obtain an analytical function cor-
responding to the PEC.

For the S-symmetry state of a diatomic molecule, if one
assumes the vibrational wave function ϕ(R) of the nuclear co-
ordinate R, the Schrödinger equation of the nuclear motion
can be given by

[
− 1

2μ

d2

dR2
+ V (R)

]
ϕ(R) = Eϕ(R), (2)

where μ is the effective mass of two nuclei, V (R) is a poten-
tial energy function that remains to be determined, and ϕ(R)
and E are the vibrational wave function and the corresponding
energy eigenvalue, respectively. In the non-BO case, we first
obtain ϕ(R) and E by taking the root square of the reduced
density function f (R), given by

ϕ(R) =
√

f (R). (3)

Note that a phase factor can be ignored since it is canceled
by the left and right hand sides in Eq. (2). Therefore, if we
modify Eq. (2), the unknown potential energy function can be
given by

V (R) = 1

2μ

d2ϕ(R)

dR2

1

ϕ(R)
+ E, (4)

where the energy eigenvalue and corresponding eigenfunc-
tion obtained in the non-BO calculations can be used as E and
ϕ(R), respectively. Since ϕ(R) is an analytical function, V (R)
is also represented as an analytical function. A single non-BO
state can describe V (R) for the whole range of R, whereas the
PEC on the BO approximation is just expressed by a numer-
ical curve and a lot of calculations at various coordinates R
are required. Equation (4) only contains the differential opera-
tors with respect to the nuclear coordinates (the differentiation
of ϕ(R) is always possible), and there is no further integra-
tion with respect to the Hamiltonian of the electronic coordi-
nates since the integration over those coordinates has already
occurred.

III. BORN-OPPENHEIMER POTENTIAL ENERGY
CURVES OF HYDROGEN MOLECULAR ION

It is worthwhile to draw the PECs on the BO approxima-
tion to make a comparable reference with the non-BO PECs
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TABLE I. The equilibrium distances and their total energies of the PECs on the BO approximation with the FC wave functions (n = 14, Mn = 480) and the
averaged non-BO PECs for the electronic ground 1s σ g and excited 3d σ g states.

Equilibrium distance: Re (a.u.) Energy (a.u.)

Electronic ground state: 1sσ g

BO PEC 1.997 193 319 969 992 9 − 0.602 634 619 106 539 869 378
Ref. 41 1.997 193 320 − 0.602 634 619 107
μe × E(BO)a − 0.602 306 592 683
Non-BO PEC: V (R) 1.998 181 149 − 0.602 384 343 986

Electronic excited state: 3dσ g

BO PEC 8.834 164 503 179 200 609 421 533 521 − 0.175 049 035 895 464 389 091 719 403 786 087 150
μe × E(BO)a − 0.174 953 753 103
Non-BO PEC: V (R) 8.838 382 428 − 0.174 956 573 837

aThe energy including the effective mass effect, where μe is the effective mass of nucleus and electron.

later discussed. In our previous works, we already presented
the accurate numerical PECs of hydrogen molecular ion on
the BO approximation with the FC method.10, 19 Here, we fur-
ther update the accuracies of the PECs with the higher order
FC wave functions. We employed the same initial and g func-
tions of the FC method for σ g symmetry as given in our sec-
ond paper of this series.10 The calculations were performed
with n = 14 and Mn = 480, n being the order of the FC method
and Mn being the number of complement functions, which are
much highly accurate than the previous one: n = 6 and Mn

= 112 in Ref. 10. The PECs of the three electronic states,
ground and two excited states assigned to the 1sσ g, 2s σ g, and
3d σ g states, were calculated and shown in Fig. 1. The inter-
system crossing appears between the 2s σ g and 3d σ g states
around R = 4.0 a.u. and the PEC of 2s σ g becomes dissocia-
tive but that of 3d σ g has a minimum around R = 8.8 a.u.

We also investigated the equilibrium distances Re

(energy minimum positions) and their total energies for the
electronic ground 1s σ g and excited 3d σ g states. For the
1s σ g state, Re = 2.0 a.u. is often employed in the litera-
tures of hydrogen molecular ion. The calculated energy at
R = 2.0 a.u. was −0.602 634 214 494 946 237 710 a.u. with
the present FC wave function. However, Bishop indicated
more the precise equilibrium position as Re = 1.997 193 320
a.u. with the total energy of −0.602 634 619 107 a.u.41 In
our calculations, we obtained more precise equilibrium dis-
tances of Re = 1.997 193 319 969 992 9 a.u. with the energy:
−0.602 634 619 106 539 869 378 a.u. for the 1s σ g state and
Re = 8.834 164 503 179 200 609 421 533 521 a.u. with the en-
ergy: −0.175 049 035 895 464 389 091 719 403 786 087 150

FIG. 1. The PECs on the BO approximation for the electronic ground 1s σ g

(left) and excited 2s σ g and 3d σ g (right) states, calculated by the FC method
with n = 14 and Mn = 480 from R = 0.5 to 40 a.u. (0.1 a.u. interval).

a.u. for the 3d σ g state, whose results are also summarized in
Table I. On the BO approximation, they should be the most
precise equilibrium distances and energies in the published
literatures.

IV. NON-BORN-OPPENHEIMER POTENTIAL ENERGY
CURVES OF HYDROGEN MOLECULAR ION WITH
THE HIGHLY ACCURATE NON-BO WAVE FUNCTIONS

A. Free complement wave function of the 1S states

Let us first introduce the highly accurate free comple-
ment wave functions of the S-symmetry vibronic states in
the non-BO Hamiltonian, which were calculated in our pre-
vious studies of this series (for details, see Refs. 9 and 10).
The most accurate wave functions up to the highly vibrational
levels were constructed from the initial function including
the adequate exponents for both the electronic ground 1s σ g

and excited 3d σ g states. The FC wave functions at the order
n = 15 with its dimension Mn = 22 689 are employed ev-
erywhere in this study.10 The form of the wave function is
represented by

ψ = (1±P12)

⎡
⎣ ∑

(a,b,c,j,l1,l2)

C(a,b,c,j,l1,l2) · satbRc· exp(−α(j )s)

× exp
( − γ (j )

(
R − R(j )

e

)2) · Y
l1,l2
L,M (r1, r2)

⎤
⎦ , (5)

where Y
l1,l2
L,M (r1, r2) are the solid spherical harmonics42 and L

= M = l1 = l2 = 0 for S symmetry. s and t are the Hylleraas
coordinates, defined by s = r1 + r2 and t = r1 − r2. Here,
1 ± P12 describes the nuclear spin statics and its plus or minus
sign represents a singlet or triplet nuclear spin, respectively.
Three different sets of the nonlinear values α(j), γ (j), and R

(j )
e

(j = 1, 2, and 3) were used to represent the electronic ground
1s σ g and excited 3d σ g states. The calculated energies up to
the highly vibrational levels v = 0 to 15 for the 1s σ g state, and
v = 0 to 8 for the 3d σ g state, are summarized in Tables II and
III in Ref. 10, respectively, where v represents the vibrational
level.
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TABLE II. The length expectation values 〈r1〉 and 〈R〉 a.u. of the lowest 16
states (v = 0 to 15) of 1S (L = 0, M = 0) belonging to the electronic ground
state 1s σ g, and 9 states (v = 0 to 8) belonging to the electronic excited state
3d σ g, with the FC wave functions at n = 15 with Mn = 22 689.

Electronic ground state: 1s σ g Electronic excited state: 3d σ g

V 〈r1〉 〈R〉 〈r1〉 〈R〉

0 1.692 966 2.063 913 5.694 663 8.931 296
1 1.764 752 2.199 125 5.788 739 9.117 154
2 1.839 368 2.339 751 5.884 357 9.305 935
3 1.917 243 2.486 623 5.981 577 9.497 762
4 1.998 905 2.640 771 6.080 467 9.692 773
5 2.085 014 2.803 480 6.181 102 9.891 124
6 2.176 407 2.976 382 6.283 569 10.092 987
7 2.274 159 3.161 577 6.387 964 10.298 560
8 2.379 674 3.361 813 6.494 399 10.508 064
9 2.494 826 3.580 773
10 2.622 184 3.823 506
11 2.765 369 4.097 166
12 2.929 702 4.412 279
13 3.123 396 4.785 144
14 3.360 020 5.242 767
15 3.664 258 5.834 398

B. Length expectation values: 〈r1〉 and 〈R〉
A chemical reaction should occur with nonadiabatic state

hopping among the vibrational and/or rotational levels. To
analyze the nuclear motion dynamics, we first examine the
length expectation values of 〈r1〉(= 〈r2〉) and 〈R〉. Table II
summarizes 〈r1〉 and 〈R〉 of the 16 states (v = 0 to 15)
belonging to the electronic ground state 1sσ g and the 9 states
(v = 0 to 8) belonging to the electronic excited state 3dσ g.

With the high vibration levels, both 〈r1〉 and 〈R〉 become
large as v increases. With the approach to the dissociation, the
electron locates near either proton. However, since the two nu-
clei are not distinguishable due to the symmetrization of the
identical protons, the wave function is expressed by a super-
position (resonance) of two identical configurations: H+ + H
and H + H+. Therefore, 〈r1〉 does not increase rapidly. 〈R〉
for the vibrational ground level belonging to the electronic
ground state 1sσ g was 2.064 a.u., which was close to the
equilibrium distance of the PEC on the BO approximation, Re

= 1.997 a.u. (see Table I). However, due to the anharmonicity,
it was slightly larger than its minimum. The effect of the an-
harmonicity becomes large as v increased. 〈R〉 for v = 15 was
achieved at 5.834 a.u., which was more than twice the dis-
tance of v = 0. 〈R〉 for the vibrational ground level belonging
to the electronic excited state 3dσ g was 8.931 a.u., which was
also slightly larger than the minimum of the PEC on the BO
approximation, Re = 8.834 a.u. (see Table I). Figures 2(a) and
3(a) show the plots of 〈R〉, described by the red circles, with
respect to the non-BO energies with the PEC on the BO ap-
proximation for the electronic ground 1s σ g and excited 3d σ g

states, respectively. As v increases, 〈R〉 becomes large but it is
always located on the inside of the dissociation curve on the
BO approximation, and this quantity does not show a perfect
correspondence to the PEC.

FIG. 2. (a) Plots of 〈R〉 (red circles) and the left (purple triangles) and right
(green triangles) maximum positions of the reduced density function f (R)
to the equilibrium position Re = 2.0 a.u., for the electronic ground state
1sσ g with respect to the non-BO energies. (b) Plots of f (R) for the elec-
tronic ground state with respect to the non-BO energies. The blue lines in
both (a) and (b) show the PEC of the electronic ground state on the BO
approximation.

C. Reduced density functions up to the high
vibrational levels

Figures 4 and 5 show plots of the reduced density func-
tions f (R) of the non-BO wave functions at levels v = 0 to
15 for the electronic ground state 1sσ g and v = 0 to 8 for the
electronic excited state 3dσ g. In both cases, f (R) includes a
single maximum and no node for v = 0, and two maximums
and single node for v = 1. Generally, f (R) for the vibrational
level v has v + 1 maximums and v nodes. Due to the anhar-
monicity, the center of f (R) moves to the right side from the
equilibrium distances Re as v increases, and the maximum
peak of the right side is larger than that of the left side for
any level of v except for v = 0. For large v, f (R) becomes
broad and the probability of the right hand side is quite larger
than that of the left peak. This indicates that the vibrational
motion approaches the dissociation limit. For the electronic
excited state (Fig. 5), f (R) has a wider range than that of the
electronic ground state due to the smaller force constant.

Figures 2(a) and 3(a) also include plots of the left and
right maximum positions of f (R) with respect to the non-
BO energies for the electronic ground and excited states, re-
spectively. Figures 2(b) and 3(b) show the plots of f (R) with
respect to the non-BO energies with the PEC on the BO ap-
proximation. Interestingly, the left and right maximum po-
sitions of f (R) locate almost on the PEC. This is physically

FIG. 3. (a) Plots of 〈R〉 (red circles) and the left (purple triangles) and right
(green triangles) maximum positions of the reduced density function f (R) to
the equilibrium position Re = 8.8 a.u., for the electronic excited state 3dσ g

with respect to the non-BO energies. (b) Plots of f (R) for the electronic ex-
cited state with respect to the non-BO energies. The blue lines in both (a) and
(b) show the PEC of the electronic excited state on the BO approximation.
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FIG. 4. Plots of the reduced density functions f (R) of the non-BO wave functions v = 0 to 15 for the electronic ground state 1sσ g.

understandable since the positions with the largest probabil-
ity of nuclei should correspond to the PEC. As a result, the
left and right maximum positions of f (R) can be considered to
be a discrete representation of the PEC.

D. Analytical potential energy curves with the non-BO
wave functions

From the accurate reduced density function, f (R), the po-
tential energy function V (R), defined in Eq. (4), can be ob-

tained as an analytical function of R. On the BO approxi-
mation, the PEC is in common among the vibrational states
belonging to the same electronic state. In the non-BO case,
however, V (R) can be defined for each of the states even if
they belong to the same electronic state. We formulated V (R)
of the vibrational levels v = 0 to 15 for the electronic ground
state 1sσ g, and v = 0 to 8 for the electronic excited state 3dσ g.

Figures 6 and 7 show plots of V (R) for the 1sσ g and 3dσ g

states, respectively. In Fig. 6, V (R) for v = 0 is in good agree-
ment with the PEC on the BO approximation up to around

FIG. 5. Plots of the reduced density functions f (R) of the non-BO wave functions v = 0 to 8 for the electronic excited state 3dσ g.
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FIG. 6. Plots of the potential energy functions V (R), defined in Eq. (4), of the vibrational levels v = 0 to 15 for the electronic ground state 1sσ g. The PEC on
the BO approximation is shown with the pale red line. The unphysical regions of R, i.e., larger R for small v and near nodal positions (Rnode ± 0.025 a.u.), are
omitted.

R = 5 a.u. However, for larger R, V (R) was obviously physi-
cally meaningless because f (R) for v = 0 should localize near
the equilibrium distance around Re = 2.0 a.u., and it does not
contain sufficient information to describe the PEC for larger
R. Similar to the case where v = 0, V (R) for v = 1 could

also reproduce the PEC up to around R = 6 a.u. This was
slightly longer than the v = 0 case; however, there is one in-
definable point around R = 2.1 a.u. which obviously comes
from the nodal position of f (R) (Fig. 4). However, since such
a nodal region is sufficiently narrow, it does not cause any
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FIG. 7. Plots of the potential energy functions V (R), defined in Eq. (4), of the vibrational levels v = 0 to 8 for the electronic ground state 3dσ g. The unphysical
regions of R, i.e., near nodal positions (Rnode ± 0.05 a.u.), are omitted.

severe problem to investigate equilibrium positions or tran-
sition states or to understand chemical reactions. For v = 2,
there are two indefinable points also coming from the nodes
of f (R), but the correspondence region to the PEC on the BO
approximation becomes longer than in the v = 0 and 1 cases.
Generally, as v increases, the region is physically meaningful
as the PEC enlarges to a longer distance, since our non-BO
wave functions for large v have nonzero amplitude even at
large R. For v = 13, V (R) overlapped with the PEC on the
BO approximation up to R = 10 a.u. in the scope of Fig. 6,
except for the nodal positions. For v = 15, its correspondence
enlarges up to around R = 14 a.u.

Since the non-BO wave functions belonging to the 3dσ g

state might lack the diffuse complement functions to repre-
sent the longer region for R > 16 a.u., we only plot V (R) in
the region R = 5 to 15 a.u. in Fig. 7. Similar to V (R) for the
1sσ g state, the obtained V (R) almost overlap with the PEC
on the BO approximation in the scope of Fig. 7, even for
small v. For the vibrational level v, there are v indefinable
points corresponding to the nodal positions of f (R). Thus, the
non-BO wave functions belonging to the electronic excited
state spontaneously reproduced the potential energy func-
tion V (R) corresponding to the PEC of the electronic excited
state.

Note that, in Figs. 6 and 7, the unphysical regions of
R, i.e., larger R for small v and near nodal positions (Rnode

± 0.025 a.u. and Rnode ± 0.05 a.u. for the 1sσ g and 3dσ g

states, respectively), are omitted since V (R) on their regions

of R should be obviously unphysical. Nevertheless, the entire
shapes of the PECs were well-described.

In a practical usage of the present method, one may ask
which vibrational level should be employed for the analysis
of the non-BO PEC. Since each non-BO state implicitly re-
flects the anharmonic vibrational motion, a low vibrational
level can only describe the nuclei motion around the bottom
of the PEC but the wave function corresponding to a high vi-
brational level much spreads to the wide range due to its large
anharmonicity. Therefore, ordinarily, V (R) from a higher vi-
brational level would be favorable. If the PEC of the target
state forms an unusual shape such as double well or inter-
system crossing, the wave function of a low vibrational level
only describes local area and it might not have sufficient in-
formation of the whole PEC. In the present system, this was
numerically confirmed up to v = 15 for the electronic ground
state as shown in Fig. 6. Unfortunately, we cannot numerically
examine V (R) for v > 15 since their wave functions are not
sufficiently accurate due to the lack of diffuse exponents in the
initial function (see Ref. 10). However, it is quite interesting
to see whether the vibrational levels near the dissociation limit
and of the quasi-bound states above the dissociation limit, for
example, have information of the entire PEC. If the answer is
yes, then it might be said that even almost dissociative atoms
potentially have information of the bound states. However, it
might be impossible since their anharmonic vibrational mo-
tions are almost weighted toward the dissociation. We will
focus in our subsequent paper of this series on such highly
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FIG. 8. Averaged potential energy curves including all range of R for (a) the
electronic ground (v = 0 to 15) and (b) excited states (v = 0 to 8).

vibronic states and examine this topic with extensive numeri-
cal examinations.43

We also propose another possibility of an alternative
unique definition of V (R), that is to simply average V (R) over
vibronic states belonging to the same electronic state. They
would cover the wide range of the PEC when the various vi-
brational levels are included. Figures 8(a) and 8(b) illustrate
the analytically averaged V (R) over v = 0 to 15 and v = 0
to 8 for the electronic ground 1s σ g and excited 3d σ g states,
respectively, where the above unphysical regions of R are still
omitted in each v case. These averaged PECs are smooth at
any positions of R including the nodal positions in the verti-
cal scope of Fig. 8 since the nodal positions of each state are
complemented by the other vibrational levels.

Finally, we investigated the equilibrium distances Re, i.e.,
minimum positions of V (R), of the averaged non-BO PEC for
both the 1sσ g and 3dσ g states. Table I summarizes the Re and
V (Re) values and compared to those on the BO approxima-
tion. The differences of Re between the non-BO and BO cases
appear in mH digits both for the 1sσ g and 3dσ g states and the
non-BO Re are larger than those of the BO case. This ten-
dency may reflect a non-BO effect that R is more likely to be
repulsive due to the kinetic energy of the nuclei. The non-BO
V (Re) values were higher than the energies of the BO case,
E(BO). However, the values of μe ×E(BO), which include
the effective mass effect for total energy, come close to the
non-BO V (Re) values, where μe is the effective mass of the
nucleus and the electron. This indicates that V (R) originally
contains the energy corrections of the effective mass.

V. CONCLUSION

We proposed analysis methods to extract the physical
PEC from the accurate non-BO wave functions. For the ref-
erence, before going to the non-BO analysis, we described
the very accurate PEC of hydrogen molecular ion on the BO
approximation with the FC method and searched the equi-
librium positions and their energies, which showed the most
precise values in the published literatures. The numerical ex-
aminations were performed with the highly accurate non-BO
wave functions of hydrogen molecular ion, which were ob-
tained with the free complement method in our previous study
in this series.10 The reduced density function f (R) integrated
over the electron coordinates becomes an important physical
quantity in nuclear motion dynamics. In the numerical exam-
ination of the non-BO wave functions of hydrogen molecu-

lar ion, their maximum positions on the left and right sides
of the equilibrium position showed good agreement with the
PEC on the BO approximation. They can be considered as a
discrete representation of the PEC. We also proposed a new
definition of the potential energy function V (R) which was
representable as an analytic function from the non-BO wave
functions. V (R) can be defined for each vibrational level v.
For the lower v states, however, V (R) for large R has no phys-
ical nature since their non-BO wave functions are localized
near the equilibrium distance. For higher v states, their wave
functions can cover a range of R wide enough to provide a
physical V (R), although the indefinable points appear at the
nodal positions of f (R). However, such nodes do not present
an obstacle. Practically, we recommend to use the V (R) func-
tion obtained from the higher vibrational level since its wave
function covers the wider region of R than those of the lower
vibrational levels. In the present system, this was numerically
confirmed up to v = 15 for the electronic ground state but we
could not examine it for v > 15 due to the lack of the accu-
racies in the wave functions. We will focus on such highly
vibronic states in our next paper to see whether their states
that locate very close to and even above the dissociation limit
(like quasi-bound state) have information of the entire PEC.43

Alternatively, we also recommend the analytically averaged
V (R) over the vibronic states belonging to the same electronic
state. It should contain sufficient information for the wide
range of R when the various vibrational levels are included.
The differences of the equilibrium distances and their ener-
gies between the BO and non-BO PECs (the averaged V (R))
appear in mH digits. These differences may reflect a non-BO
effect and the latter originally contains the energy corrections
of the effective mass of the nucleus and the electron.

Thus, even on the non-BO framework, the properties re-
lated to the PEC can be analyzed. The present methods are
general not only for diatomic molecules but also for any gen-
eral molecule, without presenting any theoretical difficulty.
Surely, preparing the accurate non-BO wave functions is the
most significant task needed to obtain physically correct prop-
erties from their wave functions, and this task can be accom-
plished with the FC method. We will further extend the accu-
rate non-BO applications of the FC method to a more general
molecule in future studies. As an example, hydrogen clusters,
which are an important species in astrochemistry and low-
temperature physics,21–36 should include a lot of complicated
local minimums in their PECs and the present methods are
worth applying to them. Exotic systems including particles
lighter than protons are also interesting for a more signifi-
cant non-BO effect. We hope the accurate non-BO calcula-
tions based on the FC method would provide simpler solu-
tions and that the present analysis methods help us understand
their chemistry.
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