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The second-order energy of the coupled perturbed Hartree-Fock (CHF) theory is expanded explicitly
into the sum with respect to the electron—correlation corrections. In a matrix form, the expansion is
exactly geometric. The correlation effect included in the CHF theory has two origins: one represents
the so-called first-order correlation energies intrinsic to the unperturbed ground and excited states,

and the other represents the correlation effect induced by the external perturbation. The matrix
geometric expansion reduces under some approximation to an ordinary scalar geometric series. This
gives a basis for the geometric approximation of the CHF energy proposed empirically by Schulman
and Musher. Exactly the same arguments also apply to the second-order energy of the singly excited
CI method, simply by neglecting the perturbation-induced correlation effect.

. INTRODUCTION

Some properties of a many-electron system in the
field of one-electron perturbation may be calculated us-
ing perturbation theory. The coupled perturbed Hartree-
Fock (CHF) theory~® is especially suitable for this pur-
pose. As was shown previously, !° it gives the best pos-
sible second-order energy based on the Hartree-Fock
(HF) zeroth order wavefunction. When we use the dou-
ble-perturbation technique, 1 the CHF energy may be ex-
panded with respect to the order of the electron-correla-
tion correction as

EQ) T =EQ) +\Eg) +N*Efy +-+ . W

The leading term E%, corresponds to the uncoupled HF
energy of Dalgarno, ! and the explicit formula of the
first-order term El(z) was given by Tuan, Epstein, and
Hirschfelder.* .

Some years ago, Kelly'? and'Schulman and Musher'3?
considered the polarizability a of the hydrogen atom as
a HF double-perturbation expansion problem. (In this
case, the CHF energy turns out to be an exact second-
order energy.) They observed that the expansion (1)
was geomeltric to a high degree of accuracy in that the
ratio between two neighboring terms was nearly a con-
stant,!3* Schulman and Musher extended this observa-
tion, by analogy, to the many-electron system and pro-
posed the following geometric approximation of the CHF
polarizability:

Ocpp ™ Ogoom =gl — @) /ag)? | @)

where a,=- %E"(g,. Theoretical justifications of this ap-
proximation were given by Amos!®® using the Feenberg-
Goldhammer procedure'®® and by Tuan'®® as a result of
the restrictive variation of the CHF orbitals. Various
calculations hitherto made'3*13%13¢ haye confirmed the
validity of this approximation.

It was shown in a previous paper!® that the CHF ener-
gy can be written exactly in a simple sum-over-state
perturbation formula. The resultant equation was very
similar to that of the singly excited (SE) configuration
interaction (CI) method and did not require an iterative
solution. Based on this expression, we give here ex-
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plicitly the double-perturbation expansion formula (1)
of the CHF energy. The expansion is shown to be ex-
actly geomelric in a matrix form. The analysis clari-
fies the nature of the electron correlation included in
the CHF theory. The condition under which the matrix
geometric expansion reduces to an ordinary scalar geo-
metric series is given. Similar behaviors of the sec-
ond-order energy of the SE—-CI method are also men-
tioned. Prior to these, we first examine in the next
section the hydrogen atom case, because of its unique
simplicity, even though this system is not general enough
since it does not have actual electron correlation.

1. EXPANSION FORMULA FOR HYDROGEN ATOM

The exact zeroth order states of the hydrogen atom
are specified by the following eigenvalue equation,

Hy=-38,-1/r, , (3)

Hy|n)=¢, |n) . 4)

In the HF representation, we define the following HF op-
erator,

Hy=-38,-1/7,+V(r), (5)

Vir,) = f dry ¢o(7,) "'Izl'.(l = Pp,) ¢o(72) (6)

and the following HF equation,
Hy [n" =€) |n’) . (7)

Since the operator V has no effect on the ground-state
orbital, i.e., V|0)=0, the ground state is common to
both representations.

$0=10)=10", =¢. @)
The “electron-correlation” operator is defined as
—AV=Hy-Hy, , (9)

where A is a dummy parameter.

In the exact representation, an electron in the excited
orbital |n) sees a bare nucleus, whereas in the HF rep-
resentation, an electron in the excited orbital In’) sees
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a bare nucleus and an electron in the 1s orbital. The
main effect of the potential V is thus to raise the orbital
energy by the amount of the electron repulsion inte-
gral. Inother words, going from the representation (4)
to the representation (7) corresponds to going reverse
the story of the “N~1” field.*¥ Hence, in the language
of many-electron systems, the exact excited orbitals

In) are just the modified HF virtual orbitals.®® The cor-
responding modified HF operator is the exact Hamilto-
nian H,, as the relation V]0)=0 implies. The two sets
of the excited orbitals {#} and {#'} are therefore con-
nected by the unitary transformation as!%®

n=n’'U, (10)

where n and n’ are row vectors, and U is defined as
diagonalizing the following matrix;

U (0 |Hy- 0’ YU=24€. (11)

A€ is a diagonal matrix composed of the exact transition
energy €, - €, (n>1). Inserting Eq. (9) into Eq. (11),
we obtain

A€’ - V' =UAeU* (12)
where V'is the “correlation” matrix defined by
V'=(n’|V|n’). (13)

The exact second-order energy of the hydrogen atom
is written in a sum-over-state formula as

E g, =-{0|H,|n) (a€) (n|H,]|0), (14)

where H, is the external one-electron perturbation and
the reciprocal matrix (A€)™! is diagonal with the ele-
ments (€, - €,)"!. The expressions of the SE—CI and the
CHF energies obtained previously'® reduce to the above
equation for a one-electron system, 8 1n the HF repre-

sentation, the exact second-order energy (14) is written
as

Eg == O|H|n" YAy [1- AV (Ae) T ' |H, [0), (15)

where (A€’)! is a diagonal matrix with the elements
(€n— €)', Expanding the term [1- A V’(Aa€’)*]™! with re-
spect to the “correlation” parameter A, we obtain

E g, =E%, + \El) + 2 E% +.0. (16)
where

E%, =-(0|H,|[n")a€) '] H,|0) , (172)

EY == O|H, |nYae) WV (ae) (n’|H[0) ,  (17b)

E%, =- 0|H,|n"Yae' "'V (ae) V' (ae'y (' |H,|0)
(17¢)
This expansion is geometric in a matrix form. The
“ratio” matrix is

AwV(Ae) =’ |V]n") (a€)? (18)

Its diagonal element is the usual Coulomb minus ex-
change integral divided by the HF orbital energy differ-
ence (Jy,, 0 = Kys,:)/ (€, = €), which is positive and much
smaller than unity. The off-diagonal elements are an
order of magnitude smaller than the diagonal elements.
Therefore, it is expected that the characteristic values'

eee, .
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of the ratio matrix are smaller than unity, and then the
above expansion converges'” to the single formula (15),
i.e., to the exact value.

If we can approximéte in important excitation domains
(see below) as

V/(ae )yt ~at | (19)

where a is a constant smaller than unity, the above geo-
metric expansion reduces to an ordinary scalar geo-
metric series, and Eq. (15) becomes

Eg ~EgG™=Ee (1 -Eg/Eg)™ (20)

This is the geometric approximation proposed by Schul-
man and Musher.’®* Due to their analysis, the approxi-
mation (19) holds in the important excitation domains,
That is, in the regions of the excitations which give
dominant contributions, the elements of the ratio matrix
are well approximated by abd,; . Kelly'? also used es-
sentially the same approximation as above.

111, EXPANSION OF THE COUPLED HF ENERGY

In a previous paper'? the CHF energy was expressed
in a simple sum-over-state perturbation formula. This
expression is very suitable to study the correlation ef-
fects included in the CHF energy. The formulation is
very similar to the hydrogen atom case.

First, we review briefly the previous results.!’ As
an unperturbed wavefunction, we choose the HF closed-
shell wavefunction ¥, composed of doubly occupied orbit-
als {i}. The virtual orbitals are denoted as {m}. We
introduce single excitation operators defined by

i = (g @ +ang@18)/V2 . (21)
for spin-independent'perturbatibns, and

Smi=(ana@io—ngai ) N2, (22)

for spin-linear perturbations.'® a},, and a,, are the

fermion creation and destruction operators. S;,; ¥, is a
singly excited singlet or triplet configuration, depending
on Egs. (21) or (22). As shown previously, the CHF en-
ergy is equivalent to the variational second-order energy
associated with the wavefunction

o
: ‘I’car=9‘(1 +Z¢ Coni Smi +3 Z;Zj Cmi Cny Smi s:::)‘l’o , (23)
m m n

in the exact perturbed field, H,+H,. Nisa normaliza-
tion constant and C,,; is a variational parameter first
order to H, .'® Let us define the following two matrices
A and B:

A=(0|SH,S*|0), (24)
B = (0| Hy(S")T s'|0), (25)

where $* denotes a row vector composed of the excita-
tion operators S;;, and |0) denotes the HF ¥,. For
closed-shell systems, both of the matrices A and B are
real symmetric matrices. Then, we can define the or-
thogonal matrix U which diagonalize the sum of the ma-
trices, A+B, as

UT(A:B)U=T, 26)

where the plus and minus signs correspond to real and
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pure imaginary perturbations, respectively.!® T isa
diagonal matrix with the element 7,;. Using this or-
thogonal matrix U, we define the following transfor-

mation of the single excitation operators:
Q'=s'u. (@7)

Thus, the variational second-order energy associated
with the wavefunction (23) is written in a following sum-
over-state perturbation formula:

| E%‘?“‘=—Z; O|H, Q10 (0| Quy Hy |0)/(Tpyy = Eg),  (28)

where Ey={0|H,10). This is an alternative equivalent
expression of the CHF energy.

Now, let us introduce the HF operator Hy, and the elec-
tron-correlation operator AV. The HF operator is de-
fined as

Hoo = Z h(V) ’

h)=-1a,- ; z, /u, +gW) , (29)

where g(v) is the sum of the Coulomb and exchange op-
erators. The electron-correlation operator AV is de-
fined as

—kV';Ho—Hoo:g 1/1’“,,—;8'(1/), (30)

where the minus sign is attached for the later conveni-
ence. The HF operator Hy, satisfies the following eigen-
vale equations:
oce
Hyol0)=Ege|0), Ego=D_2¢, ,
! (31)
Hoo Sy [0) = (B — €, +€,) S} | 0)
where ¢€; is the HF orbital energy.

Using the above definitions, the CHF energy (28) canbe
rewritten in the HF representation. The denominator
is related with the HF quantities as

U(T-E)UT=ae-2V, (32)

where A€ is a diagonal matrix composed of the HF or-
bital energy difference, ¢,-¢€;. Vis a correlation
matrix defined by

v=(0|sVsS'|0)-(0|V|0)1:(0|V(S)TS'|0), (33)

where the plus and minus signs correspond again to real
and imaginary perturbations, respectively. Using Eqgs.
(27) and (32), the CHF energy is rewritten as

EET=_(0]H, 8|0} (€)™ [1- AV(A 6] (0| SH, |0) . (34)

Expanding the term, [1- AV(A€)™]™! with respect to the
correlation parameter A, we obtain

EGT =El) +\Elg) + NEf) +.+- (35)
where
E%, == (0|H,S'|0)ae) (0] sH, |0) (362)
Et) =~ (0|H,S'|0)(ae) V(ae) (0| sH, |0) , (36D)

B =~ (0|H,8'|0)(ae)! V(ae)! V(ae) (0] sH, |0) ,
e . (36¢)

This is the geometric expansion of the CHF energy in a
matrix form, Due to the similar argument®® to the hy-
drogen atom case, the above matrix geometric expan-
sion is expected to converge to the single formula (34),
i.e., to the CHF value.?* This presumes that the HF
approximation is meaningful.?°

The leading term EJ is identical with the uncoupled HF
energy of Dalgarno, ' and the first-order term EY, is
equivalent to that determined by Tuan, Epstein, and
Hirschfelder.* The explicit formulas of the second- and
higher-order correlation terms were not given elsewhere
in the literature,

Tuan, Epstein, and Hirschfelder* proposed to approx-
imate the CHF energy by the first two terms of the ex-
pansion (35), i.e., E%,+E};,. However, due to the cal-
culations of Epstein and Johnson, 2 it was not a good ap-
proximation to the CHF polarizabilities of neutral atoms,
This is also seen from the calculations reported by
Caves and Karplus® (see Table I). The second- and
higher-order correlation terms given by Egs. (36c),
etc., are therefore important for the CHF energy.

The above formulation clarifies the nature of the elec-
tron correlation included in the CHF energy. Referring
to the correlation matrix defined by Eq. (33), we find
that the first two terms represent the so-called first-
order correlation energies intrinsic to the unperturbed
excited and ground states, respectively. The last term
of Eq. (33) originates from the second-order (with re-
spect to H,) doubly excited configurations in the wave-
function (23).% Namely, the origin of this term is that
the doubly excited configurations induced by the external
perturbation H, interact with the ground state through
the correlation operator AV. Then, this term may be
said to represent the correlation effect induced by the
external perturbation. The diagonal element of this
term reduces to the exchange repulsion integral of the
appropriate sign,

0| VS, S5 |0)=2K,,. (37)

Here, the plus and minus signs correspond to the singlet
and triplet excitations defined by Eqs. (21) and (22), re-
spectively. Since there is another + sign in front of the

TABLE I. Uncoupled, geometric, and coupled Hartree—Fock .
values of some properties of the Be atom and hydrogen mole-
cule.® :

Uncoupled Geometric Coupled
Property® E%,) E%),+El EFM EGF Expt.
Be o 4,51 5.97 6.67 6.73
H, (@) 0. 566 0.715 0.768 0.775 0,822
a, 0.725 0.896 0.949 0.960 1.03
a, 0. 487 0. 624 0.678 0. 682 0.720
x 0.801 1.09 1.26 1.27 1.29

%These values are obtained from the calculations reported by
Caves and Karplus (Ref. 9).

Yo denotes electric dipole polarizability and ¥* high-frequency
paramagnetic term in magnetic susceptibility, || and L denote
the directions parallel and perpendicular to the molecular axis,
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TABLE II. Analysis of the correlation expansion of the singly
excited CI values and its geometric approximation, #

Uncoupled® Geometric SE-CI
Property® EY,, E%,+E}, E{EM’ ESECT  Expt.
Be « 4,51 6.59 8.37 8.45
Hy, (o) 0.566 0.758 0,855 0.856 0.823
ay 0.725 0.970 1.10 1.10  1.03
o 0,487 0.651 0.735 0. 736 0.720
x{ 0.801 1.04 1.14 1.15 1.29

“These values are obtained from the calculations reported by
Caves and Karplus (Ref. 9).

®The notations are the same as those in Table I.

°The zeroth order values are common to both the CHF and
SE—CI methods.

last term of Eq. (33), the sign of the final contribution of K,,,;
is plus for real singlet and imaginary triplet perturbations,
and minus for real triplet and imaginary singlet pertur-

bations. This shows a critical dependence of the second
correlation effect on the nature of the external perturba-
tion.

As shown in the previous report, ! if we neglect the
second perturbation-induced correlation effect, i.e.,
the last term of Eq. (33), the formulation given above
_turns out to be the formulation for the SE-CI method.
That is, the second-order energy of the SE—CI method
can also be expanded in a matrix geometric series hav-
ing exactly the same form as Egs. (34)-(36), simply by
changing the definition of the correlation matrix as

Vseer =0[SVS*|0)- (0| V]0)1 . (38)

In the hydrogen atom case studied in Sec. II, the correla-
tion matrix is composed only of the first term. Hence,
the formulation for the hydrogen atom is not general
enough to extend the results to many electron systems.

The above geometric expansion in a matrix form can
be written in an ordinary scalar geometric series, if the
“ratio” matrix V(A€)™ can be approximated as

vV(ae)yi=~at, (39)

in the important excitation domains (see the hydrogen
atom case), where a is a constant which is smaller than
unity .2’ Then, the CHF energy is approximated by

B~ B - By 1 - Bl /B 40

This is a geometric approximation of the CHF energy.
Tuan'*® has shown that when we restrict the variation of
the CHF first-order orbitals as ity = i $cup, Where o
is a variational parameter, the approximation (40) re-
sults. Referring to Eqs. (34) and (36a), we understand
that the Tuan’s restriction is equivalent to the approxi-
mation (39), and that p is given by u=(1-a)*. The
present formulation clarifies the meaning of the param-
eter u. The calculations carried out hitherto for atoms,
small molecules, and some 7-electron systems have
supported this approximation.3%13%13¢ Taple I gives
some numerical results taken from the calculations re-
ported by Caves and Karplus.® There, the error of the
above approximation is within 2% for every case.

Similarly, replacing V by Vgzcr, We can also obtain

the geometric approximation of the SE—-CI energy as
B =Eg " =E,(1-Ey, /Eg)™, (41)

where EY%, is the uncoupled HF value and E', is the
first-order term calculated from Eq. (36). In Table II,
we examined the validity of this approximation. It also
holds to a good approximation. The differences between
the geometric and SE—CI values are within 1%.

1IV. SUMMARY

In the present paper, the double perturbation expan-
sion of the CHF energy was given explicity. It was found
geomelric in a matrix form. The analysis has shown
that the electron-correlation effect included in the CHF
theory has two origins. One arises from the so-called
first-order correlation energies intrinsic to the unper-
turbed ground and excited states, and the other arises
from the correlation effect induced by the external per-
turbation. The magnitude of the latter is of the order
of the exchange repulsion integral and its sign depends
on the nature of the perturbation. For the SE-CI ener-
gy, its expansion is also geometric in a matrix form,
but the second correlation effect is neglected. In com-
parison with the diagrammatic analysis given by Caves
and Karplus, ® the present analysis is much simpler and
clearer.

The matrix geometric expansion of the CHF and the
SE-CI energies reduce to scalar geometric series, if
the approximation (39) holds for largely contributing ex-
citations. This is a basis of the geometric approxima-
tions of the CHF and SE-CI energies. The numerical
results support these approximations to a high degree
of accuracy.
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