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A new approach to the closed-shell orbital theory is presented with the formalism of the cluster expansion
of the wavefunction. The four independent excitation operators are used to represent the general
determinantal wavefunction and also to discuss the stability of the Hartree—Fock solution. This leads to a
new concept called the “stability dilemma,” which is the key not only in understanding the structure of
the orbital theory but also for the extension of the orbital model. Only when the stability dilemma is
removed, the correlation effect is taken into account within the framework of the orbital approximation.
The closed-shell orbital theory including the electron correlation is defined as |®) = ®expliF] 10},
where the F is the excitation operator to generate the variational space and the @ is the projection
operator to remove the stability dilemma. The various orbital theories (some are known but some are new)
can be obtained by appropriate choices of the F and ®. It is shown that the above cluster expression
‘makes it possible to analyze and interconnect the various orbital theories in the form of the limited CI
based on their own natural orbitals. The complex DODS theory is proposed. This new orbital theory is
the most suitable one to include the correlation effect within the orbital model in the closed-shell system.

I. INTRODUCTION

An exact many-electron wavefunction can be obtained
in an infinite series of all ordered Slater determinants
that can be formed from a complete orthonormal basic
set of one-particle functions. This expansion is con-
nected with the so-called configuration interaction (CI)
method. The CI method is in principle simple although
analytical or numerical work is necessary for evaluating
the matrix elements and for solving the secular equa-
tion. However, the CI expansion is suitable for the re-
moval of actual or near degeneracies but it is slow con-
vergent, This defect may be characterized by the fact
that the CI expansion includes the physically important
and unimportant terms in disorder. There is nothing
wrong in this from the purely mathematical point of
view, . But another expansion of an exact wavefunction,
based a bit more on physics, is desired. One of the
possibilities for such an expansion is the cluster ex-
pansion of a wavefunction, !*2

The cluster expansion gives a compact and precise
way of constructing an exact wavefunction |¥) from an
approximate one | ®)

|¥) =exp[T]|®) , (1)

where the total cluster generating operator T may be
expressed as a sum of i-particle terms

f‘:i‘i+f2+"'+f‘~. (2)
Each T, represents all possible ¢-particle linked clus-
ters. The basic principles of a cluster expansion method
are well known in nuclear physics and have been dis-

cussed by several authors.® It has been shown that the
cluster expansion of the form

|8") = exp[T,]] &) (3)
corresponds to a transformation of a single Slater de-
terminant | ®) to another single determinantal function
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13’). This is known as the Thouless’ theorem.* If we
choose the reference function |®) correctly to eliminate
one-particle clusters and neglect linked clusters more
than two particles, the corresponding cluster develop-
ment is

|8") = exp[T,]|®) , )

and we have the starting wavefunction of the so-called
electron-pair approximation or the many-electron theory
developed by Sinanoglu and co-workers, ’ Szass, 8
Nesbet, ? and Cizek and Paldus.? These various ap-
proaches based on (4) turn out to be useful to investigate
the electron correlation problems in atomic and molecu-
lar systems. Some important contributions to the clus-
ter expansion method have been made by others.®!! It
must be noticed that in comparison with the very ex-
tensive works concerned with the two-particle cluster
f‘z, little attention has been paid to the one-particle
cluster Ty, The reason, of course, is that for closed-
shell systems the one-particle cluster functions can be
eliminated in fairly good approximation when we start
with the Hartree—Fock (HF) orbitals. For closed-shell
systems, the cluster expansion (1) or the truncated
form of it gives a way of constructing a wavefunction to
success. For open-shell systems, however, we find it
more convenient to take the symmetry-adapted-cluster
(SAC) expansion of a wavefunction as a basis.!? The
SAC expansion is different from (1). It is constructed
from the generators of the excited configurations having
symmetry under consideration, In our separate papers, 13
we have presented the pseudo-orbital theory which is an
extension of the orbital theoretic idea based on an SAC
expansion and applied it to the spin correlation problem
for open-shell systems.

On the other hand, in any discussion of the electronic
structure of atoms and molecules it is important to
recognize the central role of the HF approximation.“
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Due to its connection with an independent-particle mod-
el, the HF scheme has a physical simplicity and visuali-
ty. It has been successfully applied to the electronic
structure of atoms and molecules in forms of the so-
called self-consistent-field (SCF) schemes. The suc-
cess of the HF approximation has important implications
about the qualitative validity of the orbital model and the
utility of the various orbital theories proposed for im-
proving upon it. In this connection, it is useful to re-
late any orbital theory to an exact theory based on a
cluster expansion of a wavefunction. This is of impor-
tance not only in understanding and constructing the or-
bital theory but also in developing a beyond orbital the-
ory. The purpose of the present paper is to develop a
new approach to the closed-shell orbital theory with the
formalism of the one-particle cluster expansion method.
It is hoped that the discussion gives some new ideas on
the theoretical and conceptual structure of the orbital
theories and their relationships.

To obtain a unified approach to the closed-shell orbital
theory, it is useful to start from the cluster develop-
ment given by (3). In the next section, we will show that
the one-particle cluster generator f‘, is partitioned into
four independent excitation operators and d}scuss their
properties deduced. Also we will discuss how the gen-
eral determinantal functions can be expressed in terms
of these excitation operators. The instability of the HF
solution indicates inadequancy of the orbital picture.

If we go beyond the HF approximation within the frame-
work of the orbital model, we always encounter stability
problems of the HF state. The stability of the HF state
leads to a new concept called the “stability dilemma, ”
which is the key not only in understanding the structure
of the orbital theory but also for extension of the orbital
model. In Sec. ITI, we will go beyond the HF approxi-
mation and present the orbital theory which includes the
electron correlation. This can be done only when the
stability dilemma can be removed. Thus, we will first
rederive the stability conditions for the HF solution in
order to examine the stability dilemma. Then, we will
define the general closed-shell orbital theories by re-
solving the stability dilemma. Section IV is devoted to
the analysis of these orbital theories in the form of the
limited CI based on their own natural orbitals. In the
final section, the present study is summarized.

Il. REPRESENTATION OF A SLATER DETERMINANT

We wish to represent a general Slater determinant
by use of the cluster expansion of a wavefunction. Let
ay, a, be the creation and annihilation operators gen-
erated by an arbitrary but complete orthonormal set of
one-particle functions {¢,}. The one-particle cluster
expansion is

I @') = exp[Ti] l@) . (3)

The reference function | ®) is a determinantal wavefunc-
tion built from occupied orbitals

|®)=aja}---ay]), (5)

where the ket |) denotes the physical vacuum, in which
no particles are present. Written in this form, the |®)
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is normalized to unity.
erator is defined by

The one-particle cluster gen-

N
T, = ;Zj fblay (6)

Here the b} is the one-particle cluster creation opera-
tor and generates the one-particle cluster function v;
when operating on |). We assume that each v, is real
and normalized to unity and hence the f; is the com-
plex value. Because the cluster functions v, are orbital
orthogonal to the occupied orbitals, the orbital opera-
tors anticommute with the cluster creation operator b

[ai, b}],,:O ,
Thus, the |®') takes the determinantal form

|&") = I:I(a;+f, D . (8)

We can assume without loss of generality that occupied
orbital operators aj and cluster operators b} satisfy the
fermion anticommutation relations. That is, the oc-
cupied orbitals in |®) and the cluster functions form an
orthonormal set. Therefore, we see that they constitute
natural orbitals of the wavefunction |®’).

1=4,j<N. (7

Now we limit ourselves to the closed-shell 2n-elec-
tron system. For convenience, we will separate the spin
index and employ the two-component operators defined

by
aka
= ().
a8

bra :
b= ( b,) . (9)

We denote |®,) or |0) in shorter version by a deter-
minantal wavefunction for closed-shell systems,

|29 =1 ateai]) = 11943 -+ 6484 000l |, (10)

where || ... || denotes the normalized Slater deter-
minant. A bar above a spin orbital indicates that it is
associated with B spin and no bar indicates « spin.
Identifying spin variables, we have the expression for
ff‘, in terms of the excitation operators S,

7= Z,;(fo,,s;,ﬁz fmS:,,.) , (11)
with

Sta=1/y2) bz 08 ,

Sra=(1/V2)byo. 8y . (12)

Here the o, and ¢,(T=x, y, 2) are a unit matrix and Pauli
matrices, respectively. Throughout the paper we re-
serve the index 7 for x, y, and/or z and the index y for
0, x, y, and/or z. The fin (11) are the complex quanti-
ties and their real part is referred to as g and imaginary
part to as k, namely f=g+ ¢h. The operator S}',. x i8S
called the singlet excitation operator since it generates
a singlet excited configuration when operating on | &),
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Stal0) = |01®y - - - v,0,(aB=- Ba)NVZ. .. 0,0,]] . (13)

Similarly S;,,, is named as the triplet excitation opera-
tor since it gives a triplet excited configuration which is
an eigenfunction of the operator corresponding to 7 com-
ponent of the total spin angular momentum, e.g.,

St 0= |04y - - - v,0u(aB+Ba)/VZ - 6,0,]] . (14)

The unlinked clusters S*S*, $*S*S*,..., generate doubly,
triply, ..., excited configurations, respectively. It
should be noticed that the (S§,,)? and (S7,,)? give the same
doubly excited configuration with a difference of a sign

(S;,k)2[0>= - (S;,k)zl()}: H ¢'1$1 EELRVEEE ¢n$n” . (15)
Let S be the Hermitian conjugate of S*, S=(5*)'. From
the definition of the excitation operators,

s|loy=0,

(o|s*=0, (16)

and we see that they satisfy the so-called quasiboson
commutation relations

[SI’ SJ]=[S;’ S;]=0 ’
©l|(s;, S51|0=5,, . (%)

Thus, the four types of the excitation operators are es-
sentially independent of each other.

Let us now examine how the determinantal wavefunc-
tion can be expressed in terms of these excitation opera-
tors. Any other Slater determinant, not actually ortho-
gonal to | &y, can be expressed

| ®) = exp[iF, ]|0) ,
with

(18)

Fr’-%zh:‘(fr.hs;,h_f:,hsnk)=F‘)‘1 . (19)

The exponential operator e'F is unitary due to the Hermi-
tian property of F. Thus, the wavefunction | ®) can be
obtained from the wavefunction | ®,) by a unitary trans-
formation. If we define the new fermion operators by

Ga=crraie s
=cos|f},.l 8y +(f1,2/| f,al) sin| 71,4] -Hio, ,  (20)
where we denote f’ by f/v2, then we can rewrite the

|®) as a determinantal form

|2 =I14;,00 5,1 . (21)

If we also define
d;.k*= eiFr b; e"lF, ‘
=c°SIf;,k| 'b;—(f;'.k/|f;.k|)5in'f;.hl ‘80, ,
(22)
we can check that
d, | @) =d;,]|8) =0, (23)

and that these new fermion operators satisfy the fermion
anticommutation relations, Thus, (20) and (22) represent
a canonical transformation. Note here that the F, is
invariant to a canonical transformation of the fermion
operators, i.e.,
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1 .
F7= 27 ; (fr,ks'r,k 'f:.ksy,k)

. .
=5 2 uaRin=FiaRnd) (24)
where the excitation operator R* is defined by means of
the unitary transformed fermion operators such as

Ria= (1/V2) 85,0 0, 8y (25)

With the help of this property, we can express more
general determinantal wavefunctions in terms of ex-
citation operators.

An alternative prescription may be used to obtain the
determinantal wavefunction. Thouless’ theorem can
be written in terms of the excitation operators as

[@):mexp[zk:f,,,,s;'k] loy . (26)
The factor 3 assures the normalization.!® It is ap-
parent that the | ®) takes a determinantal form

& =II e il , (27)
where

Cru= @+ £, 0)/ (L + | £, D2 (28)

We have also c;',* by making a canonical transformation
¢y ux =03 = £3,,85.0,)/ (1 + | 77,4 V2 . (29)

It is easy to prove that the two representations of a
Slater determinant given by (18) and (26) are equivalent.!®
So we may use whichever we like as the case may be.
The former expression (18) makes it possible to evaluate
the exponential operator as an operator equation with
the aid of Lie algebra. On the other hand, we can evalu-
ate the exponential operator in the latter expression (26)
as a finite expansion due to the Pauli principle.

Ill. THE STABILITY DILEMMA AND THE
CLOSED-SHELL ORBITAL THEORIES INCLUDING
ELECTRON CORRELATION

The most successful orbital theory is the HF theory
in primitive sense, the basic idea of which is simply
that each electron moves in the average field of all the
other electrons. We shall take HF orbitals, or ap-
proximation to them, as the starting point because of
their theoretical significance and the resulting formal
simplicity, the HF wavefunction is the optimized one
within the space spanned by the determinantal functions
generated by the real singlet excitation operators, the
simplest variational cluster wavefunction, i.e.,

|¢>=mexp[;go.ksa..] 10 =TT cia i, (50

where

Che= a3 +20,, 00/ [1+ (5,7 . (31)

It should be noted that the double occupancy of the or-
bitals is preserved. Thus, the variational cluster ex-
pansion of the wavefunction described by (30) or that of
the form
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| ®) = exp [iG,] | 0) ;

1 .
Gy= 7 ; £0,1(50,x— Sow) » (32)

is the HF wavefunction for the closed-shell systems.

We wish to go beyond the HF approximation within the
framework of the orbital model, that is, within the space
spanned by the determinantal functions, However, even
if we extend the variational space by introducing the re-
maining excitation operators, we cannot reach beyond
the HF approximation in case the HF solution is stable.
This dilemma is called the “stability dilemma.” It is
clearly concerned with the problems of the symmetry
dilemma proposed by Lowdin,!" The stability dilemma
can be resolved by projecting the determinantal function
onto the symmetry space. We can go beyond the HF
approximation only when the stability dilemma is re-
solved. In this section, we will first rederive the sta-
bility conditions for the HF solution in order to elucidate
the stability dilemma. Then, we will consider the
closed-shell orbital theories including the correlation
effect by removing the stability dilemma.

A. Stability conditions for the HF solution

A general condition for stability problems of the HF
state was first formulated by Thouless. ‘4 E:fiek and
Paldus!® and Fukutome'® have shown that the stability
of a closed-shell HF solution involves four different
types of stability, We will rederive the stability condi-
tions for the HF solution in terms of the four indepen-
dent excitation operators.

Consider a small displacement of the HF wavefunction,
given by the unitary transformation,

| ®) = exp[iF]|HF) ;

1
F=;EZ* (fv.ks;.k‘f:.ksr.h)=Ft ’ (33)
k4
where |HF) denotes the HF wavefunction. In this case,
the excitation operators are defined by the HF orbitals
as a basis. The energy expectation is given by

E=E,+i(HF|[H, F]|HF)

-2

+ %l-(HFI[[H, Fl, F]|HF) + ..., (34)
where E, is the HF energy, Ey=(HF |[H|HF). Due to the
Brillouin theorem, we have

(HF|[H, F]|HF)=0 . (35)

This leads to a simple criterion that the energy cor-
responding to | &5 ) should be stationary with respect
to the type of variation given by (33). The energy is
stable with respect to the variation described by (33) if

)

[

3T (HF|[[H, F), F]|HF)=0 . (36)
This inequality is known as the stability condition for the

HF state.® Expanding (36) we obtain the stability condi-
tion ‘
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1 (%\'[A Bo\/fo\ 1 £\ Ay By\/ 1%
2 ok < * % ok + 2 Z( *) * Ak * =0
s/ \By Ag/\ f; f./ \B{ A{/\ 7
(37
for all the coefficients f. Here the f; and f, are the

column vectors formed by f;, , and f;,,, respectively.
The submatrices A and B are defined

(Ap)yi =(HF|S,,, HS},, - Ey|HF) ,
(B)w =(HF| Sy, Sy, H|HF) ,
(Apy =(HF|S,, HS},, - E |HF) ,

(By)ps =(HF|S,,,S;,, H|HF) . (38)

From the definition we see that A are Hermitian matrices
while B are not, since B'=B*, However, the super-
matrices in (37) are again Hermitian. The three identi-
cal supermatrices correspond to the triplet-type excita-
tions and the remaining supermatrix is associated with
the singlet-type excitations, Thus, the two types of in-
dependent stability conditions obtained are called as
singlet and triplet (nonsinglet) stability conditions, !%1°
This implies that we can separate the general varia-
tional space spanned by the determinantal functions in-
to four independent subspaces since they are orthogonal
and noninteracting with respect to H and hence, obtain
an independent stability condition for each subspace.

When the matrices A and B are real matrices, as is
usually the case, the stability conditions may be further
simplified. First consider the singlet stability condi-
tion. The singlet stability condition may be factored
into two subproblems,

g}(Ag +By)gy + hj(Ag - Bohy=0 ,

where the g and hy are column vectors of real and
imaginary parts of the complex column vector £, i.e.,
f,=g,+th,. The matrices (Ag+By) are symmetric under
the assumption that Ay and By are real. Therefore the
unitary matrices U+ may be found by which the matrices
(Ag +B,) are diagonalized,

U+'(Ay+By)U+=D},
U-'(Ay-By)U~-=Dj, (40)

where Dj are the diagonal matrices. If we further de-
fine the unitary transformed excitation operators

=22 85U,
Q’o.»=zl: Sa.l(U')u ’
together with
§0 = (U"')?Bo k)
o= (U=)"h .
Then, we have from (39) that
Zk (éo.u)z(m)hk + Zk: (ﬁo.g)z(D-o)th 0,

where

(39)

(41)

(42)

(43)

(Da)kk'_'(HFlPO.kHP;,k-E0+P0.kP0,kH|HF> ’

(Do)n=CHF | Qq, s HQ}, x = Eg — Q0,3 @0, s H|HF) . (44)
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Thus, the singlet stability condition can be classified
into real and imaginary conditions

(a) (D=0, for all &,
real singlet stability condition,
(b) (D}),, =0, forall o,

(45)
imaginary singlet stability condition .

In the same manner, each triplet stability condition is
factored into real and imaginary conditions when A,
and B, matrices are real. Using the diagonal trans-
formations, we can define the new sets of the triplet
excitation operators P;, @} and coefficients g, , 71., , as
done in (41) and (42). Then we have

(c) (D)yp=(HF|P, HP}, , — Ey+ P, , P, ,H|HF)= 0,
for all k, real triplet (nonsinglet)
stability condition ,

(d) (D{)ps=(HF | @Qr,, HQ}, , — Ey - Qu, @, H|HF)=0 ,
for all k, imaginary triplet (nonsinglet)
stability condition . (46)

These stability conditions ensure that the HF single de-
terminantal wavefunction represents a true local mini-
mum of the energy functional within the space spanned
by all determinantal functions. As derived above the
general variational space is separated into independent
subspaces generated by the excitation operators and
hence, we obtain an independent stability condition for
each subspace. This factorization leads to a useful
classifiaction of the orbital theories which will be dis-
cussed in the latter section.

We shall now discuss the instability of the HF solution,
suggested by the form of the above stability conditions.
For sake of the resulting formal simplicity, we employ
the uncoupled approximation, namely the unitary trans-
formed excitation operators P*, @* are replaced by the
primitive excitation operators S*. The uncoupled ap-
proximation simplifies the instability conditions to the
following forms

(@) Ey,, — Ey+ Kyx <0 , for any &,
real singlet instability condition,
(b) Ey, 3 = Ey — Kuyx <0, for any k&,
imaginary singlet instability condition,
(c) Eqp — Ey— Ky <0, for any &,
regl triplet instability condition,
(d) E;, - Ey+ Kppx< 0, for any k,
imaginary triplet instability condition, (47)

where E, , and E, , are energies of the singlet and triplet
excited states respectively and K« is the usual exchange
integral

E,,»=(HF|S, ,HS} ,|HF) ,
E,,=(HF|S, , HS}; ,|HF) ,
Ky =(HF|S,,, S),,H|HF) = - (HF|S, , S, ,H|HF) . (48)
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If these instability conditions are satisfied in the HF
solution, this means that it does not represent a true
minimum with respect to the corresponding fluctuation
and that another solution, having the lower energy than
the HF solution, must exist. In case of the singlet in-
stability problems, the new solutions preserve the double
occupancy of the orbitals and therefore preserve the

spin symmetry but they violate the space symmetry, !%1°
It must be noted that the real instability condition is
rewritten as

Ey-E > Kyx=0 (49)

This implies that the singlet excited state has lower
energy than the ground state. This is valid, of course,
under the uncoupled approximation. Strictly speaking,
it depends on a sign of the generalized exchange integral
Kix=(HF| Py, P, ,HIHF). The generalized exchange
integral is not necessarily positive while the usual ex-
change integral K,,x is positive. However taking ac-
count of the relation

Zk: K;k*=zk: Kux=0,

we can conclude that at least one of the singlet excited
states, Py, ,|HF) has lower energy than the ground

state when the HF solution is real singlet unstable.
Comparing with the real and imaginary singlet instability
conditions, we observe that the imaginary singlet in-
stability condition may precede the real singlet instabili-
ty. In case of the triplet instability problems, the
double occupancy, and therefore the singlet character of
the HF wavefunction, is not preserved and the unre-
stricted HF (UHF) solutions, in the wider sense of the
words, appear. From the imaginary triplet instability
condition we see that the triplet excited state has lower
energy than the ground state

(50)

Ey-E; > Ky=0, (51)

when the HF solution is imaginary triplet unstable.
We also observe that the real triplet instability precedes
the imaginary triplet instability.

Before concluding this section, it must be stressed
that the stability of the HF solution indicates that even
if we expand the variational space spanned by the de-
terminantal functions by introducing the remaining ex-
citation operators, we cannot go beyond the HF approxi-
mation in case the HF solution is stable.

B. Stability dilemma and closed-shell orbital theories
including electron correlation

The study of the stability conditions of the HF solution
tells us that the general variational space spanned by
the determinantal functions can be put into independent
subspaces. They are specified by real and imaginary
singlet excitation operators and three types of real and
imaginary triplet excitation operators. The HF wave-
function is the optimized one within the variational space
spanned by the determinantal functions generated by real
singlet excitation operators. We wish to go beyond the
HF approximation from the energetic point of view by
adding the remaining excitation operators.
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We start from the reference determinant |HF) built
from the HF orbitals, By adding the variational sub-
space generated by one of the real triplet excitation
operators, we have the function

|®) = exp[iG,] |[HF) ;

1 N
Gg='{¥gz,h($g,k-sg,k) ) (52)

where g, are real quantities. The energy for | ®) is
E=E,+i(HF|[H, G,]|HF)
+GY21)HF|[[H, G, GJHF)+-.. . (53)

Now the first order energy shift vanishes due to the spin
symmetry indicating that the energy be stationary.
Thus, the subspace added does work as the variational
space only if the HF solution is real triplet unstable,
namely only if

(@%/21)HF|[[H, G/}, G.]|HF) =gl (A, + By)g, <0,

Thus, even if we extend the variational space by in-
troducing the excitation operators, we cannot reach be-
yond the HF approximation in case the HF solution is
stable. This dilemma is what we call the “stability
dilemma.” In this case, it is called the real triplet
stability dilemma. When the HF solution is unstable,
another solution, having lower energy than the HF en-
ergy, must exist. Unfortunately, the corresponding
wavefunction is no longer symmetry adapted. In the
present case, the spin symmetry is not preserved. This
release from the stability dilemma results in the sym-
metry dilemma. !’

(54)

Now consider the wavefunction by projecting out the
symmetry-adapted component,

|#')=05|®) = 05 exp[iG,]|[HF) , (55)

where Og is the spin projection operator which selects
the singlet spin eigenfunctions. The |®’) is not neces-
sarily normalized to unity. We see that the first order
energy shift for |&’) vanishes and the stability condition
is reduced to

8.Big, =0

due to the projection operator. In comparison with the
stability condition for | ®) given by (54), the A, matrix
disappears and only the B, matrix remains, which is
formed by the generalized exchange integrals. The sta-
bility condition (56) is equivalent to requiring that the

B, matrix be positive definite. Since the trace of By ma-
trix is nonpositive,

Tr(B,) =; (HF|S,,4S,, s H|HF) = - Z,. Kux=0, (57)

{56)

where Tr denotes the trace, there always exists at least
one negative eigenvalue of the B,. If the B, has any
negative eigenvalue, it is possible to construct an anti-
Hermitian operator iG, which violates the stability con-
dition (56). Thus, we can go beyond the HF approxi-
mation. The spin symmetry is also restored. That is,
the projection operator introduced not only preserves -
the symmetry property by projecting the symmetry-
adapted component but also solves the stability dilemma
by violating the stability condition.
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In general, the stability condition for the wavefunction
having the stability dilemma has the form

A:B=0, (58)

as shown in the previous study of the stability problems
for the HF state. On the other hand, the stability con-
dition for the wavefunction projected onto an appropriate
symmetry space is given by
+B=0 . (59)

That is, the A matrix disappears by virtue of the pro-
jection and only the B matrix remains. Noting the sign
of the trace of the By and B; matrices defined by (38),

Tr(By) =2 (HF|Sy,, Sy, H|HF) = 3 Kyx =0,
k . k

Tr(By) = (HF|S,,,S;, ,H|HF)=- ) K,x=0, (60)
R 1]

. we see that the imaginary singlet and real triplet sta-

bility dilemmas can be removed by the appropriate pro-
jection operators. Namely, the imaginary singlet and
three types of real triplet excitation operators generate
the variational space for the improvement of the HF
theory. On the other hand, the real singlet and imagin-
ary triplet stability conditions cannot be violated by the
corresponding projection operators. That is, the real
singlet and imaginary triplet excitation operators can-
not be utilized to improve the HF theory for the ground
state. This corresponds to the fact that in both cases
the HF solution is unstable, the corresponding excited
states have lower energies than the ground state. These
excitation operators reserve the variational spaces for
the excited states. When we start from the arbitrary
determinant, not from the HF wavefunction, the real
singlet excitation operators are indispensable to generate
the HF determinant, It must be stressed again that only
when the stability dilemma can be resolved, the cor-
relation effect can be taken into account through the
unlinked clusters of the excitation operators within the
orbital approximation, 2

Thus, the closed-shell orbital theories including the

electron correlation effect can be defined as
|&) = exp[iF]|0) , (61)

where the F is the excitation operator to generate the
variational space and the @ is the projection operator to
remove the stability dilemma. By appropriate choices
of the excitation operator and the projection operator,
we can obtain the various orbital theories proposed for
improving upon the HF approximation. In addition,
some new orbital theories. can be obtained by starting
with the above definition. By making use of the real
singlet (Gy) and imaginary singlet (iH,) excitation opera-
tors and three types of real triplet (G,) excitation opera-
tors, we can construct eight types of the orbital the-
ories. They are summarized in Table I, where the
PHF denotes the projected HF theory. The projection
operator Op selects out the real part of the wavefunc-
tion, 0 1®) =Re{|®)}. This projection operator re-
covers the space symmetry violated by the imaginary
singlet excitation operators. The 0, is the operator
projecting out the eigenfunctions of the §;. There are
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TABLE I. The closed—shell orbital theory: |®) = ® expliF]10).

Excitation operators, F
Gy, iHy G, G, G,

Projection operators, ®

HF o

PHF1 o o Og

PHF 2 o o Ogr
PHF3 o o [o] OsOy
PHF 4 o o o Or0Os
PHF5 o o o} o Os Oy
PHF6 o o [o} o) OrOs O
PHF 7 o o o o o OR0OsOy

three equivalent orbital theories in PHF1, PHF3, and
PHF6, respectively, whether we employ the G,, G,,
and/or G, operators, The above cluster expression of
the orbital theory makes it possible to analyze the vari-
ous orbital theories in terms of their own natural or-
bitals and the internal relationships of these orbital
theories become clear. The analysis of the structure
of the orbital theories will be given in the next section.

IV. ANALYSIS OF CLOSED-SHELL ORBITAL
THEORIES

In this section, we will analyze the closed-shell or-
bital theories including the correlation effect which are
constructed according to the idea outlined in the pre-
vious section. First, we will analyze the alternant
molecular orbital (AMO) theory proposed by Lowdin?% 23
and examine why one can remove a large part of the cor-
relation error simply by permitting so-called different
orbitals for different spins (DODS). The complex molec-
ular orbital method?* and the generalized valence bond
(GVB) method? will also be discussed in terms of their
own natural orbitals. Finally, the complex DODS meth-
od will be discussed. This new orbital theory may be
the most suitable orbital theory to include the electron
correlation effect.

A. The UHF and AMO wavefunctions

We start by considering the unprojected form of the
PHF1 wavefunction in Table I represented by

|‘I’>=mexP[Zk: go.kSB.ﬁzk: gz.ks:,k] o) .

If we define the new fermion operators by making a
canonical transformation

co = (ay +g4, .0/ [1+ (25, )2,

coux =g — g6 L a)/[1+ (25,072,
together with
L=1/[1+ (g0 )’T"?, m=gh/[1+ (gt )",
then the above wavefunction can be rewritten as

I¢>=Ik1 c;aC;ﬁD s

where

(62)

Cx = £4€0, x + TRCo,x* T - (64)
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We will find it useful to introduce the spatial orbitals for
¢g,x and ¢ yx A, and v,, respectively

05.x|> = e, 2, 8) ,

ch v |) = ea, v, 8) . (65)

The ), are spatially orthogonal to each other and to the
v, and the reduced density matrix for & becomes dia-
gonal

p(1]2) =" 2620, (10,2) + D 2mEv,(1)r,(2) . (66)

® %

These functions ),, v, are therefore the natural orbitals.?
Due to the relation that 2+ 7n2=1, the £ is the frac-
tional occupation probability for the natural orbital X,

and 7} is that for the v,. In terms of these natural or-
bitals, we have, except the phase factor,

&= |01, 0o Pua®15P2s "+ * P | 5 (67)
where

D= Ee+ My s

s = Exp = MV, - (68)

The new orbitals ¢ have the property that their spatial
overlap integral is diagonal and are called the corre-
sponding orbitals.® This expression suggests that the
optimized cluster expansion of the wavefunction of the
form given by (62) is the UHF wavefunction?’ for closed-
shell systems. Since the 7, are small numbers, we can

expand ¢ in terms of the natural orbitals
= CM™ + Co°9° + C%p% +... | (69)

in the form of the limited CI. Here, the &' is the nor-
malized restricted function with doubly occupied orbitals

L | D U VI T Vs W W | (70)
with the coefficient given by
c=J] ). (11)
kR

The reference function ™ should be approximated as the
HF wavefunction but, of course, they will not be identi-
cal. The functions $° and &% are, respectively, the
sum of the normalized singly and doubly excited con-
figurations

fopi S 5;: Co®(R*)8°(EEX) |
with

Coo(kk*)=V2(n, /) C™ ,

2% (kk*) = || A - - - v 0y (@B + BA)NZ - - A, ||, (72)
and

Cleple— f;‘, C (k¥ )3%(kk)

+}_;<Z,:c°°(kk*; 1U*)3% (kR 11%)

with
C®(kk*)=-(n,/£)' C™ ,
(kk*) = ”7\17‘1 Ce Uyt an” s
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Cl(kk*; *)=2(n,/E)(n, /&) C™
&(kk*; 11%) = ||\ - - v\ 2y(@B+ Ba)(aB+ Ba)/ 2
I (713)

The higher order terms are written in the same manner
as above. Note here that the singly and doubly excited
configurations given above are not the singlet spin
states except ®%°(kk*). The same expansion of the UHF
wavefunction has been given by one of the present au-
thors.?® It should be noted that the closed-shell UHF
wavefunction may exist only when the HF solution is
real triplet unstable, which is a striking contrast to the
open-shell UHF wavefunction. Namely, in case the HF
state is stable, the coefficients 7, are all zero due to
the stability dilemma.

Now consider the wavefunction by selecting out the
components of the singlet spin eigenfunction

|8y = 05| ) . (74)

The variational cluster expansion of (74) is the AMO
wavefunction, 222 It is called the spin extended HF
(SEHF) wavefunction by Kaldor? and GF wavefunction by
Goddard. 3 As the projection operator 05 acts only on
the spin part of the wavefunction, we can rewrite | &),
except the phase factor,

18" = || $10020 - brabrs** - 8O (75)

where the spin part is replaced by an eigenfunction of
8, and §°. We will denote by ©%, (j=1, 2,..., f) the
simultaneous spin eigenfunctions of §, and s', i.e.,

s'0%, =S(S+1)0k ,
sﬁeg u=MO%, . (76)

The index j distinguishes spin eigehfunctions correspond-
ing to the same eigenvalues of s? and S, but which arise
through different spin couplings. There are many ways
of constructing spin eigenfunctions. One of the most
illuminating constructions is the so-called genealogical
scheme.®! For four electrons the spin coupling schemes
leading to S=0, for instance, are

6} = (B - Ba)(aB-Ba)/2 , |
0},={(2aaB - aBa - Baa)s - (aBB+ BaB - 2BBa)a}/ViZ ,

JAVAN = L2 AN L

32 / \ 3 4 31

These functions are identical with those that carry the
standard irreducible representations of the spin permuta-
tion group, associated with standard tableaux, 3 re-
spectively. We assign a number to the standard tableaux
according to what is known as the last letter sequence.
The spin coupling appeared in the AMO wavefunction is
©},, associated with the standard tableaux S,.

Expanding &’ in terms of the natural orbitals, we

have
@' =C™Md™" +C® 0% +... . (1)

The singly excited configurations vanish due to the pro-

K. Hirao and H. Nakatsuji: Cluster expansion of the wavefunction

jection operator. The leading excited configurations
are the doubly excited ones. This is the reason why we
can remove a very large part of the correlation error
simply by permitting so-called DODS in closed-shell
case. Note here that the situation is quite different in
open-shell systems, where singly excited configura-
tions remain even if we operate the projection operator.®
For closed-shell case, the projection operator in (74)
not only restores the symmetry properties but also re-
solves the stability dilemma, However, .the spin pro-
jection operator in the open-shell SEHF theory only
selects out the symmetry-adapted component and does
not help to include the electron correlation.3* Thus, the
open-shell SEHF theory is poor for both electron and
spin correlation problems. !%#3%3 The doubly excited
configurations ®%(kk*; 11*) take the form due to the pro-
jection operator,

O B (k*; 11%)
e AE)] |V VERRL Wit - RERD W | 9 (78)

where the four-electron spin eigenfunction is defined
above, The ®%(kk*) are unaffected through the projec-
tion and take the same form as in (73) but, of course,
the functions a,, v, are different in both cases. The
spin couplings in the higher terms of the expansion of
the AMO wavefunction are the /. This type of the spin
coupling is not keeping our intuitive idea such as elec~
tron-pair bond.

B. CMO and GVB wavefunctions

‘Next we start by considering the PHF2 wavefunction
described by

|8 = onsiexe [ for 34100 .
k

The f,,, are the complex quantities and hence the unpro-
jected form of (79) leads to the complex HF theory.

The complex HF theory has the trouble of stability and
symmetry dilemmas. These dilemmas can be re-
moved, as discussed in the previous section, by the
projection operator 0. Thus, the PHF2 is the complex
molecular orbital (CMO) theory proposed by Hendekovic,%
It is apparent that

 (79)

|8) =0g [1 chacls]) (80)
3
where
cy = (e}, + ihh, , €5, xx)/[1 + (B, )]/ 2 . (81)

The ¢, and ¢p ,* have the same forms as defined by (62)
and (63). In a similar manner, let us define the coeffi-
cients

Eo=1/[1+ () )")2,

M=o,/ [1+ ()12,
and the spatial orbitals A, and v, for ¢ y and € yx, re-
spectively. Then, X, and v, are again the natural orbitals
of the unprojected wavefunction of | ®). We find that the

CMO wavefunction is equivalent to the limited CI based
on its natural orbitals

‘I’=OR”' . '(gkxk"'inkvk)(gkxh"'ink;k) o ” ,

(82)
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- Crfq,ﬂ + Cdeq;de oo, (83)

The leading term & is a restricted wavefunction with
doubly occupied orbitals which has the same form as
(70). Due to the projection operator O, the singly ex-
cited configurations are excluded because of their pure
imaginary property. The function &% is, in this case,
the doubly excited configurations with singlet spin
states,

Clegle=y  Co(kk*)®%(kE*)
k

+200 Co(kR*; 11%)D%(kR*; T1%) (84)
k<1
While the ®%°(kk*) take the same form as in (73), the
®%(kE*; 11*) are different, i.e.,
(k¥ ;11%) = ||A; - - - ukx,,u,x,e'f,o || . (85)

Thus, the CMO wavefunction involves the choice of spin
coupling represented by (—)’, specified by S;. The higher
order terms are written in the same manner. If we
notice the relation that

(Ex + i) a(Ex + i) B
=[(&x +m)(Ex = )/V2 + V2itnav](aB - Ba)/V2 , (86)

we can rewrite the wavefunction by means of paired-
electron orbitals

& =0p|b1102 - - - OunlB - Ba)(aB - Bar)
-+ (@B - Ba)/Vou|| , (87)
where
Pue=(E Ny + M V) (E Xy = M)/ V2 + V2iE, N, v, . (88)
The CMO wavefunction involves the singlet type spin
coupling as in the G1 % and GVB ?* wavefunctions. This

spin coupling might be thought as representing covalent
bonds.

The above CMO wavefunction in (87) suggests that the
GVB wavefunction is also given by a cluster expansion
of the wavefunction®’

|<I>)=9lexp[; go,,,s;,,+% Zk (iho',,S‘(‘,,,)z] [oy.  (89)

Introducing the two-particle creation operators c;,, we
can rewrite the above wavefunction as

|<I>>=IJ l) (90)
where
Con= [cz.hacz.ha - (h{).h)z ao, k*acz,k*B] /1 + (hf),k)ql 4. (91)

Note here that the operator (ih,, S}, ,)? generates a kind
of two-particle cluster function. That is, the cluster
expansion with » two-particle clusters among possible
n(n+1)/2 ones gives the basis for the wavefunction con-
structed by geminals.*® If we further define &y T

E=1/[1+ ()44,

Me=ho,a/[1+ (h'.ra)‘i]“4 ’ (92)
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and the spatial orbitals A, v, for €y, and Cy yx as in (65),
then we have

& =|]®1,01,05, P2 * * * Sug Pup(@B - Ba)(aB - Ba)

.+ (aB-Ba)/V2n|| , (93)
where
Pra=Exda+ MV
o= ExXp =~ M Vs - (94)

The ¢,,, ®,, satisfy the strong orthogonality condition
that the orbitals are orthogonal to each other unless they
are singlet paired, i.e.,

(bra| D) %0,
(¢,,| ¢, =0 otherwise . (95)

Therefore, the optimized & in (89) is the GVB wavefunc-
tion proposed by Goddard. ?® This type of wavefunction
was first suggested by Hurley et al. under the name of
the paired-electron approximation, 3

It is appropriate to mention in this place that the sta-
bility dilemma is a problem which occurs under the
approximation of the one-particle cluster expansion of a
wavefunction. That is, the stability dilemma would
never occur, if we consider more than one-particle
clusters at a time. Thus, there is no stability dilemma
in the GVB wavefunction. The GVB wavefunction is con-
structed from the generator of singly and doubly excited
configurations having desired pure symmetry of the sys-
tem. That is, the GVB wavefunction is based on the
SAC expansion of the wavefunction. !> However, by mak-
ing use of the projection operator, the GVB wavefunc-
tion is redefined, in terms of one-particle clusters, as

I‘I’GVB> =[H (0g exp [iho.k S'('),k ])]
)

Xexp[zh: go,ksg'h] [0y . (96)

It is interesting to compare with the form given by the
CMO wavefunction

I ®cmo) = OR[H explihy, , S o h]]
%

xexp[z;go.kst,,k] l0) . (97)

The GVB wavefunction is also expanded in the limited
CI based on its own natural orbitals x,, v,

= Cl‘!@l'f + Cd°¢d9+ cee (98)

This expression is analogous to that of the CMO wave-
function given by (83) except that % contains no such
doubly excited configurations as ®%(kk*; [1*).

C. Complex DODS wavefunction
Next, consider the PHF4 wavefunction defined by
| ®) = 0,057 exP[zk:fo.kSB.k +Zk g.,kS:,k] [0). (99)

The |®) can be rewritten in the following determinantal
form
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TABLE II. The doubly excited configurations in the limited CI based on the natural orbitals

of GVB, AMO, CMO, and complex DODS wavefunctions.

GVB vl
AMO lvpvaBil
Il ve Ay, A (22aB - aBa — Baa)B—(aB B +BaB - 28Ba)a}/VIZ I
CMO NvpveaB |l
vy 2 v, AaB = Ba)(af—Ba)/21
complex DODS lvpviaBll

Iva Ay, Ay(af = Ba) (@B - Ba)/2 |

lvprevy A (20 0B - aBa - Baa)B - (aBB+ BaB - 2BBa)a}/VIZ |

|‘I>>=0R0s I;IC;a CZBD ) (100)

where

+ ’ +* :1.7 + ? *
cx=[(ct,x+ &% 1 C0,xx00) + zho.k(co.u* —87%,1C0,x02)

x1/{[1+ (g0, + (), )72 . (101)
If we further define
Eo,p= 1/[1+ (hf).h)zli,z ,
No,n=Ho,/[1+ (hﬁ,»)zl’” ,
(102)

Een= 1/[1+ (g‘l.k)Z]I/Z ’
Nen=8nn/[1+ (800717,
then we have
Cx = £o,5 £ x (€0, 6+ (Mg, 0/ Ex, 1) €0 1k O+ (Mg, 1/ £0,8)C0, 1%
—i(no,k/ﬁo.a)(nz.k/ﬁz,k)ci.uﬁs] (103)

It is convenient to introduce the spatial orbitals A, , v,
for cj,y and cj p*, respectively. In terms of these func-

tions, we can expand & as
=C™3™ +C%*p%+... | (104)

The reference function is again the restricted wave-
function which doubly occupied orbitals

o = HMX,"'X,,X,,"'A,,X" ” ’

C"=1;I[(£o.. Eon)+ (g, ma )] . (105)

The singly excited configurations vanish due to the pro-
jection operators. The &% is the sum of the doubly ex-
cited configurations, i.e.,

B = C(kk*)2%(kk*)
- ,
+ 2.0 Cl(kR*; 11 %) (kE*; 1 *)
K1 -

+ 2.0 Co(kk*; L*)DE(RR*; 11%) (106)

k<1

where
Co(kk*) = = [(ng, 1/ &0,0)* + (nz,k/gx,k)z]
X1/[1+ (ng, 4/ &, k)z(ﬂs,n/ﬁz,k)z] cT,
BU(kE*) = || M Xy -+ vV N ||
Cio(kk*; UI*)=-X, X C™,

ae(kk*; %)= || %y - v w1 O 0N, |
C¥(kk*; 11*)=-Y,Y,C™,
Qge(kk*; ll*):(l/\/z’»—)ll)\,)_q "'kakulx1

X0 Ahy || . (107

Here we set X, and Y, as follows
Xk=m"70.k/5o. W1+ (nz.k/gz,k)z]/
[1+ g,/ £0,0)* (e, 0/ £, )]
Yk=‘[2—(nz.h/5g,k)[1 - (ﬂo.k/'éo, k)zl/
[1+ o,/ &0, (10 / E2,0)°] - (108)

We observe that the doubly excited configurations con-
tain possible two independent spin eigenfunctions 6{,0 and
630. Similarly, the higher order terms involve the choice
of spin functions represented by ©!, &, and some other
partly-paired spin eigenfunctions. This orbital theory,
the complex DODS theory, is clearly a new one which

has not been proposed so far.

It is interesting to note that the limited CI in terms of
natural orbitals can also be used to examine the internal
relationships of various closed-shell orbital theories.
Equations (77), (83), (98), and (104) relate the AMO,
CMO, GVB, and complex DODS wavefunctions. The
leading excited configurations are most important since
the higher order terms arise just from the self-con-
sistency effects. The doubly excited configurations in
the limited CI of these wavefunctions are summarized
in Table II. The spin polarization type of the spin cou-
pling, ©’, is not in keeping our intuitive idea such as
electron-pair bonds, while the singlet type of the spin
coupling, 6’, might be thought as representing the co-
valent bond. This lack of intuitive basis for the spin
coupling may be reflected in poorer energy values.
Thus, if we assume that the natural orbitals »,, v, de-
fined in each orbital theory are not identical but similar,
then the corresponding energies calculated might be or-
dered as

E complex DODSS E CcMO < EA]D < EGVB , (109)

on the basis of the spin couplings involved.

Lunell®’ has proposed to use the general spin orbitals
in the projected HF scheme. Lunell’s wavefunction can
easily be constructed by making use of the following
excitation operators
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| ®) =aso”mexp[z (80,8 S0,1+ &2, S s +gx.ks;.k)] o) .
k

(110)
The above wavefunction can be reduced to the form

|8)=0504 ] ciacisl , (111)
k

where

cy=[(co,x+8 %1 C0,x* 00 +8 2, 1(Ch, 0% — &6, 1 C0,x 0,)o,]

x1/[(1+ (g4, )1+ (g1, )2V (112)

Let us define

Ea=1/[1+ (g )12,

Mo =8ns/[1+ (g0,

Ea=1/[1+ (g;'h)z]i/z )

nx,k=g:':,k/[1+(g;,h)2]”2 . (113)

Now we shall introduce the spatial orbitals a,, v, for
cp,x and cg o+ . The general spin orbitals are given by

Cra |> = gx,k(";'z,k Xp+ Mg p V) @+ nx.k('éz.k)\k'*' m,ka)B s

Chs |> = gx.k(gz.k X = NeaVe)B+ nx.k(gz,kxk AL
(114)
In terms of these natural orbitals, we can expand the
wavefunction as

ézcrfq)rf_'_ Cdeq)d6+ oo . (115)
The &% is the restricted wavefunction

q)rt'___ ”Alxl o ')\kxh' : °7\,,7_£,, ” ’
Crf’—'H[(gt.kgx,k)z"'(nz,knx.k)z]uz . (116)
]

The &% is the sum of the doubly excited configurations

Clepde ; Coe(kk*) % (kk*)

+ 20D Cl(kk*; 11%)d%(kE*; 11%)

R<1
with
C®(kk*) = - [(nx,k/gx.k)z + (nz.h/gz,k)z]
x1/[1+ (ﬂx.n/Ex.k)z(nz.u/gs.k)zlcﬂ )
B (kk*) = H)\li! °e 'Vk‘_’h PN ” ,
C®(kk*; 11*) = - (X, X, + Y, Y, )C™ |

Bo(kk*; 11*) = (1/V3) || A2, - v v, 1, 030 - - X 2|

(117)
Here we defined X, and Y, in a similar manner as in

(113)
Xk=‘/§-("7:,k/§s.k)[1 - (nx,k/gx,k)z]/
[1+ (nz.k/gz.k)z(nx,k/gx,k)zl ,
Y,= ‘/Z_(nz.n/ﬁx.k)[l - ('rlz.k/‘gz,k)z]/
[1+ (nt,k/ggk)z(nx.k/gx,k)z] . (118)

The higher order terms are given in the same manner.
It should be noticed that the spin eigenfunction appeared
in the ®%(kk*; I1*) is ©},. Thus, this wavefunction is

essentially equivalent to the AMO wavefunction up to
doubly excited configurations although the higher order
terms are different from those of the AMO wavefunction,
Namely, consideration of more than one triplet excita-
tion operator at a time affects the spin structure of only
the higher-than second terms of the CI expansion.

In principle, we can construct the more general or-
bital theories according to the idea outlined in the pre-
vious section. From a practical point of view, however,
the complicated structure of these wavefunction might
cause difficulties in actual calculation and also incon-
vience in the interpretation of the wavefunction. The
determination of these wavefunction would rapidly be-
come very cumbersome and the amount of labor probably
too large when measured against the extra information
gained. So we will not discuss these orbital theories
any more. However, it should be mentioned that the
PHFT in Table I is defined as the best Slater determinant
built on one-electron spin orbitals having a complete
flexibility and projected onto an appropriate symmetry
space. That is, the PHF7 involves all possible choices
of spin eigenfunctions as in the spin optimized HF
theory. 4!

In contrast to the open-shell case, the correlation
problem in the closed-shell case is only the electron
correlation. From this energetic point of view, the
first step to take the correlation effect into account is
to consider the imaginary singlet excitation operator
since it generates the spin eigenfuncations specified by
©!. This leads to the GVB and CMO approximation as
shown above. If we wish to cover further correlation
energy, we recommend to consider the imaginary singlet
and one of the real triplet excitation operators at a
time, which leads to the complex DODS theory. We
believe that one can remove a very large part of the
correlation error simply by permitting complex DODS.

V. SUMMARY

In this paper, we have developed a new approach to
the closed-shell orbital theory with the formalism of the
one-particle cluster expansion of the wavefunction. The
stability of the HF solution leads to the new concept
called the stability dilemma, which is the key not only
in understanding the structure of the orbital theory but
also in constructing the new orbital theories. Only when
the stability dilemma is removed, the correlation ef-
fect can be taken into account through the unlinked clus-
ters of the excitation operators within the framework of
the orbital approximation. We have shown that the sta-
bility and symmetry dilemmas can be resolved by pro-
jecting the determinantal wavefunction onto an appro-
priate symmetry space. The various orbital theories
(some are known but some are new) can be obtained by
appropriate choices of the excitation and projection
operators. The new orbital theory, the complex DODS
theory, is presented by special choices of excitation and
projection operators. It is also shown that the one-
particle cluster expansion method is a useful expression
to construct and to analyze the orbital theory. The com-
plex DODS theory is analyzed in contrast to the con-
ventional orbital theories such as AMO, CMO, and GVB
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theories. The complex DODS theory is the most suitable
one to include the correlation effect within the orbital
approximation.

The approach to the closed-shell orbital theory de-
veloped here can easily be applied to the open-shell
systems. In the following paper, 3 we have proposed
some useful open-shell orbital theories including the
electron correlation by solving the open-shell stability
dilemma.

We hope and expect that the present work will suggest
new viewpoints and approaches to the orbital theory for
many-electron systems.

ACKNOWLEDGMENT

The authors would like to thank Professor T. Yonezawa

and Professor A. Imamura for continuous interests and
supports for the present study. Part of this work has
been supported by the Scientific Research Grant from
the Ministry of Education.

10. sinanoglu, Rev. Mod. Phys. 35, 517 (1963).

’H. Primas, In Modern Quantum Chemistry edited by O.
Sinanoglu (Academic, New York, 1965).

3W. Brenig, Nucl. Phys. 4, 363 (1957); F. Coster and H.
Kummel, ibid. 17, 477 (1960); J. da Providencia, ibid. 46,
401 (1963); 61, 87 (1965).

‘p. J. Thouless, Nucl. Phys. 21, 225 (1960).

50. Sinanoglu, J. Chem. Phys. 36, 706, 3198 (1962); O.
Sinanoglu, Adv. Chem. Phys. Phys. 6, 315 (1964) 14, 237
(1969); D. F. Tuan and O. Sinanoglu, J. Chem. Phys. 38,
1740 (1963); H. J. Silverstone and O. Sinanoglu, ibid. 44,
1899, 3608 (1966); 1. Oksuz and H. J. Silverstone, Phys.
Rev. 181, 42, 54, (1969); P. Westhaus and O. Sinanoglu,
ibid. 183, 56 (1969).

L. Szass, Phys. Rev. 126, 169 (1962); J. Chem. Phys. 49,
679 (1968).

R. K. Nesbet, Phys. Rev. 109, 1632 (1958); Adv. Chem.
Phys. 9, 321 (1965).

85. Cizek, J. Chem. Phys. 45, 4256 (1966); J. Cizek, Adv.
Chem. Phys. 14, 35 (1969); J. Paldus and J. CiZek, Adv.
Quantum Chem. 9, (1975); J. Paldus, preprint “Correlation
Problems in Atomic and Molecular Systems. V. Spin Adapted
Coupled Cluster Many-Electron Theory.” The authors would
like to thank Professor J. Paldus for sending the preprint
prior to publication.

°R. Yaris, J. Chem. Phys. 41, 2419 (1964); R. Yaris and J.
I. Musher, ibid. 41, 1501 (1964).

19D, Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Mol.
Phys. 30, 1861 (1975).

p. J. Klein, J. Chem. Phys. 64, 4868 (1976); Mol. Phys..
31, 783, 811 (1976).

124, Nakatsuji and K. Hirao, J. Chem. Phys.
(1978). .

13, Nakatsuji and K, Hirao, Chem. Phys. Lett. 47, 569
(1977); H. Nakatsuji and K. Hirao, J. Chem. Phys. 68,
4279 (1978).

14c, C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951); 32,
179 (1960).

15The = is just the overlap integral of the wavefunction | &)
with |8,). If we define the quantity, €=1—|{@1&4)1?, € is
a good measure of the amplitude of the component of |&)
orthogonal to 19,).

68, 2053

K. Hirao and H. Nakatsuji: Cluster expansion of the wavefunction

16The equivalence of two representations of determinantal
functions implies that the operator 3 explZ,f,, xSy, is uni-
tary, while the exp[Z,f, .Sy, ;) is nonunitary. See also Ref. 9.

"p, 0. Lowdin, Rev. Mod. Phys. 35, 496 (1963); Adv. Chem.
Phys. 14, 283 (1969). ‘

185 GfZek and J. Paldus, J. Chem. Phys. 47, 3976 (1967);
53, 821 (1970); Phys. Rev. A 3, 525 (1971); J. Paldus and
J. CiZek, Phys. Rev. A 2, 2268 (1970).

1%y, Fukutome, Prog. Theor. Phys. 40, 998, 1227 (1969).

201unell performed the unprojected calculation on He and Li
atoms using the general spin orbitals. Starting from widely
different input functions, total energies were found to con-
verge to the usual (for Li the unrestricted) HF values [S.
Lunell, Chem. Phys. Lett. 13, 93 (1973)]. This is ob~
viously due to the stability dilemma involved in the wave-
function with general spin orbitals.

U1t is interesting to compare the orbital theory including the
correlation effect with the electron-pair approximation
(EPA). These theories start with the following wavefunctions

|¢EPA> =@ exp[fil | 0) N | QEPA) = exp[le | 0) s

where PHF denotes the projected Hf theory. By introducing
the one-particle and two-particle linked cluster generators
t’;,t’}, and the corresponding coefficients c;, c;;, we may ex-
press T and fz as

T1= Zcif,, @=Zﬁ\jzc"t‘u ’

where i and j run over all occupied orbitals,
into the above wavefunctions, we find

I¢PHF>=(1+ %ZZcic,ﬂt}+ "') |0> 3
i J
|Ggpa) = (1+;<;c“f“+'“) 10y ,

by expanding the exponential operators. Thus, we see that
the orbital theory takes account of the two-particle interac-
tions through the unlinked clusters due to the restriction of
the orbital model while the EPA does in linked clusters di-
rectly. We find that the number of the variational param-
eters are also different in both theories. The PHF wave-
function has x variational parameters for 2n-electron sys-
tem while the EPA wavefunction has n(n+ 1)/2.

22p, 0. Ldwdin, Phys. Rev. 97, 1474, 1490, 1509 (1955); Rev.
Mod. Phys. 34, 520 (1962).

2R, Pauncz, J. de Heer, and P. O. Lowdin, J. Chem. Phys.
36, 2247 (1962), and the succeeding papers; R. Pauncz,
Alternant Moleculay Ovbital Method (Saunders, Philadelphia,
1967); K. M. Sando and J. E. Harriman, J. Chem. Phys.
47, 180 (1967).-

243, Hendekovic, Int. J. Quantum Chem. 8, 799 (1974), 10,
1025 (1976).

25w, J. Hunt, P. J. Hays, and W. A. Goddard, J. Chem.
Phys. 57, 738 (1972).

26A, T, Amos and G. G. Hall, Proc. R. Soc. (London) Sect. A
263, 483 (1961); A. T. Amos and L. C. Snyder, J. Chem.
Phys. 41, 1773 (1964).

213, A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571
(1954).

2y, Nakatsuji, H. Kato, and T. Yonezawa, J. Chem. Phys.
51, 3175 (1969).

2%y, Kaldor, J. Chem. Phys. 48, 835 (1968).

30W. A. Goddard, J. Chem. Phys. 48, 450 (1968).

31M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura,
Tables of Molecular Integrals (Maruzen, Tokyo, 1955).

32See, for example, D. E. Rutherford, Substitutional Analysis
(Edinburgh University, London, 1948).

Y. Nakatsuji, J. Chem. Phys. 59, 2586 (1973).

84K, Hirao and H, Nakatsuji, “Cluster expansion of the wave-
function. The open-shell orbital theory including electron

Putting these

J. Chem. Phys., Vol. 69, No. 10, 15 November 1978



K. Hirao and H. Nakatsuji: Cluster expansion of the wavefunction 4547

correlation,” J. Chem. Phys. 69, 4529 (1978), following
paper.

35¢. A. Coulson and R. J. Whilte, Mol. Phys. 18, 577 (1970);
J. A. Pople, Int. J. Quantum Chem. 5, 175 (1971).

38w, A. Goddard, Phys. Rev. 157, 81 (1967).

37Using the relation given by (15), the following expression can
also be used to represent the GVB wavefunction

1+ 1 '+
1®) = exp[z;_go,kso,k‘” 2 2; (gf,ks‘r,k)z] 10).

3C, Edmiston, J. Chem. Phys. 39, 2394 (1963); J. M. Parks
and R. G. Parr, ibid. 28, 335 (1958); T. L. Allen and H.
Shull, ibid. 35, 1644 (1961).

3A. C. Hurley, J. E. Lennard-Jones, and J. A, Pople, Proc.
R. Soc. (London) Sect. A 220, 446 (1953).

43, Lunell, Phys. Rev. A 1, 360 (1970); C. F. Bunge, Phys.
Rev. 154, 70 (1967).

4y, Kaldor and F. E. Harris, Phys. Rev. 183, 1 (1969); R.
C. Ladner and W. A. Goddard, J. Chem. Phys. 51, 1073
(1970).

J. Chem. Phys., Vol. 69, No. 10, 15 November 1978



