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We have shown that the correct variational equations for the general SCF orbitals are
[Fi=T;10;) W;1G,) 19 =0, where Gj=2;F;+ (1 —A;)Fy; Ay #0 and how these may be com-

bined into simple eigenvalue problems.

In the course of discussions, we re-examined whether

the coupling operators suggested previously are based on the correct variational conditions.

1. INTRODUCTION

A variety of general SCF operator (coupling
operator) methods in Hartree—Fock (HF)™* and
multiconfigurational (MC)*™" SCF theory have been
developed. The nature of the coupling operator
method was fully discussed by Huzinaga® and it was
shown that there is an arbitrariness in the defini-
tion of the general SCF operators. However,
Huzinaga’s developments depend heavily on the
equations which become valid only when the final
self-consistent solutions are obtained. On the
other hand, it was shown that some of the coupling
operators are incompléte and have the nonunique
solution in open-shell SCF computations.® The
meaning of the nonunique solution originates from
the fact, as explored by Levy, ® that such a coupling
operator fails to satisfy the necessary variational
condition on the orbitals to be optimum. In this
paper we will make a slight extension of the thgory
developed by Huzinaga and Levy. The emphasis
will be on getting the general SCF operators which
satisfy the correct variational condition. In Sec.
II, the correct variational equations are first dis-
cussed in connection with the generalized Brillouin
theorem. Then we derive the general form of the
coupling operator which satisfies the correct varia-
tional condition, In addition, some simplifications
are made which can be useful in practical applica-
tions. In Sec.Ill, we re-examine whether the cou-
pling operators suggested previously are based on
the correct variational condition,

II. CORRECT VARIATIONAL CONDITIONS

We will limit ourselves to restricted SCF treat-
ment of many electron systems, i.e., to states
whose wavefunction of an n-electron system is ex-
pressed as the sum of several configurations:

@0-:? a,,\Il,,, (1)

where ¥,’s are antisymmetric many-electron func-
tions, built up from # spin orbitals {¢,.}, and each
refers to a configuration of occupied orbitals. We
assume that the spin orbitals are taken in the form

Om=9;a Or =3P, (2)

Their corresponding spatial orbitals {i;} are chosen
from the eigenfunctions of certain effective one-
electron Hamiltonians. The wavefunction defined
above is general enough for closed- and open-shell
systems; it includes general HF theory'™* and
many types of MC SCF*" theory. In most cases
the coefficients a, and the orbitals {y;} are simul-
taneously determined by the variational method.
Various methods differ only in the choice of the
effective one-electron Hamiltonians.

In the SCF theory, we require that the total ener-
gy E be stationary under all variations of the orbit-
als consistent with the orthonormality conditions,
namely

(i | ;)=84;. (3)

These constraints are usually incorporated by in-
troducing the Lagrangian multipliers {6}, and re-
quiring that

=E-2;?oﬂ(¢i [9;) (4)

be stationary. The result is

E'=2?{(ﬁ¢s | Fy |0+ @y | Fi | o9:)}
—2§)£? 055 { 00s | 9,0+ s | 89,0}=0, (5)

where F,; is an effective one-electron Hamiltonian.
Equation (5) should hold for any infinitesimal varia-
tions | dy;) and (5y, |, with suitable values for the
Lagrangian multipliers. Therefore, one can ob-
tain

Fy l‘/’i):? l4;) 61, (8)
W 'F4=4? @y | 65 (7

As known well, subtracting the complex conjugate
of Eq. (7) from Eq. (6) establishes that the Lagran-
gian multipliers are the elements of an Hermitian
matrix

;= 9:; . 8)
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However, this does not mean that Eq. (7) is equiva-
lent to Eq. (6) but Eq. (6) together with the addi-
tional condition Eq. (8) are the correct variational
conditions. The orthonormality conditions given
by Eq. {3) permit us to rewrite Eqs. (6) and (8)

as

F:H’i)-‘:?l%)(%lf‘illpi) (9a)

@ | Fi—F; [9;)=0. (9b)

Note here that Eq. (9b) is automatically satisfied
in the closed-shell HF theory since F; is inde-
pendent of i.'° So in this case Eq. (9a) alone
corresponds to the correct variational condition.
However, this is not true, in general, for the
open-shell case. It must be stressed again that
Egs. (9b) as well as (9a) is the necessary varia-
tional condition for the orbitals to be optimum.
That is, the Hermitian property of Lagrangiaxi
multipliers is one of the necessary variational con-
ditions in the open-shell theory although it origi-
nates from the nature of the Lagrange multipliers

method. ! However, in past treatment for deriving

the compling operator, this supplementary condi-
tion Eq. {9b) has often been neglected. For in-
stance, in Birss—Fraga formalism, * Eq. (6) is
considered to be equivalent to Eq. (7) and only Eqg.
(9a) without (9b) is dealt with as the variational
condition. Later in this paper, we will consider
how to put the variational conditions Egs. (9a) and
(9b) into more general and useful form.

Before proceeding to the main subject, let us
make clear the physical meaning of the above vari-
ational conditions in connection with the general-
ized Brillouin theorem. According to the gener-
alized Brillouin theorem derived by Levy and
Berthier, ' the Hamiltonian matrix elements be-
tween the ground-state wavefunction and some
well-defined linear combination of excited Slater
determinants are equal to zero:

@o|H ] &4i~j))=0,

where ¥, is the normalized total wavefunction
given by Eq. (1) and ®4(i —~j) are defined as

@o(i~j>=§ ay [ Wi ~7) = B (j~i)].

(10)

(11)

'Here ¥,{i ~j) are defined as follows: X spin or-
bital #,, is singly occupied in ¥,, ¥,(i~j) is ob-
tained simply by replacing ;o (or ¥;B) in ¥, with
Y;a for P;B); if ¢, is doubly occupied in ¥,, the
original Slater determinant is replaced by a sum
of two determinants, one with §;a replaced by
P;a, and the other one with ;B replaced by ;8.
Here, of course, y;a and ;B in ¥,(i—7j) must not
be the already occupied orbitals.

In terms of the effective one-electron Hamil-
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tonian, these matrix elements given by Eq. (10)
can be rewritten as

(@0 |H | ®oli~al)=2@, | F; | 9;)=0,

l<i<n<a (12a)
(Bo | H |gimj)=24,; | Fy~F, |9;) =0,
1<i,j=<n. (12b)

Here, (i~ a) corresponds to a single excitation
from an occupied orbital i; to a virtual orbital g,
which is not occupied in ®, and ®4(i -~ j) gives those
which only involve the original n orbitals. On the
other hand, by taking the inner product of any or-
bital g, with F,; | ;) given by Eq. (92), we obtain

W |Fy |$:)=0, 1=i<n<a. (13)

Thus, the variational conditions Egs. (9a) and
(9b) are equivalent to the generalized Brillouin
condition Egs. (12a) and (12b), respectively.
Hence, if the optimum orbitals are obtained, the
generalized Brillouin theorem given by Eq. (10)
or (12) is satisfied.

As shown above, Eq. (9a) corresponds to the
variational condition between the virtual and oc-
cupied orbitals and Eq. (9b) does to the one among
occupied orbitals.

Il. THE PROPER GENERAL SCF OPERATOR

Now we consider how the complete variational
conditions may be combined into simple eigenvalue
problems which are solved for all corbitals. Equa-
tions (9a) and (9b) can be unified equivalently to the
form

[Fi-Z w6 lwo-o, (14)
where
Gyi=N Fya (1= 2;) Fy5 2y # 0, (15)

Here, A;;’s are arbitrary nonzero real numbers.
These G operators were first introduced by Huzin-
aga. ¥ It is easily checked that Eq. (14) is equiv-
alent to the correct variational conditions, Egs.
(13) and (9b) if one multiply Eq. (14) by 3,(n <a)
and by ¥; (j #1), respectively. We remark that if
Aj; equals zero, Eq. (14) becomes identical with
Egq. (92) and no longer equivalent to the correct
variational equations. I must be noted that Eq.
(14) with X ;;#0 is the correct variational equation
and the condition which such an improper coupling
operator as Birss—Fraga one failed to satisfy. With
A;;=1, we obtain

[Fi"? |99 @, IFJ)] [9:)=0 (16)

which is identical with the necessary variational
condition derived by Goddard III ef al. * and Dahl
et al.® This seems to be simpler than Eq. (14)
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but is not general and available form for the de-
rivation of the coupling operator.

By adding to each side of Eq. (14)
19; ) (¥; 1 F;19; ), we have

[Fi_' Z | 95) s ‘Gji)] L= |9 @ |73 i)
j#) (17)

Since the operator in the left-side of Eq. (17) is
meaningful only when it acts on [3;), we may re- .
write it by using the projection operator. as

ri=Fy | ) @ | '“Z#z) IIPJ}@J [Gyilwdy Wil

(18)
Here, the operator given by Eq. {18) are not Her-
mitian in general unless {y;} included in 7} satisfy
Eq. (14). If the operators are chosen as Hermitian,
we will get the coupling operator in the general
SCF theory. ® By symmetrizing the operator 7} to
be Hermitian, we can define a general SCF opera-
tor

ri= Fy | 90) @ |+ |00 @ | FO)= |90 @a | Fa | 9:) @5 |
-2 e sl GJ.iA L 9s) @i |

5 @)
- 2 |9y @i |G lu) s | (19)
JH)
and obtain the SCF equations

v wy= 0 @i | Fa ). (20)

Now we seek for the unified SCF operator indepen-
dent of the suffix ¢ by summing 7; over all occupied
orbitals:

R=27;
1
=‘Z{(F£ s s |+ | 9:) @3 | Fo)
- |9 @ | Fi |9 @ [}

—Z‘ijz ) @i | Gss+Gyi |9y @51 . (21)
Then

R |1P¢)={Fi I‘I’i)"'? | 95 @, | F, Ill’i)}
+20 (=N [9) @y | Fa=Fy | 92
e
+ ) @i | Fi [0, (22)

From the variational condition that y; satisfies
both Egs. (9a) and (9b), we obtain the simple uni-
fied SCF equation,

R|p)= |9 @i | Fs |- (23)

This SCF operator R has already been suggested
by Huzinaga.® However, a further remark is
necessary for the parameters {A;;} introduced in
Eq. (15). 1t is easily checked from Eq. (22) that
if the parameters are symmetrical in their two
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indices, Eq. (9b) is not necessarily satisfied by
the solutions of Eq. (23). Hence we conclude that
when we use the unified operator R, X, must not
be chosen to equal to X;;.  The R with \; # Ny is
a geneval form of the coupling operator which sat-
isfies the corvect variational condition.

It must be noted that the matrix element of the
total Hamiltonian H given by Eq. (12) are identical
with the following matrix elements of R in Eq. (21);

(@0 | H | &oli~a)y=20, | F, | 3;)
=2Q,|R |9, 1=i=n<a
(24a)
(@ | H | 2ol ~))=20; | Fi- F; |43
=2/ =2 @ | R [ 90),
1=<i,j=n (24b)

which are easily derived from Eq. (22). Of course,
these off-diagonal elements of R are equal to zero
for the SCF solutions. Namely, the generalized.
Brillouin theorem holds for the solution of Eq. (23).

Now we consider the simplifications of the gener-
al SCF operator R by an appropriate choice of the
parameters {A,;}. This choice of parameters is a
sensible one in practical applications. The only
limitation on the parameters is that A;; is not
symmetrical in the two indices i and j. The term
G;;+Gy; in R is rewritten as

Gij+Gji=(1—in"'hij)Fi‘*'(l“’)\j{—)"ij)Fj (25)

which suggests the following simplification. By
setting A ;; — N;=1 with  >j for all pairs, we have

Gi]+Gji=2FJ, i>j . (26)
Then the R is reduced to
R=§;{(Fc H’t)(‘l’i |+ |9 @i | Fy)

~ |9 @: | Fi |90 @4 |}
2L UL AL A TP

oy | Fyled @i}, @0

In practice, this particular choice, A;; - A;,=1, is
recommended since it preserves the balance, as
we see from Eq. (22), between the variational con-
ditions given by Eqs. (92) and (9b) and is expected
to give better convergence characteristics.

In the case in which the fractional occupation
numbers f; in F; and f; in F; are different, the
following simplification is made. With the choice
of A;; and )\;; so as to satisfy

Aii - 7‘-:1"‘ (fi +fj)/(fi "fj)

we have
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G+ Gy =12/ -f M F =1, Fy). (28)

Thus, a kinetic energy term plus-an electron-nu-
clear attraction term can be eliminated since such
a one-electron part of Hamiltonian included in F;
is linearly dependent of f;. For instance, assumed
for simplicity the case in which F;’s have the form

Fi=fi[h+§> (Za,,J,—b”K,)], (29)
where J and K are usual Coulbmb and exchange
operators, Eq. (28) becomes

Gi;+Gyi=1{2111,/ U, —f:)}? {2(aix—a;)d,

~(b-bp) K. (30)

The similar idea was employed in forming the
Roothaan coupling operator. !

Next, by adding to R in Eq. (21) the operator of
the form

V=(1~?|¢J)<lpj|)>;’Fi(l"§;llpk)(z/)kl)’ (31)

we obtain the following coupling operator

R'=R+V
= (1- -
S (- Z 16 )R- 2 )

+ z:‘; O = 2ig) | 95) @y | Fa=Fy |90 @4 | -

(32)
The addition of V is arbitrary but useful since it
fixes the virtual orbitals and yields the virtual or-
bital energies. '

IV. PAST TREATMENT OF THE GENERAL SCF OPERATOR

In this section we shall re-examine whether the
coupling operators suggested previously are based
on the correct variational conditions. The one es-

- sential restriction on the parameters used to form
the total coupling operator R in Eq. (21) or R’ in
Eq. (32) is that they cannot be symmetrical in their
two indices, A;;# X;;, which originates from the
variational condition among the occupied orbitals.

First, with X j;=;; for all choice of A;; and A;,
the R in Eq. (21) becomes as

R‘:;{(Fi [y @i |+ |9 @ | FO}
—?3‘3 [0 @i | Fi+ Fy |9 @ |

+§> [y @i [ Fo oy @i |, (33)

The R is the general coupling operator given by
Birss and Fraga.* Therefore, the Birss-Fraga
coupling operator method does not account for the
optimal mixing of the occupied orbitals among them-
selves since Eq. (9b) is dropped. This is the es-
sential source of trouble when used in practice.
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With the same choice of parameters A;;’s, the R’
in Eq. (32) becomes

R'=§)(1—j(§)’|%) @ I)Fi(l"k(zm [ I) ’

Then, by adding to the above R’ the operator
~Z 2 e s I Fe o) @y |

which merely shifts the occupied orbital energies,
we obtain the following coupling operator

R'=ZFi= 2 ZAE 4 01+ 18 0 | B}
+Z2T e @ | F el 39

(i#h)

This R’ is the one proposed by Huzinaga.® For the
same reason as above, this coupling operator also
fails to satisfy the correct variational condition
given by Eq. (14) and may lead to unoptimum solu-
tions.

In MC SCF theory, the SCF operators proposed
by Das and Wahl® and by Veillard and Clementi’ are
also improper since the variational condition Eq.
(9b) is not taken into account. I one use these im-
proper coupling operators, one must ensure the
Hermitian property of the Lagrangian multipliers
through the iterative process.

Hunt et al. *® and Peters®® proposed a simple de-
vice for use with the open-shell calculations. These
methods, named as the orthogonality constrained
basis set expansion method, eliminated the off-
diagonal Lagrangian multipliers only in Eq. (6) and
the variation condition among occupied orbitals,
Eq. (9b), is left out of consideration. Therefore
these may lead to unoptimum solutions.

While, starting with Eq. (17), we can define the
coupling operator

ry= "ja)[ |9, @y | Gyi)+ Gy | 053 @y | (35)
and we have’
FEivry 9= o) @ | Fy s, (36)

‘The 7, is the general form of Roothaan coupling

operator! as explained by Huzinaga.® The equiva-
lent form of F;+7; in Eq. (36) is also derived by
adding to the 7, in Eq. (19) the operator®

A= |9 @ DF(= |9 @4 ) .

Hence, F;+7; satisfies the correct variational con-
dition and the solutions are the optimum ones. In -
this case, there is no limitation on X ; but that

A5 #0. It would be, of course, convenient to unite
those equations into a simple pseudoeigenvalue
equation which is solved for all orbitals. The uni-
fied operator derived by Roothaan can be formed
only in the case in which there are two distinct F
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operators. For the purpose, one must take such
necessary steps in general as done in Egs. (18)-
(21).

In the case in which there are only two distinct F
operators, we can derive the following coupling
operator from the R’ given in Eq. (32) by setting
lji - AIJ:' 1 Withj >i,

R'=(1- |4 @2 NF4(1= |9 @2 |)
+ (=99 @ DF2(1= |90 @1 ])
+ (1) @y |+ | 'I’z)@z.l )(Fy=F,)
(|0 G|+ [0 @2 1) (3D

which is equivalent to the effective Hamiltonian
suggested by McWeeny. 2! This one has the proper
form.

Starting with Eq. (16), Goddard Il ef al.'® pro-
posed the following SCF operator??

R=27]r,, (38)
1

where
rs[Fi= 2l )] (1- 2 1w ). o)
Then '

Rlad= ) {| @i [ Filodi?
+Z’> | @i | Fi=Fy|uy) |z+? | @i | Fe | |2}

+2§ | va){ @a | Fi |90) @1 | Fy | 92
4,2 W |Fi=Fy |0 @y | Fy=Fy | 9p)
+§ @a | Fi |00 @o | Fy |0},  (40)

where a, b summations run over all virtual orbit-
als. Hence if solutions have correctly converged,
one has

Rdy= | | @i | Fi o) 2. (41)

However, it is easily checked from Eq. (40) that
only diagonalization of the operator R does not al-
ways lead to the correct solutions. In order to
solve iteratively for the optimum orbitals one must
ensure the equality

@i | R [wdy=| @i | Fo o) |?

at each step of the iterative process in addition to
diagonalization of R. On the contrary, in the case
that the R in Eq. (21) or R’ in Eq. (32) is used, only
diagonalization of the operator leads to the correct
converged solutions. This is expected to be pref-
erable from a computational point of view. Gener-
ally speaking, the SCF operator formed through
the symmetry product of the operator given by Eq.
(18) has poorer convergence characteristics than
‘hat formed through the symmetry sum. 2 prelim-

inary calculations with INDO-MO’s indicate that
the coupling operator R’ given by Eq. (32) with
Xy¢— Ny=1(j >7) leads satisfactorily to the correct
converged solutions, ?* even for the case in which
convergence difficulty is found in the usual Roothaan
open-shell treatment.

IV. SUMMARY

We have shown how to put the variational condi-
tions on the orbitals of the general SCF theory,
Egs. (9a) and (9b), into a more general and useful
form, Eq. (14). The emphasis in this article has
been on deriving the general SCF operators which
satisfy the correct variational equation. In the
course of the discussion, we re-examine whether
the coupling operators suggested previously are
based on the correct variational conditions.

In the present paper discussions have been lim-
ited within the case in which the variational condi-
tion is given by Egs. (9) or (14). However, it is
easy to extend the present development to the more
general class of problems. 2°
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