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A previously developed new-approach to the orbital theory with the formalism of the cluster expansion of a
wavefunction is applied to open-shell electronic systems in order to include the electron correlation effect
within the conventional formalism of the orbital theory. The open-shell orbital theory involving the
electron correlation is defined as |®)= Pexp[iFy +iF,110). The @ is the projection operator to resolve
the stability dilemma and the Fy and F,, are the excitation operators for closed-shell and open-shell
orbitals, respectively. The new orbital theories, which are called Modified SEHF (MSEHF) theory and
complex GSO theory, have been proposed with special choices of F and ®. They are analyzed in
contrast to the conventional orbital theories such as UHF, SEHF, CMO, and GVB theories in the form
of the limited CI based on their own natural orbitals. The MSEHF theory includes the correlation effect
effectively in open-shell systems and constitutes a natural extension of the closed-shell SEHF theory (the
conventional SEHF theory fails in open-shell systems). The complex GSO theory is the most suitable
orbital theory to include the electron correlation effect within the orbital theory (to include spin
correlation we have to adopt the symmetry-adapted-cluster (SAC) expansion formalism as shown

previously).

I. INTRODUCTION

In the preceding paper! (hereafter referred to as I) we
developed a new approach to the closed-shell orbital
theory with the formalism of the cluster expansion of
the wavefunction. The four independent excitation oper-
ators are used to represent the general determinantal
wavefunctions and also to discuss the stability of the
Hartree-Fock (HF) solution. This leads to the new
concept called the “stability dilemma,” which is the key
not only in understanding the structure of the orbital
theory but also in constructing the new orbital theory.
We emphasized in I how important the removal of the
stability dilemma is to the obtaining the orbital theory
including the electron correlation. The stapility dilem-
ma can be resolved by projecting the determinental
wavefunction onto an appropriate symmetry space. The
various closed-shell orbital theories (some are known
but some are new) can be obtained by appropriate choices
_of the excitation and projection operators. We have
shown in I that the one-particle cluster expansion meth-
od is a useful expression to construct and to analyze
the orbital theory. In this paper, we continue the de-
velopment for an open-shell case.

In contrast to the closed-shell case, the correlation
problems in open-shell systems are the electron corre-
lation and the spin correlation.? In order to include both
correlations at the same time, we find it more conve-
nient to start with the symmetry-adapted-cluster (SAC)
expansion of an exact wavefunction.® The SAC expansion
is constructed from the generators of the excited con-
figurations having the symmetry under consideration.

In our separate papers, ¥* we have presented the pseudo-
orbital theory which is an extension of the orbital theory
based on the SAC expansion and applied it to the spin
correlation problem in open-shell systems. In the pres-
ent study, we will consider the open-shell orbital theory
based on the conventional cluster expansion of a wave-
function.® A principal purpose of this paper is to obtain

4548 J. Chem. Phys. 69(10), 15 Nov. 1978

0021-9606/78/6910-4548$01.00

open-shell orbital theories including the electron cor-
relation. The theory involving both electron and spin
correlations will be examined elsewhere.

The one-particle cluster expansion of a wavefunction
for open-shell systems will be discussed in the next sec-
tion. We will define the excitation operators for open-
shell systems and discuss their properties deduced.
Also we will show how the open-shell determinantal
functions can be represented in terms of these excita-
tion operators. In Sec. III, we will go beyond the re-
stricted HF (RHF) approximation and present a theory
which includes the electron correlation with the frame-
work of the orbital theory. This can be done only when
the stability dilemma is resolved. Thus, we will first
derive the stability conditions for the RHF solution in
order to examine the stability dilemma. Then, we will
define the general open-shell orbital theory including
the electron correlation effect by resolving the stability
dilemma. Some new orbital theories will be proposed.
They are analyzed in Sec. IV in contrast to the conven-
tional orbital theories such as the UHF, SEHF, CMO,
and GVB theories in the form of the limited configuration
interaction (CI) based on their own natural orbitals. In
the final section, the present study will be summarized.

The notation used in this paper depends very heavily
on that given in 1.

Il. THE EXCITATION OPERATORS FOR
OPEN-SHELL SYSTEMS

To obtain a unified approach to the open-shell orbital
theory, it is useful to start from the one-particle clus-
ter expansion of a wavefunction. Let us consider a
wavefunction of the form

I‘I’> =exp[i‘1]l<1>o) ’ (1)

where
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|¢>0>=I:Ia:| ), @)

Ty= z‘:f.-biai . 3)

The ket | ) denotes a vacuum state, q; and a; are crea-
tion and annihilation operators for single-particle
states, b; are the normalized one-particle cluster gen-
erators and the coefficients f; are complex numbers.
Thouless’ theorem® states that the cluster expansion
given above corresponds to a transformation of a single
Slater determinant | &y to another single determinantal
function |®).

Now we consider the one-particle cluster expansion of
a wavefunction for open-shell systems. As a reference
wavefunction, we choose a restricted open-shell single
determinant given by

(00 =[S atean ][ 2, @] 1)

=||¢1$1°“ PePr e s DgPePour”* ¢_m°'°¢p|| ,  4)

where | l--- || denotes the normalized Slater determi-
nant. A bar above a spin orbital indicates that it is.
associated with 8 spin and no bar indicates a spin. For
simplicity, we have restricted ourselves in this paper
to the systems for which the determinant (4) has a cor-
rect symmetry. An important exception is a singlet ex-
cited state. For such state, it would be more prefer-
able to start from a multideterminant reference wave-
function.” We define the number of unpaired spins in the
system by s, i.e.,

s=p—-q.
The |®,) or |0) in shorter version is an eigenfunction of
the spin operators 8% and S, with eigenvalues s/2(s/2 +1)

and s/2, respectively. ‘We will denote the simultaneous
spin eigenfunctions of 8% and 8, by @%, (j=1,2,...,/)

s?el, = sis+1)e%, - 8,0%, =MoL, . (5)

The index j runs over the independent spin eigenfunc-
tions belonging to the same eigenvalues of S° and S, the
number of which is denoted by f. We will construct the
spin eigenfunctions through the genealogical scheme® as
done inI. Throughout the paper, the indices &, I refer
to the closed-shell oribtals, m, n to open-shell orbitals
and i, j to general orbitals. For the sake of conve-
nience, we will separate the spin index and employ the
two-component operators defined by

(7" bia
8= (a > bg= (b‘B) . (6)
8

The one-particle cluster generator f‘t is written for
open-shell systems as

T1=T1K+T“l ) (7)

where the f‘1 x and f‘,, are the one-particle cluster gen-
erators for closed-shell and open-shell manifolds re-
spectively. These are expressed in terms of the excita-
tion operators as
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Tyg= ;[fo.ksz.k"'z fms:.k] , (1=x,9, 2)

f1‘;1)[: Z[fo.ms;.m-l'fx.ms;.m] . (8)
m
The closed-shell excitation operators are defined as
0 e= (1/V2) by 02y ,
Sia=1/V2)bj o a, ,

and the open-shell excitation operators9 as

(r=x,9, 2), (9)

*
Oym

Sy m=bn0xay . (10)

Here o, and o,(T =%, 9, 2) are the unit matrix and Pauli
matrix respectively. The fin (8) are the complex
quantities and their real part is referred to as g and
imaginary part to as k, namely f=g+ih. Let S be the
Hermitian conjugate of S*, S=(S*)'. From the definition
of the excitation operators

S|oy=0 <(0]|s*=0 (11)

and we see that they satisfy quasiboson commutation
relations

[Sy, S;1=[5%, s51=0, COl[S;, s3]|0=08, . (12)

Now let us examine the properties of these excita-
tion operators. First, consider the closed-shell excita-
tion operators. The singlet and triplet excitation opera-
tors in (9) generate singlet and triplet excited states re-
spectively when operating on the closed-shell deter-
terminantal function. However, when the reference
function | 0) is an open-shell determinant as in (4), three
triplet excitation operators generate the spin contaminat-
ing excited states, while the singlet excitation operators
preserve the spin symmetry.

=b;o'oam y

The S%,, operator is a sum of spin-adapted excitation
operators%1?

st .= (=S e srage 4 (2 e (s+2)/2g+
BRT\s+2 BkT \s+2 1ok s

where

. s\i/2
’/28;k=(s+2)“2[(§> (B} Bpo — Drs @)
9 i1/2
+(;) b;aaus z:a:nbama]
m

2 =1/2
/2y =(s+2) / [;uaka'b';ﬁam‘b;aakﬂz a;'ﬂa"‘“] .
m

(14)
The */?S} , and */25} | generate singly excited states
of spin eigenfunctions,

’”Sl.d 0)= ||”n¢k¢m AR 4’»6‘&/2)(:/2)”
©0/253 1 0) = [|04@pbear * ** b * - 8,020ty s/r ]| 5 (15)

where

(13)

1/2 ]
e‘(’s/Z)(s/z)z(S+2)'1/2[(§) (aB+Ba)a---a---a

_(é)”zaa ; a...ﬁ...a]
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Ol 201y1s/2y = (s +2)7/? [(aﬁ+ Ba)a...a--

+aaza...ﬁ...a] (16)
In (15), we used the abbreviations like
||q$1$1 o .vk¢k(aﬁ+ ﬁa) e ¢q(—ﬁq¢q§l e ¢’”
= |[040aBaet - - d,(@B+Ba)a - - al| a7

since the doubly occupied orbitals do not affect the spin
symmetry. The v, is the spatial orbital generated by
b, . Note here that the ©? is a linear combination of the
spin eigenfunctions constructed by the genealogical
scheme

»
9(s/2)(s/2)

s+2 /2 _ s 1/2
= [m] e(fs/lz)(s/z)"'[m] 6{3/2)(3/2) .
(18)
These operators in (14) are essentially single excita-
tion operators, though they involve in the last term the
two simultaneous elementary excitations (real excita-
tion and spin-flip) due to the spin-symmetry require-
ment. Note here that the */2S} , makes an important
role in the spin correlation problem and is called as the
spin polarization excitation operator.®* In open-shell
systems, the singlet excitation operator Sj , and the
triplet excitation operator S:.  do interact with respect
to the Hamiltonian H, This is different from the pre-
vious closed-shell case in I.

The S;,, and S} , excitation operators also generate
the spin contaminating excited states when operating on
|10), e.g.,

S0 = || O4vatess b - - - bpla - BB - - o - a/VE ||

(19)
Now consider the operator 8; - S,, which lowers M with-
out changing the value of S and define the spin eigen-
functions by

O%s/2)(s/2-1) = s.ilz(s: - 18,)0%s/2)(s /2
613/201)(.0/2-1) =[2(s + 2)]"“2(8, - iS,) ei(.s/ 201')(3/2) . (20)

Then we can rewrite the spin function in (19) in terms
of spin eigenfunctions'! :

(@a-BPAa---a---a/N2=3)""0%, 21,521

1 1/2 ' /7 1 /2
_[(s+ 1)(s+2)] 6(3/2+1)(a/2-l)_(_s+2)‘ efs/z)(s/z-n

s=17Y _ .
- [m] POs/1)(s/2-1) - (21)
Here the P is the permutation operator given by
P=(1s+1)(2s+2) (22)

where (ij) denotes the transposition which interchanges
the ith and jth spins and leaves other fixed. Similarly
the S;. x operator generates the spin contaminating ex-
cited state. The Hamiltonian matrix element between
the singly excited state generated by S;',, and that by
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Sy,x is not zero. Thus, the S; , and S} , are not in-
dependent of each other.

The excitation operator for open-shell orbitals S;,,,
also generates the spin contaminating excited states
while the S; , does the pure spin eigenstates:

S;.ml(»:”¢¢¢1"'Um-n(ﬁ’-a...ﬁ...a” .

The spin function above can be expressed as

(23)

a...Bo..a

1 1/2 1 S-—l 172
=(;> 9(s/2)(s/2-1)+(—s ) 6{3/2_1)‘3/2_1) , (24)

where

1
e(.s/2)(.s=/2-1)

ca-.-Beeca)/Vs,

Qe+ Z Q-
n(#m)

f 1/2 1 \1/2
9(3/2-1)(s/2=1)=[(s—1) _a-uﬁ---a---a—(s_l)

X Do @eeeqe-fre ]/JE,

n(#m)
Thus, the Sj,, and S; , are independent of each other
but they do interact, with respect to the Hamiltonian,
with the closed-shell excitation operators.

=(@-+-B--

(25)

Now let us see how the class of the open-shell deter-
minantal function can be expressed in terms of these
excitation operators. Suppose that |®;) is a general
product function for open-shell systems as defined in
(4). Any other determinantal wavefunction, not actually
orthogonal to | &y, can be expressed as

|‘I’> =9lexP[;f7.kS;,k + Zm: fﬁ.ms;.»t] IO) .

In the following, we use the index y for closed-shell
excitation operators, 0, x, y, and/or 2z and the 5 for
open-shell ones, 0 and/or x. The |®) given by (26) can
be rewritten into a determinantal form,

1) =[TT 105, [ IT cime]
where

Crx= (85 + f7,,b50,)/ (1 + |f;,k|2)”2 ’

Covm= @5+ fo,mPn06)/ (L + [ fo,m| V2,
and f’ denotes f/V2. If we also define

&, = 0} = 7,85 0,)/ (1 + | 71,412,

Ca.mt = (b = fo, m B 06)/ (1 + | £y, [/,
we can check that

Crx | B =c3,,| @) =0,

Co, m* | ) =c;.,,,]<l>) =0.

(26)

(27)

(28)

(29)

(30)

The anticommutation relations of a}, bj give with (28)
and (29) that

[C,, c,],,:[c}, C}].,:O ,

[ey, cih=5y; . (31)
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The equations (28) and (29) represent a canonical trans-
formation.

An alternative prescription may be used to obtain the
determinantal wavefunction

| ®) = exp[iF, + iF,]| 0)
= expliF,] - exp[iFs]|0) , (32)

where -
1
Fr=z7 ;(ﬂ.ks;.h‘f:.ksr.h)‘—‘FJ

Fi=7 ¥ Vo Siom= FlinSem) = Fi - (33)

The exponential operator e'f is strictly unitary due to
the Hermitian property of F, That is, the |®) can be
obtained from |0) by a unitary transformation. I we
define the new fermion operators by

+ -
4, = e'Fray oiFr,

i, m=e'"® 8, e, (39)

we can rewrite |®) as a determinantal form

|@>=[U 3 pa d;,,,] [I‘I d;',,,,,] . (35)
m

We can also define the new creation operators dy ,x and

d;m,. by making a canonical transformation

|+ +* -
dy px =7 by o1y

a3, p* = Foby e . (36)

Note here that the operators F,, F, are invariant to a
canonical transformation of the fermion operators. On
the basis of (26) and (32) we can construct more general
determinantal wavefunction in terms of the excitation
operators.

It is not difficult to show that the two representations
of an open-shell determinantal function in (26) and (32)
are equivalent. Thus, we may use whichever we like as
the case may be.

ll. STABILITY DILEMMA IN OPEN-SHELL
ORBITAL THEORY AND NEW ORBITAL THEORIES
INCLUDING ELECTRON-CORRELATION EFFECT

The RHF wavefunction'? is the optimized one within
the space spanned by the determinantal functions gener-
ated by the real spin symmetry preserving excitation
operators, Sy, and Sg,

|<I>)=91exp[¥go,p53,n+ ; go.msl').m] l0>

= [IkI cstk“ c;oks] [IMI c;.mﬂt] I) (37)
where
cox=(ay +£0,,b3)/[1 + (g5,,)%]V3,
Co,m = (B + 80, m D)/ [1 + (£0,)71/2. (38)

The equivalent expression of the RHF wavefunction is
given by
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| &) = exp[iGyq +iGypo) [0), (39)
with
Gygo= ;1’ Z:, &0,4(5%,x = So,8) »
Guo=7 2 &um(Stn = Sm) - (40)

It is apparent that the | ®) takes a determinantal form,

l@>=[IJ dz,.ado‘.u] [ImI d;.m] I, (41)

where
dg,x=cos(g(, ) -ay +sin(gg ) - by,
dp, = cos(gy, ) - &g + sin(gy, ,) - by, . (42)

The double occupancy of the closed-shell orbitals is
preserved. That is, the uniquely determined optimal
wavefunction described by (37) or (39) is the RHF wave-
function. In Appendix, we expressedageneralrestricted
Slater determinant for open-shell systems by making
use of the primitive cluster expansion of a wavefunction
and also derived the variational equations for the RHF
wavefunction,

We wish to go beyond the RHF approximation. How-
ever, even if we extend the variational space by intro-
ducing the remaining excitation operators, we cannot
reach beyond the HF approximation in case the RHF
solution is stable. This dilemma is called “stability
dilemma”, The stability dilemma can be resolved by
projecting the determinantal function onto the symmetry
space. The correlation effect can be taken into account
within the framework of the orbital theory only when the
stability dilemma is resolved. In this section, we will
first derive the stability conditions for the RHF solution
in order to examine the stability dilemma in open-shell
orbital theory. Then, we will present new orbital the-
ories including correlation effects by removing the
stability dilemma.

A. Stability condition for the RHF solution

The stability conditions for closed-shell HF solution
have been fully examined by several authors, 34 but
the study for open-shell systems has been restricted.
Only the most simple case, the doublet stability con-
dition, has been examined by Paldus and Cizek.!® In the
following, we will derive the stability conditions for the
fluctuations of closed-shell and open-shell orbitals by
mixing virtual orbitals to them. The fluctuations mixing
occupied and virtual open-shell orbitals can be excluded
since the present formalism is based on the natural
orbitals, The fluctuations of occupied orbitals can be
brought about by four closed-shell and two open-shell
excitation operators. The closed-shell excitation opera-
tors are mutually independent for closed-shell systems
and we get the four independent stability conditions for
closed-shell HF solution. In open-shell systems, how-
ever, these excitation operators do interact with re-
spect to the Hamiltonian since the spin-flip excitation
operators generate the spin contaminating excited states
when operating on the open-shell reference function.
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Thus, we will consider the stability conditions separate-
ly for each fluctuation described by each closed-shell
and open-shell excitation operator.

1. The spin-symmetry preserving (SSP) stability
condition for closed-shell orbitals

First, we will consider the stability conditions for the
fluctuations brought about by the closed-shell excitation
operators. Let us start by considering the small dis-
placement of the RHF wavefunction given by the unitary
transformation

| ®) = exp[iFy,] |HF)
with

(43)

FKO"%;(fo.ks’.k._f:,kso,k)=F}0 ’ (44)
where |HF) denotes the open-shell restricted HF wave-
function. This fluctuation corresponds to the singlet
type excitation of the closed-shell orbitals to virtual
orbitals and therefore the spin-symmetry is preserved.
The energy expectation is given by

E=E,+i(HF|[H, Fy,]|HF)

-2
i

+ﬁ (HFI[[H, FKO], FKI)]'HF>+"' ’ (45)
where E; is the HF energy. The first-order energy
shift is zero due to the Brillouin theorem. Thus, we
obtain the stability condition for the variation given by
(43)

.2 :

7

S (HF |[[H, Fyol, Fxo)|HF)=0 . (46)
Ekpanding (46), we get the stability condition for all the.
coefficients f,

1 (fxo ' [Axo Bxo /fxo ) _ 0
2\15/ \Bxo Axo/ \ ko
where the fx, is the column vector formed by Jo,» and the
submatrices Ag, and By, are defined by

(Ago) = (HF|S,, ,HS}, | - E)|HF)
(Bxo)y = (HF | Sy, S, H|HF) . (48)

This stability condition is called as the spin-symmetry
preserving (SSP) stability condition for closed-shell
orbitals since the infinitesimal variation described by
(43) preserves the spin-symmetry, When Ag, and By,
matrices are real, as is usually the case, the above
stability condition may be factored into two subproblems,

(47)

gxo(Axo + Bxg) Exo + hl';o(Axo —Byo)hgy=0 (49)

where gxy and hg, are column vectors of real and imag-
inary parts of the complex column vector g, i.e., fxg
=gxo + thxy. The Agy+Byg, are symmetric under the as-
sumption that both Agy and By, are real. Therefore the
unitary matrices Uz may be found by which (Ag, + By,)
are diagonalized,

U +'(Axo + on)U += D;o
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U -t(Axo - on)U -= D-KO N (50)

where the D are the diagonal matrices. If we define the
unitary transformed excitation operators P* and @* by

Pﬁ,u= Z,: Sa.k(U"')u ’

Q,a= Z S0 x(U=) s (51)
1

together with
Exo=(U+)"gxo
Bigo=(U=)"hy, .

Then, we have from (49)

(52)

Z (& 0.k)2(D;(0)kk + Zk: (iio. ©*(Dko)e =0 (53)

where
(Dxo)us=(HF | Py, ,HP},, — Eg + Py, , Py, , H{HF)
(Dl.(o)kk= <HF I QO.kHQz.k - Ey- Qo.k Qka'Hl HF)- (54)

Thus, the SSP stability condition for closed-shell orbi-
tals can be grouped into real and imaginary conditions

(a) (D)= 0, for all &

real SSP stability condition for closed-shell
orbitals

(b) (Dx)p=0, for all k

"imaginary SSP stability condition for closed-shell
orbitals (55)
Now we analyze the instability conditions. We em-
ploy the uncoupled approximation, namely the unitary
transformed excitation operators P* and " are replaced
by the primitive excitation operators S*. From (55),
we get the SSP instability conditions for closed-shell
orbitals

(a) */?Ey,, — Ey+ Ky <0, for any k

real SSP inétability condition for closed-shell
orbitals

(b) */2E,,, = Ey — Ky <0, for any &

imaginary SSP instability condition for closed-
shell orbitals (56)
where */ ZEO' ¢ is the energy of the singly excited state
and the K« is the usual exchange integral

/2B, »=(HF S, 4HS} ,|HF) Ky =(HF|HS"kSt,',,|HF(‘) )
57
If these instability conditions are satisfied, the RHF
solution does not represent a true minimum but another
solution, having lower energy than the RHF solution,
must exist, Although such solution preserves the double
occupancy of the closed-shell orbitals and also pre-
serves the spin;symmetry, it violates the space sym-
metry. 5 It must be noted that the real SSP condition in
(56) is rewritten as
Ey=*"’E) > Kpysx =0 (58)

This means that the singly excited state with S=s/2 has
the lower energy than the ground state.
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2. The spin-symmetry breaking (SSB) stability
conditions for closed-shell orbitals

As known well, the unrestricted HF (UHF) wave-
function'® for open-shell systems always leads to lower
energy, unlike the closed-shell systems, than the RHF
wavefunction. A standard form of UHF orbitals, the
DODS orbitals, can be generated by making use of the
S;, . €xcitation operators. Thus, the open-shell RHF
solution is always unstable to the variation fluctuated by
the S} , operators. The proof is easy. Consider the
unitary transformation given by

| ®) = expliFy,]) |HF) (59)
with

F,,-,::T Zk: furStn=FhnSan) - (60)
The energy for |®) is

E=E,+i(HF|[H, Fy;]|HF) +.-- (61)

The first-order energy shift can be reduced to
i (HF|[H, Fy)|HF)

1/2
=(s—j-_2-) .zk:f,'k(HFlH’/zs;,,IHF)+C.C. (62)

by virtue of the relation (13). Thus, the first-order en-
ergy shift does not vanish, implying that the RHF solu-
tion is not stationary to the variation described by (59).

Next let us consider the infinitesimal unitary trans-
formation of the RHF wavefunction

| ) = expliFy, ] |[HF) (63)
with T=x, y and
1 .
Fr=7 D FeaSta—FEaSes) - (64)
k \
\
The energy for |®) is given by
E=Ey+i(HF|[H, Fy,]|HF)
.2
+ ’2—1 (HF|[H, Fg,)|HF) + ... (65)

The first-order energy shift vanishes due to the spin
symmetry, indicating that the energy be stationary.
The stability condition for the variation given by (63) is

;2

i

ST (HF[[H, Fy.], Fg,]|HF)= 0 (66)
This is called the spin-symmetry breaking (SSB) stability
condition for closed-shell orbitals since the fluctuations

given by (63) break the spin-symmetry. Expanding (66),
we have

1. \' (A fr
)@ )= e
with
(Agehy = (HF|S,,, HS},, - Ey|HF)
(Bxt)o=(HF S, S, ;H|HF) . (68)

When Ay, and Bg, matrices are real, the stability con-
dition can be factored into real and imaginary parts:

4553

(c) (Dye)ss=(HF|P; ,HP} .~ Ey+ Py  Pr ,HIHF) =0

for all &
real SSB stability condition for closed-shell
orbitals
(d) (Dxe)uw=(HF|Q;,, HQ},, - Ey — Q1,, @, H|HF)= 0
for all 2

imaginary SSB stability condition for closed-shell
orbitals. (69)

Here the unitary transformed excitation operators

P?, Q: are defined in the same manner as (51). These
stability conditions ensure that the RHF wavefunction
represents a true minimum of the energy functional with-
in the space considered. Now employing the uncoupled
approximation, we obtain the approximate SSB instability
conditions for closed-shell orbitals

(c) Ey,p— Ey— Kiyx <0, for any k

real SSB instability condition for closed-shell
orbitals

(d) Ey,, - Eg+ Kyx<0, for any k

imaginary SSB instability condition

for closed-shell orbitals (70)

where the E; , is the energy of the singly excited state,
which is not an eigenfunction of SZ,

E, ,=(HF|S, ,HS} ,|HF) ,

Kyx=—-(HF|HS; , S}, |HF) . (11)

In case the above conditions are satisfied, the new solu-
tion having the lower energy than the RHF energy ap-
pears. Such solution breaks the double occupancy of the
closed-shell orbitals, therefore the spin-symmetry.
From (70), we see that if the imaginary SSB instability
condition is satisfied, the singly excited state S; ,|HF)
has lower energy than the ground state

Ey—E,; > Kyx=0 . (72)
3. The SSP and SSB stability conditions for
open-shell orbitals

Next let us consider the stability conditions for the
fluctuations mixing open-shell orbitals and virtual orbi-
tals. These fluctuations can be described by the fol-
lowing infinitesimal unitary transformation of the RHF
wavefunction

| ®) = exp[iF,]|HF)

1 . )
FH= zT ;z(fﬁ.mso.m_f:.mso'm)zFL , (5=0, x) X
m .
(73)
The energy for |®) is given by
E=E,+i(HF|[H, F,]|HF)
-2
+ 5y CHF|[#, Ful, F)[HD +- - -

The first order energy shift vanishes due to the Brillouin
theorem. The stability condition for the variation given
by (73) is
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% HF|[[H, Fy], Fy]|HF)=0 . (75)

Expanding the above condition, we have two independent
stability conditions called SSP and SSB stability condi-
tions for open-shell orbitals,

) G o) ()=
2\fyo/ \Bho Af/\f/

SSP stability condition for open-shell orbitals;

1(fus ' [Agx Bus\ /[ ha =0
N ) \Blx Al/\fha)
SSB stability condition for open-shell orbitals ,

(76)

where £y, and fy, are the column vectors formed by f ,,
and f, ,, respectively, and Ay and By matrices are
defined as

(Allo)mn = <HF l Sb.mHsz.n - E, I HF) ’
(Byo)mn = (HF | Sg, m So, o H|HF) ,  (6=0, x) . (77)

Note here that the diagonal elements of By matrices are
zero due to the Pauli principle. Each stability con-
dition can be factored into real and imaginary parts
when the A, and By, matrices are real. Using the dia-
gonal transformations, we can define the new sets of the
excitation operators P*, @' and coefficients, as done

in (51), (52). Then we have

(e) (Dyo)mm = (HF| Py, ,, HP}, ,, — E,JHF) = 0, for all m
real SSP stability condition for open-shell orbitals
() (Dyo)mm =CHF | Qq,m HQ},m = Eo|]HF)= 0 , for all m

imaginary SSP stability condition for open-shell
orbitals

(&) (Ditg)nm =(HF | P,y HP},  — Eo|HF) =0, for all m
real SSB stability condition for open-shell orbitals
(h) (Dyp)mm = (HF | @y, m HQ}, m — Eo|[HF) =0, for all m

imaginary SSB stability condition for open-shell
orbitals. (78)

Now we analyze the instability conditions, employing the
uncoupled approximation. The uncoupled approxima-
tion removes the difference between the real and imag-
inary conditions of the SSP and SSB instability condi-
tions for open-shell orbitals, since the trace of B, ma-
trices is zero. The uncoupled approximation simplifies
the instability conditions to the following form

$/2E) m—E,<0, for any m

SSP instability condition for open-shell orbitals

E, n—Ey<0, foranym

SSB instability condition for open-shell orbitals (79)
where

*/2Ey, y=(HF S,  HS}, |HE)

E, n=(HF|S, , HS} ,|HF) (80)

: Open-shell orbital theory

When these instability conditions are satisfied, the cor-
responding singly excited states have lower energies
than the ground state,

The instability problems for the RHF solution indicate
that even if we expand the space spanned by the deter-
minantal functions by introducing the remaining excita-
tion operators (except S} ,), we cannot go beyond the
HF approximatjon in case the RHF solution is stable.
This is the stability dilemma of the open-shell orbital
theory.

B. Stability dilemma and new open-shell orbital
theories including electron correlation

The RHF wavefunction is the optimized one within the
variational space generated by the real spin-symmetry
preserving excitation operators, S"o' x and S{,.,,,. Even if
we extend the variational space by introducing other ex-
citation operators (except S} ,), we cannot go beyond
the HF approximation in case the RHF solution is stable.
This dilemma is called the stability dilemma. In case
the RHF solution is unstable, another solution, having
lower energy than the RHF energy, must exist. Un-
fortunately, the corresponding wavefunction is no longer
symmetry-adapted. This release from the stability
dilemma results in the symmetry dilemma proposed by
Lwdin.!” We have shown in I that the stability dilemma
and the symmetry dilemma can be removed by project-
ing the determinantal wavefunction onto an appropriate
symmetry space, i.e., by projecting out the singly-
excited functions giving rise to A matrix. It must be
noted that the electron correlation effect can be taken
into account within the orbital approximation only when
the stability dilemma is resolved. In the following, we
will go beyond the RHF approximation and construct the
open-shell orbital theory including electron correla-
tion.

In general, the stability condition for the wavefunc-
tion having the stability dilemma has the form

A+B=0 (81)

as shown in A of this section. On the other hand, it
has been shown in I that the stability condition for the
wavefunction projected onto an appropriate symmetry
space is given by

+B=0 (82)

That is, the A matrix disappears by virtue of the pro-
jection and only the B matrix remains. The above con-
dition (82) is equivalent to requiring that +B matrix be
positive definite. When the trace of +B matrix is non-
positive, there always exists at least one negative
eigenvalue of +B and the above stability condition (82)
can be violated. Thus, we can go beyond the HF ap-
proximation. First consider the stability dilemma in
closed-shell orbitals. Noting the sign of the By, and
By, matrices defined by (48) and (68),

Tr(Byy) = ; (HF| Sy, S o, H|HF) = ;K»* =0,

Tr(By,) = }; (HF|S,,,S,,,H|HF)
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TABLE I. The open-shell orbital theory: |®)=®expliF,
+iFy,l10).

Excitation operators, F

Projection
G(Gyp) iHgy(iHyy) Gg(Gy,) Ggy(Ggy) operators,e
RHF )
PHF1 o o O0sOy
PHF2 o o CR
PHF3 o ) o ORosOy
PHF4 o o] o o OROsOy

=- 2 Km=0, (r=x), (83)
]
where Tr denotes the trace, we see that the imaginary
SSP and real SSB stability dilemmas in closed-shell or-
bitals can be removed by appropriate projection opera-
tors. Namely, the imaginary singlet (S}, ,) and real
triplet (S}, ,, S;,.) closed-shell excitation operators
generate the variational spaces for the improvement of
the open-shell HF theory for the ground state. On the
other hand, the real singlet and imaginary triplet ex-
citation operators reserve the variational space for the
excited state. This corresponds to the fact that in both
cases the RHF solution is unstable, the corresponding
excited states have lower energies than the ground state.
Second, consider the open-shell stability dilemmas. The
trace of B, matrices is zero due to the Pauli principle.
Thus, we can always remove the stability dilemma in
open-shell orbitals, if we have the appropriate projec-
tion operators to project the determinantal function on-
to the symmetry space. In this respect, the system
where there is no closed-shell orbitals would be in-
teresting to see the role of the open-shell orbitals. 18
When we start with an arbitrary open-shell determinant,
not with the RHF wavefunction, the real spin-symmetry
preserving excitation operators Sf,, ks Si,m are neces-
sary to produce the RHF wavefunction,

The open-shell orbital theory including the electron
correlation effect can be defined as

| @) = @ exp[iFy + iF,]]0) , (84)

where the Fy and F), are the closed-shell and open-shell
excitation operators respectively to generate the varia-
tional space. The @ is the projection operator to re-
move the stability dilemma. The open-shell stability
dilemma can always be resolved and therefore the choice
of the open-shell excitation operator F, follows that of
the closed-shell excitation operator FK.“’ By making use
of the real singlet (G,), imaginary singlet (iH,,) ex-
citation operators and two types of real triplet (G, ,

GK,) excitation operators, we can construct five types

of the open-shell orbital theories. They are sum-
marized in Table I, where the PHF denotes the pro-
jected HF theory. There are two equivalent orbital
theories in the PHF1 and PHF3 theories with the use of
either the Gy, or the Gy, operators. The PHF1, PHF3,
and PHF4 theories are the new orbital theories. Be-
low are outlined some of the orbital theories including
electron correlation effects. The analysis and the de-

4555

tailed discussion of these orbital theories will be given
in the next section.

1. The modified spin extended HF (MSEHF) theory

When we consider one of the real triplet excitation
operators, we obtain

| ) =@ exp[iGyy + iG gy + iGyg + iGus] | O) (85)
where
1 .
G, x= i zk:gx.k(sx.. - sx,k)
1
Gx,m = 't_ Z gx,m(s;.m - Sx.m) (86)
m

The projection operator ® resolving the SSB stability
dilemma takes the form

(P = O S 0” (87)
where the 05 and 0, select out the spin-symmetry-
adapted component characterized by S and M

s S
szos=§(-;- +1)os, 8:04=7 Ou (88)

This is the function we call the modified spin extended
HF (MSEHF) wavefunction. This new orbital theory is
a natural extension of the closed-shell SEHF (the alter-
nant molecular orbital theory!*?°) and removes the de-
fect on the electron correlation problem of the open-
shell SEHF theory proposed by Kaldor?! and Goddard??
(who refers to this method as GF). The & in (85) can
be rewritten into the deternimantal form

=050y || -+ (B X+ M T(EXe =) - -

(gm A+ nm-l;m) e ! | (89)
Both the spatial orbitals A;, v, and the ratio of the coef -
ficients 7,/&, are to be determined variationally. This
wavefunction involves the choice of the specific spin

coupling represented by ©7 associated with the standard
tableaux S;.

2. Complex general spin orbitals (PHF3)

When we consider the complex singlet excitation
operator and one of the real triplet excitation operators
at a time, we will obtain the PHF3 function given by

|®) = @ exp[iFyq+ iGyy + iFug + iGyy] | 0) . (90)
The projection operator takes the form in this case as
® = 05050, (91)

where the Oy is the projection operator which selects
out the real part of the function. The best possible
variationally determined function of the form is called
complex general spin orbitals (GSO) theory. The above
cluster expansion can be rewritten as

¢=0”¢1a¢1b.':7¢ka¢kb..'¢q¢¢qb'"¢ma"°¢pa”

where

¢a = §o gx [X + i(no/fo)" + (77;:/5:)7— i(ﬂo/fo)(ﬂx/'éx)x]

by=Eg £ [N +ilng/ £V + (n, / E)v = ilng / £ (m, /EIA] .
(93)

(92)

J. Chem. Phys., Vol. 69, No. 10, 15 November 1978



4556

Both the spatial orbitals and the coefficients are allowed
to vary freely so as to minimize the energy. This new
wavefunction involves both spin couplings specified by
©! and ©7., Thus, the complex GSO theory is a gen-
eralization of what we call the complex DODS theory inl.

3. Other bpen-she// orbital theories

If we construct the wavefunction using the complex
singlet excitation operators and project out the real part
of the wavefunction, we will get the PHF2 wavefunction
in Table I. This function is the open-shell complex
molecular orbital (CMO) theory.? The spin coupling
scheme in the CMO wavefunction is the ©' type associ-
ated with standard tableaux S; .

From the study of the stability problems of the RHF

solution, we see that the RHF solution is always unstable

to the DODS type variation generated by S} , operator.
The UHF and SEHF wavefunctions are constructed by
making use of this type of excitation operator.
wavefunction is not the symmetry-adapted, namely the
spin-symmetry is not preserved. If we project out the
symmetry-adapted component of the UHF wavefunction
before variation, we have the SEHF wavefunction. The
projection operator in (84) not only restores the sym-
metry properties by projecting out the symmetry-adapted
component but also resolves the stability dilemm4 by
violating the stability condition. However, the spin
projection operator in the SEHF theory only selects out
the symmetry-adapted component and does not help to
include the electron correlation effect. ¢

IV. ANALYSIS OF THE NEW OPEN-SHELL
ORBITAL THEORIES

In this section, we will analyze the new open-shell
orbital theories proposed in the previous section in con-
trast to the coventional orbital theories in the form of
the limited CI based on their own natural orbitals.
First, we will analyze the UHF and SEHF theories and
examine why these methods are poor for both the elec-
tron correlation and the spin correlation. The SEHF
theory is a good example to understand the importance
of resolving the stability dilemma in orbital theory.
Second, we will discuss the MSEHF theory, which is
free from the faults which the SEHF theory has. The
CMO and the generalized valence bond (GVB)?* theories
will also be examined in terms of their own natural or-
bitals, Finally, the complex GSO theory will be dis-
cussed. This would be the most suitable orbital theory
to include the electron correlation effect within the
framework of the orbital approximation,

A. The UHF and SEHF wavefunctions

We now start by considering the UHF wavefunction
represented by

| ®) = exp [Zk: &o,xS0,n+ ;gz.ksz,k‘F zm: go,msf),m] o) .

(94)
If we define the new fermion operators by making a
canonical transformation

The UHF
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che=(ar +20,,00)/[1 + (0,02,

cg,ex = by - 20, 23)/[1 + (g4, /2,

Chom= (B + &0, B/ [1 + (20,712,

et w = (05, — &0, m &)/ [1+ (g0, ? (95)
together' with the coefficients

L=1/[1+ (ga.k)zl”z ,

M=80,x/[1+ (g4, O,

tn=1/[1+(g,n)']'"?,

M =&oym /[1+ (0,w)'1% (96)

then we can rewrite the above wavefunction as a deter-
minantal form

|@>=[I; Cha C;s] [II c:,,m] 1y, (97)
m
where
Cr=£,Ch,x + 7, CO,p O - (98)

We will find it useful to introduce the spatial orbitals
Ay, Vg for €gy and cg ypx and A, v, for € , and €4 px.
All the functions are spatially orthonormal and the re-
duced density matrix for & becomes

p(1]2)= ij 262 2,(1) 1,(2)

+ 20 i (M@ + Y A0, @) . (99)
k m

These functions A,, v, and A, are therefore the natural
orbitals. Due to the relations that £2+ni=1, the £

and n,z, are the fractional occupation probabilities of the
corresponding natural orbitals., If these natural orbitals
are replaced by

Pra=Exdpt M Vs s
o= ExXp — M Vi 5
¢ma=7\-m ’ (]:00)

then we obtain the expression for & except the phase
factor

§=“¢ln¢'2a“'¢M$1b$2b"'$¢b“ . (101)

The new orbitals ¢ have the property that their spatial
overlap integral is diagonal. These orbitals are called
corresponding orbitals.?® That is, the optimized clus-
ter expansion (94) is the UHF wavefunction for open-
shell systems.

Since the 7, are small numbers, we can expand & by
means of the natural orbitals,

®=C"d™ + C%°0"° + C*o% + ... (102)

in the form of the limited CI, Here the "' is the nor-
malized open-shell restricted function

YRR W R W 1 I (103)
with the coefficient
c=]] (&) (104)
R .

The & should be approximated as the RHF wavefunction
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TABLE II. Energies for He, Li, and Be using SEHF and MSEHF wavefunctions. Recovered

correlation energies in percent are in parentheses,

He Li Be
HF —2.861680 -7.432726 ~14,57302
SEHF? —2.877996(39. 0) —17.432813(0.22) —14.58726(15.1)
MSEHF® —2.877996(39. 0) —7.445176(27.5) - 14.58718(15.0)
Expt.® -2.90378 —7.4780 - 14,6674

3W. A. Goddard, J. Chem. Phys. 48, 1008 (1968).

bWe solved the variational equations which are correct up to third order in the coefficients

(see Ref. 3).
°E. Clementi, J. Chem. Phys. 38, 2248 (1963).

but, of course, they will not be identical. The function
$°° is the sum of the normalized singly excited configu-
rations

Co%d% = ) C°(kk*)"(kk*) (105)
k
with
Co(kk*)=V2(n, /) - C™
&% (kk*) = ||} X -+ v @B+ BA)/VZ - A XNgAgag + - A, |
(106)

Note here that the singly excited configuration ®%¢(kk*)
is not an spin eigenfunction and can be expressed as

‘ S 1/2.312 se 2 \/? (3;2)/2 se
3% (kk*) = (—8_4_-_2) B¢ (Bk*) + (?:—2-) d5¢(kE*)
(107

where
i G N 179 VO WPRERS WETRD W =T PPN |

©D/2% (k%) = [[Vp Xy Agas A+ 104 gty ol «

(108)
This result is a consequence of the relation given by
(13). Thus the ‘*2)/2%®¢(kk*) are the main spin-con-
taminating configurations of the UHF wavefunction,
The higher order terms are given in a similar manner
as above. The same expansion of the UHF wavefunc-
tion has been given by one of the present authors. 10

It should be noticed that the open-shell UHF wave-
function always exists by virtue of the configurations of
s/2g%e(pE*), which is a striking contrast to the closed-
shell UHF wavefunction. That is, the closed-shell UHF
wavefunction may exist only when the HF solution is
real triplet unstable as shown in I.

Now let us consider the SEHF(GF) theory along the
same line given above. The SEHF wavefunction is the
optimized one of the form

|¢>=osmexp[;go.nsz.,+ ;g,,ksl.k
+ zm: Lo,m B,m] |0>
=0a[IT ciecis] [T1 ]

where the | ®) is not necessarily normalized to unity.
The Oy is the spin projection operator defined by (88).

(109)

Expanding & in terms of the natural orbitals, we ob-
tain, instead of (102), that

d=C™MO™ + C%0sd°° + C®osd%* + ... (110)
In the closed-shell SEHF wavefunction, the singly ex-
cited configurations vanish due to the projection opera-
tor. In open-shell case, however, the singly excited
configurations remain even if we operate the projec-
tion operator. The singly excited configurations in
open-shell SEHF theory take the form

2

(bu(kk*)z(___)lﬂ ,s/z(bse(kk*) . (111)

s+2

Note here that the improvement from the RHF energy
originates mainly from the singly excited configura-
tions, not from the doubly excited configurations. In
other words, the open-shell SEHF theory takes the or-
bital correction into account but it does not involve the -
electron correlation through the two-body interactions,
Thus, the closed-shell and open-shell SEHF theories
are constructed on a quite different approximation. The
correlation energies for He and Be (closed-shell) and Li
(open-shell) calculated by the SEHF method in Table II
also confirm the above conclusion.

Now there arises a problem. What is the open-shell
orbital theory which is equivalent to the closed-shell
SEHF approximation? In the latter, we will answer
the question.

In connection with the spin correlation problem, we
examine the S} , operator in more detail. As shown
in (13), the S} , operator is a sum of the spin-adapted
excitation operators, */S; , and **»/28} .. If the S},
operators are replaced by */ ’S}, . operators in (109),
the resultant wavefunction constitutes our previous
pseudo-orbital theory,

[&) =ossnexp[;go.k St ;gmsfzs;,,,

+Zgo'm S;'m] loy . (112)
- !

The pseudo-orbital theory involves the spin correlation

correctly, as discussed in our previous papers.* On

the other hand, if the **2)/25} , operators are considered

instead of the S} ,, we have
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|#) = Osinexp[z oSt nt Zk: £an 028,
kR

+ ; &o,m B.m] lo) .

The unprojected wavefunction of (113) has the stability
dilemma, unlike the SEHF wavefunction, and the pro-
jection operator solves the dilemma. Thus, the elec-
tron correlation effect can be included in the above
wavefunction. These discussions indicate that when the
two excitation operators */2S} , and ‘"»/2S} , are
treated independently, both the electron and spin cor-
relations will be included. However, when these two
operators are combined to yield the S;.k operator like
the SEHF theory, both electron and spin correlation ef-
fects interfere with each other as discussed previously
and both corrections become poor. The stability dilem-
ma could never occur in the unprojected SEHF (e.g.,
UHF) wavefunction due to the existence of the */?S}, ,
operators and the unlinked clusters of the spin polariza-
tion excitation operators should be distorted by those

of the **»/25] , operators, which leads to the unphys-
ical nature of the self-consistency terms of the spin
correlation effect. That is, there is a serious inter-
ference between the spin correlation and the electron
correlation effects in the open-shell SEHF theory. 34
Thus, the open-shell SEHF theory is poor for both elec-
tron and spin correlation problems.

(113)

B. The modified SEHF wavefunction

Next, consider the MSEHF wavefunction represented
by ‘

I¢> =mexp[zh:g0'ksr).k+ ;gxoks;.k

+Zm:g0,ms;,m+;g,,ms;,m]|o> . (114)
The above wavefunction can be rewritten as
|<I>>=[I;I Cha CZB] [l;I c;a] 1, (115)
where
cx=1(cq,x + &% 1 Co,xx0,)/[1 + (gf:.k)z]1 .,
€= (€}, + &, m Co,mx0x)/[1 + (&, )T /% . (116)

If we define the coefficients in a similar manner as (96)

E=1/[1+ (g;.k)2]1/2 ,
Me=&%/[1+ (g;.k)z]n/z ,
En= 1/[1 + (gx.m)z]”z s

T =&eym /[1+ (&, 1'%, (117)

then we have

B=]- - (E X+ M T E X+ 1 0) - - - (B Xy + Ty Vi) -+ - Il
(118)
Here the spatial orbitals are defined in a same manner

as in (A). These functions X, Vi A, V, are again the
natural orbitals. The & has the troubles of the stability
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dilemma and the symmetry dilemma. Thus, we must
project the ® onto the symmetry space, namely

|8'y =050, . (119)

We find that the & is equivalent to the limited CI based

on its own natural orbitals,
®' =C™o™ + C*o d%* ... (120)

The leading term & is a restricted function with the
coefficient C™ =[11, £2][11,, £,,]. The singly excited con-
figurations vanish due to the projection operator 0.
The doubly excited configurations are given by

C®0s0% = Ce(kk*)D%(kk*)
R

+Z::<21: Co(kk*; 17 %)0g @ (kE*; 11*)
+; Zm: C % (kE* ; mm*) 0,8% (kk*; mm*) (121)
with
Co(kk*) = - (n,/ £)'C™
(%) = || AR, vy - - A At A ]
Co(kk*; 11%) = - V2(n, /&), / E)C™
D (RE*; 11*)
= ||V A hges - Ny (@a BB + Bad)a - - -a /N2 ||
C (k> ; mm*) = (1, / £.) (1 / £1)CT*

<I>d°(kk*,mm*)= ”vkhkxq*-i ceeVpee .)\’aaa. B .a” .
(122)
The projection operator 05 selects out the spin eigen-

functions according to the relations

s+171/2 ¢
os(aapB+ ppaa)a - - - a/V2= [2(s+ 3)] ~POs 2512 »

1/2
s+1) (123)

Os aaa-nﬁ---tx:( Py©%s 230512 »

s+2
where the permutation operators P,, P, are defined, in
this case, as

Pi=(1s+3)2s+4)+(3s+3)(4s+4),

Py=(m-q+2s+2). (124)
The higher order terms are given in a similar manner
as above. Note again that the singly excited configura-
tions vanish and the doubly excited configurations in-
volve the spin coupling of ©f associated with the stan-
dard tableaux S;. Thus, this orbital theory involves
two-body interactions through the unlinked clusters of
the excitation operators S, , and is equivalent to the
closed-shell SEHF approximation. We call this orbital
theory as the modified SEHF theory. Preliminary cal-
culation on Li in Table II indicates that the MSEHF cor-
relation energy of the three-electron open-shell atom
is comparable with those of the two- and four-electron
closed-shell atoms.
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C. The CMO and GVB wavefunctions

Now consider the CMO wavefunction?® defined by

|¢>)=0Rmexp[zk: So,eSo,nt ; fo,mSB.m].|0>
=ox[ [T ciocio][ T ke

(125)

where
ch = (€5, ¢ + i, 5 €5, x)/[1 + (h5, )2,
el = (€4, m + iy, m €5, m3)/[1 + (g, )]/ 2,
Let us define &,, n,, £,, and 7, as in (117)
L=1/[1+ (%’k)z]uz ) .
M=Hho,»/[1+ (hﬁ,k)zlllz ’
En=1/[1+ (o, )" %,
T = o, m/[1+ (g, m)?]' /2 . (127)

Further, let )\,, v, be the spatial orbitals for ¢j , and
cg,¢* and X, v, for cp , and €5 .x. These functions are
again the natural orbitals. - Then, we can rewrite the
CMO wavefunction by means of paired-orbitals as done
in I,

&= 0|11 Ps - -+ DePart - - $plaB - Ba)

(126)

cee(aB-Ba)a...a/V2q ]|, (128)
where
D= (Ek)\k + nkv,.)(ﬁkh - mvk)/ﬁ + mﬁﬂh Ay
b= Ehp + NV - (129)

The CMO wavefunction is expanded in terms of its own
natural orbitals,

d= Crtq)rl + Cd°<1>d'+ -
in the limited CI form. The & is again the re-
stricted function with C™ =1, £][1, £,]. The singly
excited configurations do not appear because of their
pure imaginary property. The % is a sum of the doubly
excited configurations: :

(130)

C®a% = Y CU(kr*)a%(kk*)
k

+ D00 CoO(RR*; 11 %) 3% (R ; 11¥)

k<1

+ D02 C¥®lmm* ; nn*) B (mm*; nn*)

mén
+ ; 7,,.“ C U (BE* ; mm*) &% (k¥ : mm*) |

(131)
where

C®(kk*) = - (n,/ &)* C™
d%(kk*) = H)‘ixl SR ASEEP W WvER ')\p” ’
Co(kk*; 11%) = -2(n,/£)(n, /E) C™ ,
o (kk*; 11.%)
= || M et < - 2 (@B - Ba)(aB - a)a - - 0/2]] ,
C®lmm*;mn*) = = (0 / En)(na/ £) C*

@“(mm*;nn*): ”’tzx;”’qualm ...ym...yn...)\’H ,
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C (kX ; mm*) = = V2 (1, / £) (1 / £) CTF
®(RR* ; mm*) .
= Hvk)\k)\qﬂ eVt -)\,(aB—-Ba)a el .a/ﬁH .
(132)

The higher order terms are given in a similar manner
as above. Thus, the CMO wavefunction involves the
singlet type spin couplings ©! associated with the stan-
dard tableaux S;.

The GVB wavefunction? is also given by a cluster
expansion method

|¢>=meXP[;go,ksz.k+ %Zk: (iho.nSB,n)z
+ ; gO.mS;.m] |0y
=[TX ] [IT cime] I

where the c}, are the two-particle creation operators,

(133)

2
Cra=[C0,a €0 18 = (B, )° €O, 1% a €0, w%s)/

[1+ (T4 . (134)
If we define
E=1/[1+,)14,
Ma=Hp,a/[1+ (k)4 (135)

together with the spatial orbitals x,, v, for ¢ , and
Co,x*, then we have

¢= ” ¢la¢1b ot ¢qa¢qb¢q¢1 e ¢p(aﬁ_ Ba)

.. -(aB-Ba)a---a/N3g]| . (136)
Here we set

P = Exda+ TV

Dup = Exhi = MV

Bm=Ap, . (137)

The ¢,, and ¢,, satisfy the strong orthogonality condi-
tion.? Thus, the optimized & in (133) is the GVB
wavefunction for open-shell systems. The GVB wave-
function is also expanded as a limited CI based on its

own natural orbitals,
&= CHe™ + Cleple ... (138)

This expansion is analogous to those of the MSEHF and
CMO wavefunctions. However, the % in (138) only con-
tains the paired-type doubly excited configurations
®%(kE*) and no such terms as ®%(kk*; I1*) and ®%(kk*;
mm*),

D. Complex GSO wavefunction

Last, we consider the new orbital theory, PHF3, given
by the cluster expansion

I<I>) = (Pi’leXp[Zk: fo,ksz,h*'zk: &ek St

+ 3 funSomt Y g,.ms;.m] |0y
m m

The projection operator ®, which solves the stability

(139)
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dilemma, takes the form ®=0x050,. The |®) can be then we have
rewritten as a determinantal form

@) =<P[IkI Cha c;% [I,,,I ct,.a] I, (140)

where

Cr = £o,1 £, 5[0, x + i(Mg, 5 / 0, €0, 1% + (1, / £x,1)C0, k%O
- i(no,k/‘Eo,k)(nx,k/‘gx,k)c;.kox] )

. . P (et P ) Cn= Eoym Exym [ca.m + i("lo.m/ﬁo,m) c;.m* + (nx.m/gx,m)ca.m*ox
Cx =[(ct,x +&%, 1 C0,1%0x) + 6o, 1 (Ch, % — &7, €31 0]

x1/[(1+ ()DL + (g4, 2]/ =i, m / E0,m) ey m/ £y m) €3, m O] - (143)
cl=[(Ch,m+&r, mC, mx ) + ihg, m(Ch, mk = &2, €, 0] It is convenient to introduce the spatial or}.aitals gy Vi
. PRV A, and v,. In terms of these natural orbitals, we ob-
X 1/[Q + (g, ) (1 + (g, )2 . (141) tain
If we define d=C™e™ 4 Clpl ... | (144)
Eo,a=1/[1+ ()12, where the leading term is again the open-shell re-
To,e=Hy,n/[1+ (hs’k)z]uz , stricted function
Eoa=1/[1+ (gL )2, R [ YRR WP WP W |
—o! 1+ ( ’ )2 1/2
Ny gx.k/[ g:,: 2] ’ cr=— {H[(go.k gx'k)z + (no,knx.k)zl} I'I EoymEx,mp -
g0.m= 1/[1 + (ho.m) ] / ’ k "

(145)

Noym= hO.m/[l + (ho.m)2]“2 ’

1/[1+( y2/2 The singly excited configurations vanish due to the pro-
bam= /[1+ Exym I, jection operators. The &% is a sum of the doubly ex-
Neym=8o,m/[1+ (&2, (142) cited configurations:

J

CUpt = CU@RR*)@®(RE*) + DY C(kk*;11%)2(kE*; 11 %)
k k<1

+ ZZ Cl(pk*; 11%)D3(RR*; 11*) + ZE C ®(mm*; nn* )d% (mm* ; nn*)

k<1 m<n
20 D7 Cle(kk*; mm*) B (Rl*; mm*) + 9, D C (kk*; mm* )32 (kk* ; mm*) (146)
R m kR m .
I
where o "
oo (kk* ; mm
C(kk*) = = [0,/ £0,8)" + (i, n/ 5, )] B
2 2 s+1\!/2
X1/[1+ o,/ &0, (M, n/ £5,0)°] C™* = (s+2) et = Vi - - -ApPze(fs/z)(s/Z)” )
R P R T W e WPERE W (147)
C¥(rE*; 11*)=-X, X, C™ , where the permutation operators P, and P, for spins are
defined in (124). We set in (147
B(kR*; 11*) ) in (147)
= 2
= |VaVi A A - - A, (@B - Ba) (@B - Ba)a - - a/2]] X, =20,/ E0,) [1+ 0,/ £,)%)/
CE(kR*; 11%) =~ Y, Y, C™ , | [1+ o,/ Eo, )" O,/ £2,)°]
o o %) Y,= @(nx,k/gx,k)[l - ("'Io,k/go,k)z]/
2 (kE*; 11 .
* [1+ (no.k/go.k)z(nx.k/‘gx.k)zl . (148)
s+1 ]1/2 ” f . . s .
= | == Avaw Ay, PO il We see that the doubly excited configurations in PHF3
[2(s+ 3) PR e priTis/neD wavefunction involve two types of the independent spin

s . . . 1 .
de X k) _ _ rf eigenfunctions, that is, the singlet type © gnd the spin
Clomm* ;) = (7’_0,m/£0, '_"_)(no'"/g"’") ¢ _ polarization type ©. Thus, this orbital theory, com-
3% (mm*; nn*) = || MRy -+ A AR qe1 ** Vo * Uyt e 7\,,|| , plex GSO theory, leads to lower energy than the other
de (1, k. ¥ _ ¥ ‘~rf orbital theories discussed above. This orbital theory
CRUeR™; mm*) = = X,(o,m/ £0,n)C™" is a generalization of what we call complex DODS in I.

®G° (Rl mam*) The limited CI in terms of natural orbitals can be
= v ey -+ Vo N (aB-Ba)a - ca - /2| used to examine the internal relationships of various
open-shell orbital theories, The leading excited con-
C(kE*;mm*) = = Y\ (0, m/E0,m) ™", figurations are most important since the higher order
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TABLE III. The leading excited configurations in the limited CI based on the natural orbitals of various open-shell

wavefunctions for the doublet spin state.

Singly excited configurations

Doubly excited configurations

UHF v AAm(@B+ Ba)a/ V2
SEHF v Am(@Bo+ Baa —2aaB)VE Il
GVB vy pApaBall
gll VpVphmoBall
MSEHF v A AL {(2008 - ao — Baa)B — (BB + B — 28Ba)ata/VIZ I
( A wn(2eaf —apa —Baa)/VEl
(v AmaBe i
CMO %II VAV M A (@B = Ba)(ap — Ba)a/2ll
Iy Agvm(aB = Ba)a/+ 2|
v hmaBall
VA M Am(@B = Ba) (@ — Ba)ar/ 2l
Complex GSO I vkxkv,)\,x,,,{(Zozaﬂ —aBa—-Baa)g— (aff+Bap—26Ba)ata/VI2I
v A pVm(ap —Ba)a/VZI
N\, (20aB — afa — Ban)/ VB

terms arise just from the self-consistency effects. In
Table III, we summarized the leading excited configura-
tions in the limited CI expansion for various orbital
theories with the doublet spin state. We can expect from
this the following relation

[E Complex GO < [ CMO < pMSEHF < pGVB  pSEHF  pUHF
(149)

Note that the above relation stands on the two basic as-
sumptions. The first is that natural orbitals X, v,, X,
and v,, defined in each orbital theory are not identical
but similar. The second assumption is that the singlet
type spin coupling may cause the lower energy than the
corresponding spin polarization type spin coupling,
since the former might be thought as representing co-
valent bonds but the latter is not in keeping our intuitive
idea such as electron pair bonds.

V. SUMMARY

The one-particle cluster expansion of a wavefunction
is a useful expression to construct and to analyze the
orbital theory. In this paper, we applied the previously
developed new approach to the orbital theory to open-
shell systems and construct the open-shell orbital the-
ory including the electron correlation effects. New
orbital theories, the MSEHF theory and complex GSO
theory, have been presented. They are analyzed in
contrast to the conventional orbital theories such as
UHF, SEHF, CMO, and GVB theories in the form of the
limited CI based on their own natural orbitals, The
MSEHF theory includes effectively the correlation ef-
fects in open-shell systems and constitutes a natural
extension of the closed-shell SEHF theory (the conven-
tional SEHF theory fails in open-shell systems). The
complex GSO theory is a generalization of what we call
the complex DODS in I. This orbital theory is the most

suitable orbital theory to include the electron correla-
tion effect within the orbital approximation.

We hope and expect that the present work will sug-
gest new viewpoints and approaches to the open-shell
orbital theory.
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APPENDIX: THE RHF WAVEFUNCTION AND
THE VARIATIONAL EQUATIONS

The restricted Slater determinantal function is used
in the present formalism as a reference wavefunction.
We investigate here its primitive cluster expansion
form. In the previous paper,® we showed that the RHF
wavefunction is expressed as

| ) =@ 4 exp [Z; cKs;{] | @, 1) exp[; c,,s;,] | @0,
(A1)

by making use of the symmetry-adapted excitation
operators. Here |, x) |, ,) are arbitrary single de-
terminants for the closed and open blocks, respectively
and the Sy, Sy represent the singlet-type excitation
operators for the excitation from the corresponding
blocks to all other blocks. The @, denotes the anti-
symmetrizer for the interchange of electrons between
the closed and open blocks. The reason that we have
used different exponential operators for different blocks
is that the excitation operators belonging to the dif-
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ferent blocks do not necessarily commute with each
other,

Here we relax the restriction that the symmetry-
adapted excitation operators should be used and repre-
sent a general restricted Slater determinant in a single
exponential form. Let us consider the cluster expansion
of the form

l &) =Nexp [; Ctk(a;aaka + a;B akﬁ) + tz: Cim a:a A
m

+ Z Ckm(a:nB + Z Cim a;a) aw] |0y . (A2)
km t
where the coefficients C are assumed to be real. This
can be rewritten as
Ay +3, Cop A
. + +
w=(T4. Figmenyre [T b oo

Wwhere

e e o Fio]”
A= (a;+ Xt: Cim a{)/ [1 + Zt:(ct,,,)z]1 &
Cu=Coa [(1+ 5 )/ (1+3 (c,,,))]m . (a9)

A unitary transformation of the a-spin orbitals leaves
| ) unchanged since it is a determinant. Thus, we have

)= [T1 & dte] [ TT 4] D (a9
where

E= (R T cum)/1r T @]

e (s-Ton)/frepe]” w

with C,= Cpy. It should be noticed that the double
occupancy of the closed-shell orbitals is preserved.
Thus, the cluster expansion of the wavefunction (A2)
gives the general restricted open-shell determinant.
The uniquely determined optimal determinant is the RHF
wavefunction.

Now we consider the variational determinantion of the
RHF wavefunction. The energy of the system E is a
function of parameters C which are embedded in ®.

The variational equation for & is given by

(®|H-E|53)=0 (A7)
where
5® = (68/5C,)5C, (a8)
i

Since 5C, in (A8) are arbitrary, we obtain from (A2)
the equations

<<I> I H - E)(a;a Gpe + a;B akB) I <I>) =0

<q> | (H "E) a;a(“rna - ; kaaka) l <b> =0

K. Hirao and H. Nakatsuji: Open-shell orbital theory

(®|(H - E) (a;B + Z_‘, Cim a;B) pg| ®) =0 (A9)

To derive the above equations, we assumed that the
normalization factor 9 is free from the variational
parameters. The first two in (A9) correspond to the
variational equations between the occupied orbitals-and
the virtual orbitals and the last one in (A9) corresponds
to the variational equation among the occupied or-
bitals.

The complexity of the cluster expression of the RHF
wavefunction given by (Al) or (A2) and the variational
equations in (A9) originates from the basic assumption.
of the “restricted condition” that the orbitals can be
grouped into separate blocks (e.g., closed-shell mani-
fold and open-shell manifold) and within each block a
unitary transformation among orbitals keeps the total
wavefunction invariant.
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