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The unrestricted Hartree-Fock (UHF) wavefunction is analyzed and interpreted in configuration-inter-
action (CI) language. The results of the present study are as follows. (i) The UHF wavefunction includes
only one type of the singly excited configurations [Eq. (20) ], and thus the correlation effects included are
very limited ones, compared with the usual CI treatment. (ii) The weight of the lowest contaminating
spin function, included in the UHF wavefunction, decreases with increasing spin multiplicity. (iii) The
annihilation of the lowest contaminating spin function little affects the electron density distributions and
other physical quantities, the operators of which commute with the annihilation operator. (iv) In the
UHF method, the “spin-appearing” (spin-polarization and spin-delocalization) mechanisms are clearly
divided, and an approximate method to separate these contributions is generalized, and some discussions

about spin annihilation are made,

I. INTRODUCTION

The unrestricted Hartree-Fock (UHF) method,!
which takes account of correlation effects between elec-
trons with different spins, has been extensively applied
in the study of spin properties. Amos, Hall, and Snyder?
examined the UHF wavefunction and connected it with
the alternant molecular-orbital method and with the
configuration-interaction method. Since the UHF wave-
function is not an eigenfunction of a spin-squared
operator S%, they proposed to annihilate the lowest
contaminating spin function after energy minimiza-
tion.2 However, the validity of annihilation after energy
minimization is still questionable® and Sando and
Harriman* compared the spin densities associated with
the various SCF methods.

Here, the UHF wavefunction is analyzed and inter-
preted in configuration-interaction language by means
of the natural orbitals of the UHF wavefunction.?
The charge-density and spin-density properties of the
UHF wavefunction are studied and the generalization
of the previous results,® which provides a useful pro-
cedure to separate the UHF spin densities into com-
‘ponents due to the mechanistic contributions (spin-
polarization and spin-delocalization contributions), are
carried out. Some discussions about spin annihilation
are made in the last section.

* Present Adress: Department of General Education, Nagoya
University, Chikusa-ku, Nagoya, Japan.

17. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).
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II. BASIC THEORY

The unrestricted single-determinantal wavefunction
built up of the p a-spin and ¢ 8-spin orbitals is written as

Yurr=[(p+¢) I172 det{praga- -+ 0 a$186:8" - - $a},
1

where ¢; and ¢; may be different, and we assume p>¢
without loss of generality. The wavefunction (1) is an
eigenfunction of an operator S,, and its eigenvalue is
is (s=p—¢q) in % units,

(2

As shown by Amos and Hall,?* the unitary trans-
formations of the unrestricted molecular orbitals
(MO’s) {¢;} and {¢;} lead to the corresponding orbitals
{x;} and {n;} which are orthonormal in each sets but
have overlap between them when i=j3,

S:¥vnr=3sYunr.

/ xinidr=T'bij. 3)

By means of these corresponding orbitals, the UHF
wavefunction is rewritten aste

Yyrr=[(p+q) [T det{xiaxza* * * xpomBnaB+ * *nqB},
4)

where we omitted the unimportant constant factor
introduced by the unitary transformation. Furthermore,
these corresponding orbitals are connected with the
natural orbitals A, p, and », of the UHF wavefunction
by the following equations?:

Xi=8\+bw;,  i=1,0,4,

7= a\s— b;v.', 1= ]_’ ce g,

Kg+i= My i=1,400,5, ()
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where

a;=[5(14+T3) ],
bi=[5(1-T:) ]~ (6)

These natural orbitals are orthogonal to each other
and diagonalize the reduced density matrix?

p(112)= 3 A+TNFDN()

+ 3 U=Tor (Wn@+ X (D). (7)

Note that the natural orbitals are not changed by
projection. Only the occupation numbers are changed
by projection.c Moreover, the natural orbitals \; and g,
are similar?®® to the restricted Hartree-Fock MO’s.®

By using Eq. (5), the UHF wavefunction [Eq. (4)]
may be expanded in the form of the limited configura-
tion interaction,2e7

Vynr= Cys™ W, o™+ Coolrtef Clefdef Ctofpte. .. (8)

where ¥, is the normalized restricted function with
eigenvalue of S%, 3s(3s+1),

Wypa™=| MahiB+ + - NgahBpaapzos  * pyct | (9)

and its coefficient is given by

C./grf: ﬁ al.

=1

(10)

e and ¥ are the sums of the normalized singly
excited and doubly excited configurations,

Crere— 2"1, Cro iy we(ii%), (11)
Cee(it*) = V2N;a.b;, ‘
T (i5%) = | a8+ + wedi(1/ VD)
X (af+Bex) « + * AgahBurapoars + +pee |, (12)

and

Caoptem 37 30 Coe(ii®; ) w3 )

1<j
+ 3 Cunte (i) Ta(i#%), (13)

Cle(ii*; 75*) = 2a;b;a,0,N 5,
e (47*; %) =| MadiB+ + +vihi(1/ V2) (aB+Bax) - - v\
X (1/V2) (aB+Ba) - - :NgahoBuaars + e |, (14)
Cug®(ii*) = b2N,,
U,y08(31%) = | MahiB+ + +viawiB + +Agah B + ot |,

¢ C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
" R. Lefebvre, H. H. Dearman, and H. M. McConnell, J. Chem.
Phys. 32, 176 (1960).
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where
Ni= ant= aijiJ';
m=1(mz<3)
Nij= ﬁ T’
me==1(m54,7)

The higher-order terms in Eq. (8) are written in the
same manner as above. Note that the singly and doubly
excited configurations given above are not eigenfunc-
tions of the spin-squared operator S?, except ¥,9¢(41*).

III. SPIN FUNCTIONS INCLUDED IN THE UHF
WAVEFUNCTION

As shown previously,™ the b; values in Eq. (6) are
very small and then the relation, C,p"f>C%>Cde. ..,
may be expected in Eq. (8). Therefore, the correlation
effects included in the UHF wavefunction may be
attributed mainy to the singly excited configurations
expressed by Egs. (11) and (12). This was certainly
true in the cases previously studied.? Here, we analyze
this configuration and divide it into eigenfunctions with
respect to the spin-squared operator S2.

We rewrite the singly excited configuration as

\I/”(u*) = | )\10[)\1ﬁ' M 'V.')\,'(l/ '\/Z)
X (af+Ba) « + *NgahBurctpacrs + + et |
=] v\i(1/ V2) (aB+Ba) mapsa: « - pyot | (15)

for brevity. It includes s+2 singly occupied orbitals,
and is the eigenfunction of the operator S, with eigen-
value %s. This configuration ¥*(4i*) may be expressed
as

Yoo (§3%) = (W™ (148%) +-E¥ (o0 2% (14*),  (16)

where the functions satisfy the following eigenvalue
problems:

S,y (i1%) =35 (3s+1) W™ (43%),

SV, 0% (14%) = 35T 0% (44%),
S o9y 41%(40%) = (351 1) (35+2) Yoy 2% (84%),
So¥ o1 (15%) = 35T (/2141 (45%) . (18)

Obviously, there is only one function which satisfies the
relation (18). It is expressed as

01 (18%) = (s 2) 72 | ks + + pas

(17)

X{(aﬁ+ﬁa)a-'-a+aaia-"aﬂa---a} I, (19)

7=l

where the second term in the braces means the sum

i 2R oaﬂao . oa:ﬂaa- . oa+aﬂao cox

=1

+aaﬁo . oa+ o o+aaa| . .ﬂ_

8 For example, see Tables IV and V of Ref. 5(b).
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Now, we determine the function which satisfies
Eq. (17). There are s+1 such functions. Note that all
of these s+1 functions are considered in the usual CI
treatment. However, as shown in the Appendix, only one
function among them satisfies Eq. (16) and it is given
by :

‘I’,/g“('i’i*)
— (27 | vk - (35) V(B )+

—(2/s)V2aa i as+-afa-+a}|. (20)

From Egs. (19) and (20), the coefficients in Eq. (16)
are given by

¢=0s/G+2)J2 =[2/(s+2)]",  (21)
as shown in the Appendix. Then Eq. (16) becomes
Wee(i6*) =[5/ (s+2) J™opn™ (13%)
+[2/(s+2) ]2 oz 41%(38*) . (22)

Equations (19), (20), and (22) show the nature of
the correlation effects and of the contaminating spin
function included in the UHF wavefunction: The
correlation effect included in the UHF wavefunction is
a very limited one, compared with the usual CI treat-
ment. First, the UHF wavefunction includes only that
type of singly excited configuration which is expressed
by the transitions from A; to »;.2¢ Second, only one spin
function [Eq. (20)] among the s+1 spin functions
[see Eq. (A1) in Appendix] is considered in the UHF
wavefunction.

Note the following two limiting cases; when s=0
(singlet case), Eq. (22) reduces to

W (17%) = Ty (i*), (23)

which shows that the singly excited configurations
included in the UHF wavefunction are all due to the
contaminating (triplet) spin function. Pople, Mclver,
and Ostlund® exploited this fact in their finite perturba-
tion methods. (Note that the spin-density operator and
the spin-squared operator do not commute.) When
s=o0,

Woe (i1%) = W™ (41%),

which shows that the singly excited configurations in
the UHF wavefunction do not include the contaminating
spin function. Since ¥,,»"f in Eq. (8) is the eigenfunction
of §* with the eigenvalue 3s(3s+1), a conclusion is
that the weight of the lowest contaminating spin state
in the UHF wavefunction decreases with increasing
spin multiplicity, s+1. However, as s increases, so
decrease the correlation effects included in the UHF
wavefunction, compared with the usual CI treatment.
Of course, these discussions are valid only when the

?J. A. Pople, J. W. Mclver, Jr., and N. S. Ostlund, J. Chem.
Phys. 49, 2960, 2965 (1968).
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singly excited configurations are important, as in the
actual calculations reported previously.® However,
for the spin-density calculations, only the singly
excited configuration expressed by Eq. (20) is impor-
tant, and the other s spin functions and the doubly
excited and higher-order configurations in Eq. (8) do
not contribute to the first-order approximation of a
perturbation theory (see Appendix).

To the first-order approximation of a perturbation
theory, the coefficient C*(i*) of Eq. (11) may be
written as*

C”(’I/L*) = \/ZN;a,-b;
=[s/(s+2)
(o™ | 3€ | a2 (43%) )

Er'—[s/(s+2)JEus™ (14*) = [2/ (s+2) JEw 1™’
(24)

where 3C is a Hamiltonian operator. Note that in the

calculation of the spin densities of the o-type atomic

orbitals of the m-electron radicals, the numerator of

Eq. (24) reduces to the o—m-type electron repulsion
integrals.

X

Iv. DENSITY

Here, we discuss the density properties of the UHF
wavefunction. The UHF electron density at position r is
calculated by applying the density operator

q(r)= Zk:B(rk—r)
to Eq. (8),
quur'= (Yuur | (1) | Yunr)
= (Cop™)2(Wop2™ | (1) | Tups™)
+2C=Cyp" (ap™ | q(1) | ¥=)
+(C=)2 (¥ | q(r) | ¥=)+---. (25)

The second term in Eq. (25) is calculated by using
Eqgs. (9) and (12),

Co(Wy | q(x) | W)

= 30 i) | a(x) | T=(ii*))

=3 3 C%(i*) (D)) —M(D)ou())
=0.

Similarly, all the off-diagonal elements included in the
expansion (25) are zero. This is obvious from Eq. (7).
Thus, Eq. (25) reduces to

quur'= (Con™)2 (W™ | q(1) | yp2"0)
+(C=)* (= | q(r) | ¥*)+---,

which includes only the diagonal elements.

(26)
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As shown previously,®™ the relation, (C.;™)2>(C*)?
holds fairly satisfactorily in the actual calculations.
Therefore, Eq. (26) shows that the annihilation of
the lowest contaminating spin function in the UHF
wavefunction little affects the electron density dis-
tribution. This point was suggested by Amos,* Harri-
man,f and by the present authors.’® Referring to
Eq. (7), the above approximation, (C,;ff)Z>(C®)?,
corresponds to omitting the second term in Eq. (7).

Note that the above conclusion is obtained more
elegantly only from the knowledge that the charge-
density operator commutes with the annihilation
operator. This is easily generalized. Namely, all the
UHF expectation values of the physical quantities,
the operators of which commute with the annihilation
operator, do not change much by annihilation, if

(Cop2™) 2>>[C w2412 (15%) ]2
V. SPIN DENSITY

The UHF method is frequently applied to the spin-
density calculations. Especially in r-electron radicals
the correlation effects are essential to interpret.the
observed ESR hfs constants. The UHF spin density
at the position r is calculated by applying the following
normalized spin-density operator?:

e(r)=8," 2;. Sud(r—1),
which do not commute with the annihilatioﬁ operator,
to Eq. (8). The result is
purr"= (Yunr | o(r) | ¥ear)
= (Cor™)2(Tup2 | 0(1) | Lupe™)
+2C*Cop (W™ | o(x) | ¥*)
+(C*)2 (@ | o(r) | ¥=)+---.

From Egs. (4) and (5), purr” is also written as

(27)

2
PUHF = =
Sz te=]

a:bNi(D)ri(1) +(25.)7 2ui(r)2 (28)
=]

Equation (28) is very simple and has clear physical
meaning about the “spin-appearing” mechanisms.’ The
first term represents the contributions due to the
“gpin-polarization” (SP) mechanism, and the second
term represents those due to the *“spin-delocalization”
(SD) mechanism. (The definitions of these termi-
nologies were given previously.®) By calculating the
terms in Eq. (27), we obtain the following descriptions

10 See Table IIT of Ref. 11.

1T, Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato,
Bull. Chem. Soc. Japan 42, No. 9 (1969).

12H, M. McConnell, J. Chem. Phys. 28, 1188 (1958).

13 See Footnote 6 of Ref. 5(b).
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for each of the mechanistic contributions:
f

(purr”)sp= (2S.)7 D ui(r)?
f=]1

= (Con)o" (st | 1)+ (C=)p"(se | se)
+(CHyrpr(de | de)+ -+,

which contains only diagonal elements, and

(29)

(purrF")sp= é 2; a:bi(1)vi(r)

=2C%Cyo*tp7 (rf}s | se)+2CCp"(se | de)
+2C3Ctpr(de | te)+-+-, (30)

which contains only off-diagonal elements. p*(rfis | se)
is the matrix element between ¥,;"f and ¥* with respect
to the normalized spin-density operator o(r).

VI. SPIN-APPEARING MECHANISMS

Here we derive the approximate equations which
serve a useful procedure in the separation of the UHF
spin densities into mechanistic (spin-polarization and
spin-delocalization) contributions. For the special
cases of doublet and triplet radicals, the results have
already been reported.

First, we assume that the second and higher terms in
Eqgs. (29) and (30) are negligibly small,

(punr")sp= (Cop2™)%" (rf}s | rf}s), (31a)
(punr")sp=2C"C,p2"p" (rf}s | se), (31b)
punr"= (punr")sp+ (punr)se.  (31c)
By using Eq. (22), Eq. (8) is rewritten as
Yurr=Co" W2 '+ Cog™ Vo™ + Clom 1™ 1%, (32)
where
Cu=[s/(s+2) J~C*,
Cumn™=[2/(s+2)]"2C=. (33)

From Egs. (9), (19), and (20), the equation
p[rfhs | se(ds+1) 1= (2/5)"%" (rf}s | seys) (34)
is obtained. By using Eqgs. (32)-(34), the UHF spin
density (pyrr’) is written as
purr"= (Cu2™)?p" (rf}s | rf}s)
+2[1+4 (2/5) JCop2""Cups®p’ (rfhs | sels). (35)
Similarly, by assuming that the renormalization
constant associated with the annihilation of the lowest
contaminating spin function is very close to unity,

the spin densities obtained after single annihilation
(asa) and after annihilation (aa)? are given by

Pasa’ = (Cllﬁrf) 2P' (l‘ f%s l rf%s )
F2(14571) CopF'Cope™p" (rfhs | seds)
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TaBLE I. Ratios of (punF)sp: (Pass) 8P (Pas) sP-

Singlet Doublet Triplet Quartet Qunitet

s=0 s=1 s=2 s=3 s=4 s s=s
(purr)sp 2 3 4 6 .ee s+2
(Pase) 5P 1 5 .ee s+1
(Paa) 8P 0 1 3 4 s

and
Pas = (C0/2ﬁ) 2p'(rf7}.s I rf%s)
+2C./zr'C./2'°p'(l'f%s | seis). (36)

By comparing Egs. (35) and (36) with Eq. (31), the
mechanistic contributions are derived. The SP con-
tribution is given by using punr and pa, as

(punr)sp=3s[1+ (2/5) J(purr—pas),
(Pau) sp= %5(1+3_1) (PUHF_ Pn) ’

(Pas)sp=135(pUHF—Pas), (37)
or, by using punr and pasa as
(purr)sp=s[14 (2/5) J(puvEF— Pasa) s
(Pasa)sp=5(1+57") (purF—pasa)
(Pas)sp=S(PUHF—pPass) - (38)

The SD contribution is calculated from Eq. (31c) as

(p)sp=p— (p)se- (39)

Note the fact that the SP contributions to the spin
densities associated with the various stages of annihila-
tion satisfy the relation,

(punF)sp: (Pasa)sp: (Pas)sp=(s+2): (s+1) s
and

(40)

(purF)sD= (Pasa)sD= (Pas)sD- (41)

Table I shows the above relation [Eq. (40)] for some
examples.

For special case of s=0 (singlet state), Egs. (37)
and (38) cannot be applied. However, in this case,
from Eq. (23), the spin densities are all due to the
contaminating (triplet) spin function and are due only
to the SP mechanism. By the similar procedure as
above, the spin densities obtained at various stages of
annihilation are shown to hold the relation,

PUHF: PassPaa=2:1:0. (42)

This is the special case of Eq. (40).
VII. DISCUSSION

As may be noticed, Eq. (5) is very similar to the
starting point of alternant molecular-orbital (AMO)
method. \; and »; correspond to the bonding and anti-
bonding AMO partners, respectively. Therefore, all the

results obtained by the present study apply to the un-
projected AMO method. The extensive studies of the
AMO method were given by Loéwdin, de Heer, and
Pauncz."

Now, we discuss the approximate method obtained
in Sec. VI. Since the spin densities in the o-type atomic
orbitals of the m-electron radicals are due only to the
SP mechanism, the approximate relation (40) holds
for the total spin densities. Moreover, this relation
may be used to check the validity of the approxima-
tions introduced in Sec. VI.®! For example, in the
“g-quartet” state of the allyl radical,’® the values of

TasLE I1. Spin density® in the “r-quartet” state

of the allyl radical.®
Atom AO PUHF Pan Pas from
Egs. (40), (41)

C, G 28 0.051 0.031 10.031
2Px 0.000 0.000 0.000

2Py 0.003 0.002 0.002

2Pz 0.355 0.354 0.355

C. 28 0.054 0.033 0.033
2Px 0.000 0.000 0.000

2Py 0.005 0.003 0.003

2Pz 0.377 0.376 0.377

H,, Hs 18 —0.013 —0.008 —0.008
H;, H; 18 —0.012 —0.007 —0.007
He 15 —0.018 —0.010 —0.010

® About the method of calculation, see Ref. 13.
b Numbering of atoms is as follows:

The geometry is C-C=1.40 A, C-H=1.08 A, and ZHCH=/HCC=
£ CCC =120°,

4 (a) P.-O. Lowdin, Phys. Rev. 97, 1509 (1955) ; (b) R. Pauncz,
J. de Heer, and P.-O. Léwdin, J. Chem. Phys. 36, 2247 (1962),
and the succeeding papers; (c) R. Pauncz, Alternant Molecular
?grgz?t)al Method (W. B. Saunders and Co., Philadelphia, Pa.,

15 Note that in the “r-quartet” state of the allyl radical, the
order of the Eroton spin densities -(absolute values) is He>H,>
H;, but, on the other hand, in the doublet allyl radical, it is H;>
H,>H, and is reverse to the above. (Ref, 11.)
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pas are compared with those calculated by Eqgs. (40) and
(41) from pynr (Table IT). They agree very satisfacto-
rily. For some doublet and triplet radicals, theexamina-
tion of the method described in Sec. VI is carried out
more rigorously in the previous reports.®

Equations (40) and (41) show approximately the
theoretical relations existing among punr, Pasa, and
pas. Thus, at present, we think it almost meaningless to
discuss theoretically whether the annihilation of the
lowest contaminating spin function “improves” the
spin-density properties. For example, in the methyl
radical, the spin densities in the o-type atomic orbitals
are due only to the SP mechanism,®!! then the relation,

PUHF:Pun:Paa=3:2: 1,

can be expected transcendentally. The computational
examination of the validity of projection after energy
minimization is carried out by Harriman and Sando.*
They reported that the spin densities obtained by the
spin-extended SCF calculations are generally (but not
always) closer to the unrestricted values. ‘

Another important aspect of the spin-density calcula-
tions (especially in the semiempirical ones) lies in their
agreement with experiments. From the above stand-
point and from Eq. (24), the problem, “which stages of
annihilation are best recommended,” depends very
much on the choice of the integral values (especially
on the choice of the o—w-type electron repulsion inte-
grals).’® In the conventional (semiempirical) calcula-
tions of the hfs constants (@), it may be approved to
consider A of the following equation:

a=AP)

as a proportionality constant determined by “best
fitting” the calculated spin densities with the observed
hfs constants.!:' However, from Egs. (24), (40), and
(41), we think it very difficult to determine both the
values of Aynr and A .., which reproduce satisfactorily
the observed hfs constants from pyrr and pa., respec-
tively. A good example is the ethyl radical. Its
methylene-group proton spin density is due only to the
SP mechanism, and thus (punr)cH:=3(pas)cHs,'"®
while its methyl-group proton spin density (assuming
free rotation) is due to both (SP and SD) mechanisms,
and thus, (pyar)crs™21.2(psa)cn; in our calculation™
and (punr)cn~21.4(pas)cH, in the Pople, Beveridge,
and Dobosh’s calculation.”® This example shows that
if one adjusts the semiempirical (s—r-type) repulsion
integrals’® so as to obtain a good correlation of the

16 See the paragraph which includes Eq. (24).

17 (a) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Am.
Chem. Soc. 90, 4201 (1968); (b) D. L. Beveridge and P. A.
Dobosh, J. Chem. Phys. 48, 5532 (1968).

18], A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem,
Phys. 47, 2026 (1967).
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UHF spin densities with the observed hfs constants,
then only Aurr is acceptable in the least-mean-square
sense (and vice versa).!!

For some doublet and triplet radicals, the method
stated in Sec. VI has been applied in order to clarify
the ‘“spin-appearing” mechanisms, and threw a new
light on the nature of spin density.5!!

APPENDIX

Here we determine the spin function which satisfies
Eq. (17). There are s+1 such functions. The spin parts
of them may be written as®®

@go,}:;1= (1/ '\/2') (a- . .aﬂa_a, . -aaﬁ),
®§1,51;2"_— 6‘1/2(2a. . .ﬁaa-—a. . oaﬂa—ao . '(!(XB),

O jus=[s(s+1) T2 (s0Bas + +a—ciaf + ra—+ -
—a-+-faa—a- - aBa—a- - -aaf),
O guenn=[(s+1) (s+2) V[ (s+1)Baa- - -a—afla- - -a
—vi—ae-faa—as-afa—as-aaf]. (A1)

Among the above functions, we need only the functions
which satisfy the following two demands: (a) The first
two terms must have the form, (af+Ba)a- - -a, except
for a constant factor, (b) it must satisfy Eq. (16) with
Eq. (19). From demand (a) only the last two functions
are important. By taking linear combinations of these
two functions, we obtain

Cs/2(s+1) 12012 u72:0— [ (s+2) /2(s+1) 120uy2,072: 041
=1/VZ(af—Bo)a---a (A2)
and
L(s4+2)/2(s4+1) 202,026+ [5/2(s+1) J2Ou2,072: 641
= (s+2)7[(}) "2 (af+Ba)a- -

—(2/s) V2o i as+-afa+--al. (A3)

Between the above two functions, only the second
satisfies the demands (a) and (b). Then, Eq. (20)
follows.

From Egs. (19) and (20), the coefficients { and £ in
Eq. (16) are determined. By comparing Eq. (16) with
Egs. (19) and (20), we obtain the following two rela-

tions:
(s+2)712 [+ (35) V% ]=1/ V2,

(s+2)"12 £~ (2/5)V%]=0,
Thus, Eq. (21) follows.

1 See, for example, M. Kotani, A. Amemiya, E. Ishiguro, and
T. Kimura, Tables of Molecular Integrals (Maruzen Co., Ltd.,
Tokyo, Japan, 1963), p. 5.

and



