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A semiempirial ASMO-SCF calculation involving all valence electrons was carried out for a number
of nuclear configurations of ethylene molecule. From the variation of the ground-state energy on the change
of various structure parameters, all the diagonal quadratic force constants in the internal symmetry co-
ordinate system were calculated and compared with those obtained from vibrational spectra. A modification
of the Dewar and Klopman’s formula including two empirical parameters was used to represent the core
repulsion energy. It gave reasonable potential energy curves for the stretching coordinates.

INTRODUCTION

In the SCF molecular orbital theory involving all
valence electrons, the relative positions of all nuclei in
a molecule are taken into account explicitly on evaluat-
ing the multicenter integrals. This theory provides
accordingly a general and straightforward procedure to
predict the equilibrium structure and the force con-
stants of polyatomic molecules through the calculation
of ground-state energies for a variety of nuclear con-
figurations. The rigorous treatment of this sort of cal-
culation requires, however, so much labor even for the
" smallest molecules that the introduction of more or less
approximations is inevitable to reduce the calculation
to a tractable size. By using the approximation of the
neglect of differential overlaps, Pople et al. have formu-
lated a semiempirical ASMO-SCF theory for all valence
electrons of molecules.! These authors’ method has
given, in spite of its simplicity, a fairly successful result
in predicting correct valence angles and bending force
constants of a number of simple polyatomic mole-
cules.2?® The stretching force constants calculated by
this method are too large, however, compared to those
obtained from experimental data on vibrational spec-
tra.34 :

Since there are many ways of approximations in
evaluating the atomic integrals involved in the ASMO-
SCF theory, further studies seem to be necessary in
order to clarify the influence of various approximations
on the reliability of the calculated force constants, It is
also worthwhile to look for any systematic way of
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combining the approximations which can predict force
constants and other properties of molecules simultane-
ously. With these points of view, we have carried out a
semiempirical ASMO-SCF calculation of force con-
stants of ethylene based on the method of Yonezawa,
Kato, and co-workers which has recently given reason-
able values of orbital energies, ionization potentials,
electronic transition energies, and ESR hyperfine cou-
pling constants®® for molecules similar to those treated
by Pople et al. This method is different from that of
Pople et al. in adopting the one- and two-center elec-
tronic repulsion integrals evaluated semiempirically
and in taking account of differential overlaps. In the
present paper, the calculated force constants are com-
pared with those obtained from the analysis of vibra-
tional spectra and are discussed.

ATOMIC INTEGRALS

Since the detail of the procedure to evaluate the
ground-state energy for a given nuclear configuration
has already been reported,® we outline here only the
evaluation of basic atomic integrals. The overlap inte-
grals, Sy, were taken to be the theoretical values for the
Slater AQ’s, the effective nuclear charges being 1.00
and 3.25 for hydrogen and carbon, respectively. The
one-center electron repulsion integrals were calculated
by the well-known approximation due to Pariser,?

(1)

where I, and A, represent the valence state ionization

(rr | rr)y=at=1,—4,,
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Fic. 1. Internal coordinates.

potential and the electron affinity, respectively, of the
atomic orbital (AO) .3 For the two-center electron
repulsion integrals, we used the Ohno approximation,®

(rr | ss) =3[ (a4 R,2) 12+ (a2+R.2)12], (2)

where R,, is the distance between the nuclei on which
the AO’s r and s are centered. The multicenter electron
repulsion integrals were then calculated by the Mulliken
approximation,'

(rs | tu) =318 Seul (rr | 1)+ (rr | um)
+(ss| )+ (ssluu)].  (3)

Let N, be the number of valence electrons on the
AO 7, and Z, be the net core charge of the nucleus A.
The core Hamiltonian matrix elements were then ap-
proximated as

Hn= Urr+ B§A (B l ”)$ (4)
(B|rr)=— XBN,(rr|ss), (5)

Up=—I,—(N,—1)(rrlrr)
—~ YANL(rr 1 P?)=5(rr" 1 27)] (6)
7'
and

H,,=3}S.[— P(Za+2Zg) (rr]ss)— (B | rr)
—(Alss)+H,+H,), (7)

where P is an empirical parimeter™and is taken to be
1.40.5 In Eqs. (4)=(7), it is implied that the AO’s
r and s are centered on the nuclei A and B, respectively,
and the superscript on 2 in Egs. (5) and (6) indicates
that the sum is taken only over the AO’s centered on
that nucleus. The present treatment is different from
the previous one® in the introduction of the one-center
exchange integrals (77 |7¢’) evaluated according to
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Hinze and Jaffe,! and in the estimation of the off-
diagonal core matrix elements, H,, (r#s), for which
the previous treatment’® adopted the approximation by
Wolfsberg and Helmholz.!? Furthermore, in order to
use the nonzero (r7’ | rr') without violating the invari-
ance of the basic integrals on the rotation of the co-
ordinate axes for p orbitals, the one-center integral
(rr| 77') for the two different p orbitals centered on
the same nucleus, e.g., p and p,, was calculated by

(paps| pups) = (Pabs | pupa) —2(pzpy | pops). (8)

By using the above integrals, the molecular orbital
¢; was obtained through the SCF calculation as the
linear combination of atomic orbitals xx,

6= 2 Cixy, (9)

and the ground-state electronic energy Ee was calcu-
lated by
Eg= Y PoHu+3Y PnPo[(rs|tu)—3%(rt| su)],

r,s tu

(10)
where

(11)

The ground-state energy for a given nuclear configura-
tion is then given by

E= Eel+' Z EABnore, (12)

where EAB,, ., represents the core repulsion energy be-
tween the nuclei A and B, and the sum is taken over
all possible pairs of nuclei in the molecule.

oce
Pn=23% GSC/.

CORE REPULSION ENERGY

There have been several ways of estimating the core
repulsion gnergy in the literature. For the w-electron
system, Parr and Pariser interpreted it as due to the
positively charged holes vacated by the = electrons
and evaluated it by the corresponding two-center elec-
tron repulsion integrals.!* On the other hand, the core is
just a nucleus for hydrogen and a nucleus surrounded
by a closed 1s shell for carbon in the present treatment,
and it seems more reasonable, at first sight, to use
simply the point charge approximation,

EABoore—'= ZAZBez/RAB; (13)

where e is the electronic charge and Rap is the distance
between the nuclei A and B. Segal and Pople e! al.
adopted this approximation and obtained the equilib-
rium bond lengths agreeing well with the experiments
for a number of molecules. The success of Eq. (13) in
these authors’ method is, however, based on the use of
the one- and two-center electron repulsion integrals
evaluated theoretically by the Slater 1s and 2s AO’s.
Since the semiempirical evaluation by Egs. (1) and
(2) gives much smaller values to these integrals than
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TasLE L. Internal symmetry coordinates.

Symmetry Coordinate Description Increment
a, S1= (Arig+Ara+Ars+Ang) /2 C-H stretching +0.14
Sg =Ar2 C=C stretching :I:O. 05 A
S3= (A(pz1;+A¢1u+A¢u§+A<pzm) / 2 CH, bending +0.1rad
@y Si= (Arazs+Atau+Arast Arass) /2 torsion 0.2rad
blﬂ SS = (Afu - Am-l— Args— Afm) / 2 C-H stretching 0.1 A
Ss= (Apus— A+ Apras— Apas) /2 CHj; rocking 0.1rad
biy S1= (Arsiss— Araaa) /VZ CH, wagging 0.2/vZ rad
beg Ss= (Arpza— Arass) /VZ CH, wagging 0.2/VZ rad
bzu Sg = (Aru'{—Afz‘— Arss— Aru) /2 C-H stretching 0.1 A
S1=(Apus+Aprs— Apizs— Apne) /2 CH; rocking 0.1rad
bau, Su= (Arz— Ary— Argg+Arg) /2 C-H stretching 0.14
St2= (Apais— Arze— Aerzs+Aeme) /2 CH_; bending 0.1rad

the theoretical values, the core repulsion energy in the
present method must also be smaller than that given by
Eq. (13), in order that its change on a nuclear displace-
ment be just canceled by the corresponding change of
E. at the equilibrium nuclear distance. From this
reason we adopted initially an extended form of the
Parr and Pariser’s expression,

EAB o= 2 AT B NN, (rr | ss). (14)
r £ ]

On the calculation of force constants, the equilibrium
structure of ethylene was initially taken from Allen
and Plyler’s data.!* From the internal coordinates shown
in Fig. 1, the internal symmetry coordinates were con-
structed in the same way as in the previous analysis of
the vibrational anharmonicity.’® These coordinates are
defined to represent the actual changes of the given
structural parameters and are therefore related to the
Cartesian coordinates curvilinearly. They are listed in
Table I together with their symmetries and descrip-
tions.!8 Distorted configurations of the molecule were
then constructed by displacing the nuclei from the
equilibrium positions successively along each internal
symmetry coordinate, in terms of which the increments
were taken as given in Table I. From the ground-state
energies for these nuclear configurations, the potential
energy curve for each coordinate was obtained, and by
fitting it to a polynomial of that coordinate, say Sj,
by the least squares method, the quadratic diagonal
force constant, ~
K;,=3(*E/3S?),

was evaluated at the minimum of the calculated poten-
tial. As the polynomial to be fitted, the quartic function
was used in general but the sextic function was also
used for the totally symmetric stretching coordinates,
Sy and Ss.

Generally, the force constants are required by their
definition to be evaluated for the nuclear configuration
corresponding to the true minimum of the potential
function in the multidimensional space spanned over
all vibrational degrees of freedom. The force constant

obtained by the Taylor expansion of the potential func-
tion with respect to a single coordinate satisfies this
requirement in the case either when the Taylor expan-
sion is carried out at the calculated equilibrium con-
figuration or when the contribution from interaction
force constants to the potential energy is negligibly
small. Since we cannot regard the second of these condi-
tions to be a good approximation, the calculated equilib-
rium configuration is required to agree with the initially
assumed one in order that the first condition is satisfied
without the complicated transformation of the origin
of the coordinate system. On the use of Eq. (14), the
calculated potential minimum was found very close
to the origin for the a,CH; bending coordinate (.S3),!7
whereas the potential functions for the C=C stretching
(S:) and the @, C-H stretching (.S;) coordinates
showed only monotonous increases on the increase of
the bond distances within the investigated ranges. In
the curvilinear internal coordinate system, the distance
between bonded nuclei changes only on the change of
stretching coordinates. Accordingly, the success for the
Ss mode and the failure for the S; and S; modes in
predicting the correct equilibrium configuration suggest
that the core repulsion energy estimated by Eq. (14) is
appropriate for such comparatively large nuclear dis-
tances as those between nonbonded nuclei but is too
small for such shorter distances as those between bonded
nuclei. With the purpose to obtain reasonable core
repulsion energies for both the cases of bonded and
nonbonded nuclei, we interpolated Egs. (13) and (14)
by a two-parameter function,

EAB o= YA BN,N,(rr|ss)+[ZaZse?/Ran
—YAys N,N,(rr | ss)] exp(—aasRas™), (15)

where the parameter # was fixed to 1.0, 1.5, and 2.0
after several trial calculations. When =1, Eq. (15)
becomes identical with that proposed by Dewar and
Klopman in the calculation of the heats of formation
of a number of hydrocarbon molecules.!® In the semi-
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Fic. 2. Potential energy curves for valence angle deformation coordinates: —, E (calculated); - - -, E (experimental) ;

eoe, Egy;

empirical calculation used in this work, however, rea-
sonable values of the stretching force constants were
obtained, as shown in the following, only for the cases
where n1. After fixing # to the above values, the
parameter axp was adjusted independently for each of
the coordinates S; and S; to reproduce the correct
equilibrium bond distances. On using Eq. (15) with
aas fixed so as to reproduce the equilibrium length of
the C-H bond, the contribution from the second term
to EAB,,., was found to be almost negligible at distances
larger than 1.5 A. This result means that the equilib-
rium H-C-H angle obtained from Eq. (14) is not
much changed on the use of Eq. (15) for both the
bonded and nonbonded C--+H distances, and that the
difference between Egs. (14) and (15) is not essential
for the latter. Accordingly, by assuming a similar situa-
tion for the H- - -H repulsion, we simplified the calcula-

tion by using Eq. (14) for EAB,,.. between nonbonded
nuclei.

RESULTS AND DISCUSSION

It has been pointed out that the values of force con-
stants calculated by the polynomial fitting of a poten-
tial curve are affected seriously by the spacing and the
spread of the representative points of the coordinate.!®
In the present calculation, the uncertainty due to this
effect is estimated to be 0.1 and 0.05 mdyn/A for the
C=C and the C-H stretching coordinates, respectively,
0.01 mdyn- A/rad? for the CH; bending and the CH,

’ core*

rocking coordinates, and 0.001 mdyn-zgx/ra,d2 for the
CH, wagging and the torsional coordinates. In Table
II, the calculated force constants for the CH, bending,
the CH, rocking, the CH, wagging, and the torsional
coordinates are shown together with those obtained by
the analysis of vibrational spectra.!® For the in-plane
coordinates, the bending force constants K3s and Kz 10
were calculated to be larger than the rocking force
constants Kj; and Kjg,10, as expected from the experi-
ment, but the agreement between the calculated and the
experimental values of individual force constants was
not so good for K3, Kio,10, and Ki2,15. From the diagonal
force constants for the internal symmetry coordinates
in Table II, the interaction force constants connecting
the equivalent internal coordinates are obtained by
the orthogonal transformation of the coordinates given

TasiLE I1. Angle deformation force constants (in mdyn- A /rad?).

Force constant Experimental'® Calculated
K33 (a; CH; bending) 0.765 0.46
K212 (b3, CH; bending) 0. 688 0.50
Kss (biy CH: rocking) 0.319 0.28
Km'm (bzu CHz rocking) 0. 266 0.10
Kn (b, CH; wagging) 0.0999 0.082
Kgg (bey CH, wagging) 0.0735 0.058
Ky (torsion) 0.0685 0.063
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in Table I. The trans and cis interaction constants for
the C-C-H angles, %, and k., are defined by the terms
contributing to the potential energy,

ki AdusAdias+ AdroaAdas) + ko (AdasAdinn+ AdrasAdase) .

From the normal coordinate analysis of ethylene mole-
cule, it has been established that % is important but
k. is not, and the origin of this frans interaction_has
been an interesting problem for the theoretical predic-
tion of force constants of ethylene. The presently calcu-
lated value of £, (0.07 mdyn-A/rad?) agrees well with
the experimental value (0.065 mdyn- &/rad?), whereas
the calculated k. (—0.11 mdyn- A/rad?) is much larger
in magnitude than the experimental one (0.012 mdyn-
A/rad?) )5 Thus it seems that any detailed discussion
on the interaction force constants requires much more
elaborate treatment than the present one.

The force constants for the CH, wagging vibrations,
K and Kgs, were calculated to have reasonable magni-
tudes with the correct order, and the calculated and the
experimental values of the torsional force constant Ky
agree well with each other. Since the first derivatives
of any internuclear distance Rap with respect to the
out-of-plane coordinates Sy, S7, and Ss vanish for the
equilibrium configuration, only the first derivatives of
the core repulsion energy with respect to Rap contribute
to the force constants Ky, K7, and Kg, whereas both
the first and the second derivatives contribute to the
in-plane force constants. In this respect, the satisfactory
result obtained presently for the out-of-plane force
constants is not surprising because the inadequacy of
the functional form of EAB,,. (Rap) is supposed to be
less manifested in the first derivatives than in the
second derivatives.

Although the estimation of the cubic and quartic
force constants by the polynomial fitting is much more
difficult than the case of quadratic constants, the in-
spection of the energy curves along various coordinates
may offer some information on the anharmonicity of a
calculated potential function. Figure 2 shows the plot
of the calculated potential energy and its components,
E, and E,, against the four valence angle deforma-
tion coordinates, Ss, S, S, and Sj2. The corresponding
potential energies may be evaluated in the first approxi-
mation by multiplying the squares of the coordinates
by the quadratic force constants obtained from vibra-
tional spectra.!® These are also shown in Fig. 2 for the
sake of comparison. For the ¢, CH; bending coordinate,
S3, each of Eg and Eyore changes very steeply near the
equilibrium position, but they almost cancel each other
to give a reasonable energy curve. As expected from the
dominant repulsion between the hydrogen nuclei at
the geminal positions, the potential energy curve shows
the larger curvature in the first quadrant (closure of the
H-C-H angles) than in the second quadrant (opening
of the H-C-H angles). Unfortunately, we cannot check
the validity of the calculated anharmonicity, since the
cubic and the quartic force constants for the valence
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angle deformation coordinates have not yet been esti-
mated from vibrational spectra. For the nontotally
symmetric coordinates, Ss, S, and Sy, it is seen that
E.; attains the maximum value at the origin, but is
overcome by the stabilizing effect of Eoor to give the
symmetrical equilibrium structure. In Fig. 3, the experi-
mental and the calculated potential energies and the
components of the latter, E. and Eem, are plotted
against the CH, wagging coordinates Sy and Ss. Since
the quartic force constants for these coordinates were
estimated to be very small’s we calculated the experi-
mental potential energies in the same way as those in
Fig. 2. From the difference in the change of the inter-
nuclear distances, it is expected that FEgo, for a given
value of S7 is much larger than that for the same value
of Ss, and the former is in fact more than twice the
latter. However, the sign of E, is negative for S;#0
but positive for Ss#0, and the net potential energies
calculated for the displacements along these coordinates
are not much different from each other in agreement
with the experiment.

In contrast to the cases of the valence angle and out-
of-plane deformation coordinates discussed above, the
potential curve along the torsional coordinate of ethy-
lene has been the subject of a number of theoretical
investigations on the electronic structure.’®:2-% In com-
paring the theory with the experiment, however, most
of the previous authors referred to the torsional force
constant obtained only by applying the harmonic
approximation to the indirectly estimated fundamental
frequency, 1027 cm™, in the @, species. We constructed
the experimental potential curve in this work by using
the quadratic and quartic force constants obtained
from the analysis of the vibrational anharmonicity of
ethylene'® as well as the barrier height for the internal
rotation obtained from the reaction rate of the cis—
lrans isomerization of 1,2-dideuteroethylene.?® This
barrier height has been referred to by Charney et al.
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TasLE I11. Parameters in core repulsion energy [Eq. (15)] and stretching force constants.®

Calculated
Force constant
aap (in A (in mdyn/4) Experimental® #7=1.0 n=1.5 n=2.0
acc 1.900 1.844 1.741
K, (C=C) 5.861 3.5 4.6 5.8
acn 2.339 2.525 2.650
Ky (a, C-H) 2.658 2.15 2.70 3.35
Ky (b, C-H) 2,777 2.05 2.60 3.25
Ky (by, C-H) 2.676 1.95 2,50 3.15
Ku.u (b C-H) 2.683 2.15 2.75 3.40

8 The calculated and the experimental bond lengths are: Ree =1.337 A and Ry =1.086 A,

in their analysis of the vibrational structure of the ultra-
violet spectrum of ethylene.?”

The torsional potential of ethylene may be expressed
in terms of the coordinate S, as

E(S))=V,(1— cosSy)+Va(1— cos2S,)
+V3(1— cos3Sy)

= K44542+K44:u 544- (16)

The force constants Ky and Ky and the barrier height
B are then related to Vi, Ve, and V; by

K44=%(V1+4V2+9V3) )

KMM: - (V1/24+2V2/3+27V3) y
and
B= 2(V1+ Vﬁ) .

From the numerical values Ky=0.0685 mdyn- A/radz,
K 4= —0.0039 mdyn- A/rad4, and B=0.4486 mdyn- A,
we obtained Vi, V,, and V3 as 0.2239, —0.02253, and
0.0036, respectively, in mdyn- A. The resulting experi-
mental curve is shown together with the calculated
curves for E, Eo, and Eore in Fig. 4. As indicated by
the relative magnitudes of the quadratic and the quartic
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F1c. 4. Potential energy curve for the torsional coordinate: —,
L (calculated); - - -, E (experimental); <+« Eei; +=* Eoore-

force constants, the experimental potential energy curve
is quite harmonic except near the top of the barrier,
and shows an appreciably smaller curvature at the
potential minimum than at the maximum. It is worth-
while to note that the simultaneous fit of the quadratic
force constant and the barrier height also requires a
potential function which is much less anharmonic than
the simple sinusoidal potential which has the same
curvature at the minimum and the maximum. On the
other hand, the calculated curves for Ee. and Eore
appear nearly parabolic and sinusoidal, respectively,
and the magnitude of E, increases far more rapidly
than that of E.ue on the increase of the torsional angle.
Hence the anharmonicity of the calculated potential
function becomes very small, resulting in an excellent
agreement between the calculated and the experimental
energies over a wide range of the torsional angle. The
calculated curve near the top of the barrier is not cor-
rect, however, since the interaction between the ground
and the excited states is not taken into account in the
present treatment.

For the C=C and the C-H stretching coordinates, .S,
S, Ss, Ss, and Sy, Table IIT shows the quadratic
force constants obtained from the vibrational spectra!

s '\ /
2
i \
1.0 /
//
N} 1.2 13 1.4 (K] 1.6 L7
Ree (A)

T16. 5. Potential energy curve for the C=C stretching coordinate:
—, E (calculated); ---, E (experimental%.
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and the corresponding constants calculated in this
work. The parameters aap and 7 in Eq. (15) are also
given in Table ITI. It is scen that the force constants
atlain reasonable values when » is 1.5 and 2.0 for the
C-H and the C=C bonds, respectively, but the equilib-
rium bond lengths and the {orce constants cannot be
fitted to the experimental values simultaneously by
fixing # for the C=C and the C-H bonds to the same
value. The potential curves calculated by using the
best values of # are compared with the experimental
curves in Figs. 5 and 6 for the C=C stretching and the
a, C-H stretching coordinates, respectively. The ex-
perimental curve for the C=C stretching coordinate
represents a Morse-type function,

E(S)) = (Kn/a")[1—- exp(—aS)) ],  (17)

where the parameter a is taken to be 2.0 A-!. This
function has been assumed in estimating the cubic and
quartic force constants from the spectroscopic data.!®
The effect of truncating the Taylor expansion of Eq.
(17) at the quartic term becomes so large for S.>
0.3 A that the curve based on a quartic function is
not adequate as the experimental curve to be com-
pared with the calculated. For the a, C-H stretching
coordinate, such the effect of truncation was found to
be small in the range —0.6 A< 5;<0.6 A, and the
experimental curve in Fig. 6 was calculated by the
quartic function

E ( Sx) =Ky S+ K -5'1'1+ Ky Sl",

where the value of K, was that given in Table 111, and
according to the previous estimation of the vibrational
anharmonicity,'® Kj;; and Ky, were taken to be —2.159
mdyn/A? and 1.007 mdyn/ A3, respectively.
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Fic. 6. Potential energy curve for the g, C-H stretching co-
ordinate: —, E (calculated); - - -, E (experimental),
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The agreement between the experimental and the
calculated potential encrgies throughout the investi-
gated range of the bond length indicates that the use of
Eqoreincluding two empirical parameter is fairly success-
ful for predicting the anharmonicity of the bond
stretching potential. It may thus be interesting to see
if the parameters used for ethylene can fit also the bond
lengths and the force constants of other molecules,
especially acetylene and ethane.

ACKNOWLEDGMENTS

Our thanks are due to the members of the computa-
tion center of the University of Tokyo for the use of a
HITAC 5020 computer for the numerical calculation.

* Present address: Department of General Iducation, Nagoya
University, Chikusa-ku, Nagoya, Japan.

1]. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys.
43, S129, S136 (1965).

2. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966);
D. P. Santry and G. A. Segal, ibid. 47, 158 (1967); J. A. Pople,
D. L. Beveridge, and P. A. Dobosh, ibid. 47, 2026 (1967).

3 H. Obayashi, H. Takahashi and T. Miyazaki, Symposium on
Molccular Structure, Chemical Society of Japan, Sapporo, 1967.

4G. A. Segal, J. Chem. Phys. 47, 1876 (1967); J. A. Pople,
D. L. Beveridge, and N. S. Ostlund, Intern. J. Quantum Chem.
1, 293 (1967) ; M. S. Gordon and J. A. Pople, J. Chem. Phys. 49,
4643 (1968).

8 T. Yonezawa, K. Yamaguchi, and H. Kato, Bull. Chem. Soc.
Japan 40, 536 (1967).

¢ H. Kato, H. Konishi, H. Yamabe, and T. Yonezawa, Bull.
Chem. Soc. Japan 40, 2761 (1967); T. Yonezawa, H. Nakatzuji,
T. Kawamura, and H. Kato, ibid. 42, 2437 (1969).

7 R. Pariser, J. Chem. Phys. 21, 568 (1953).

* Ior the numerical values, see Rel. §.

8 K. Ohno, Theoret. Chim. Acta 2, 219 (1964).

0 R. S. Mulliken, J. Chim. Phys. 46, 497 (1949).

11 7, Hinze and H. Jaffe, J. Chem. Phys. 38, 1834 (1963).

( 13 M). Wolfsherg and L. Helmholz, J. Chem. I’hys. 20, 837
1952).

BR. G. Parr and R. Pariser, J. Chem. Phys. 23, 711 (1955).

4 H. C. Allen, Jr. and E. K. Plyler, J. Am. Chem. Soc. 80,
2673 (1958).

B K, Machida, J. Chem. Phys. 44, 4186 (1966).

1 The numbering of symmectry coordinates has been revised
to follow that of normal coordinates.

17 The equilibrium H~C-H angle was calculated to be 117°59,
agrecing practically with the experimental value, 117°22/, by
Aﬁlen and Plyler."

8 M. J. S. Dewar and G. Klopman, J. Am. Chem. Soc. 89,
3089 (1967).

T, Gerratt and I. M. Mills, J. Chem. Phys. 49, 1719 (1968).

2 ], Overend and J. R. Scherer, J. Chem. Thys. 33, 1631 (1960).
( ;‘41{). S. Mulliken and C. C. J. Roothaan, Chem. Rev. 91, 219

1947).
( 2 1%) G. Parr and B. L. Crawford, Jr., J. Chem. Phys. 16, 526
1943).

¥ J, W. Moskowitz and M. C. Harrison, J. Chem. Phys. 42,
1726 (1965).

¥ 1], Kaldor and I. Shavitt, J. Chem. Phys. 48, 191 (1968).

B R. J. Buenker, J. Chem. Phys. 48, 1368 (1968).

# J. . Douglas, B. S. Rabinovitch, and F. S. Looney, J. Chem.
Phys. 23, 315 (1935).

(1:)16% McDiarmid and E. Charney, J. Chem. Phys. 47, 1517



