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Because of its linear variational nature, the CI expansion gives
a consistent method for ground and excited states. The solutions for
both states are mutually orthogonal and hamiltonian-orthogonal, and
they constitute upper bounds for both states. However, another fea-
ture lies in its slow convergence. This becomes severe especially for
excited states, though a stride has been made in recent years in effi-
cient solutions of the CI expansion.

The cluster expansion gives, on the other hand, a rapidly conver-
gent method for ground states with inclusion of higher-order unlinked

r

terms. It also shows a correct dependence on the number of particles

involved, in contrast to a standard (1+2)CI.4

Though the applications
are still very limited, the results seem to show a promising utility
5
of the theory.
We consider an extension of this approach to open-shell systems,
. . . 6 c s
introducing symmetry-adapted-cluster (SAC) expansion. Variational

and non-variational solutions are considered. 1In a single excitation
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case, this expansion gives pseudo-orbital theoxy. It is applied to
the study of spin-correlations in open-shell atoms and molecules.

We next consider the SAC-CI theory for excited states.‘7 The SAC theory
combined with the variational principle gives a basis for the excited
states. Variational and non-variational solutions are considered.
Then, the SAC and SAC-CI theories are applied to the study of electron
correlations in the ground and excited states of relatively small
molecules. So far, the results have shown excellent agreements with
the full CI and close-to-full CI results, with much smaller numbers

of variables (sizes of the matrices) involved. This geems to show a
utility of the SAC and especially of the SAC-CI theory, since the slow
convergence of the CI expansion is much more critical for excited
states than for ground states.

1. SAC Expansion for Ground States

We expand the ground state of a given spin-space symmetry by
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where § is a sum of the essentially i-ple excitation operator g(i)'
S; denotes a symmetry-adapted excitation operator which produces
symmetry-adapted configuration on applying the reference wavefunction
(wf) ¢O = |0>, which is chesen as restricted HF wf. The symmelry
adaptation of the excitation operator is necessary because of the non-

linear nature of the expansion. Otherwise, a mixing of different

. . . 6
symmetry spaces may occur as discussed in detail previously. We note

36



that for totally symmetric singlet states, the projection operator O
is unnecessary.
A. Variational solution (SAC-V); Application of the variational prin-

ciple to the SAC wf given by eq.(l) leads to an equation
<Y |1 -E)SIY > =0 (3)
g g K g '

+
SI)QO. The energy may be calculated from

where Wg' = exp(ZCI

I
Y u-£|¥>=0. (4)
9 9 g
B. Non-variational solution (SAC-MET); If the SAC wf were the exact
wf, the function (H - Eg)le> would be identically zero. Requiring

this condition in the space |O> and S;|O>, we obtain

<0O|H - E_|¥>=0 5
| oY (5)

<0ls, (1 - E)|¥Y>=0. (6)
K g 9

For closed shell, the solution of egs.(5) and (6) seems to be equiva-
lent to that of the coupled-cluster many-electron theory (CC-MET) by
Cizek and Puldus, though the latter was derived in diagrammatic form.3'5
The variational solution gives an upper bound to the exact energy.
It also gives a basis for an analysis and extension of various model
theories, since formally it includes completely the self-consistency
in an expansion form. In a single excitation case, it gives a new
orbital theory, called pseudo-orbital theory, as the conventional
cluster expansion leads to a conventional (UHF) orbital theory (Thouless
theo?ems). Including only spin-polarization excitation and its self-
consistency to first order, we have calculated spin densities ofvatoms

and molecules (Table 1). On the other hand, the non-variational method

is simpler computationally than the variational one, since the former
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does not include the matrix element between unlinked terms.
2. SAC-CI Theory for Excited States
We define a set of functions {@K} on the basis of the SAC ground
state ¥ as
9

_ (R) _+, , :
¢K = NKI’O Rng (7)

. . +

where P is a projector P =1 - |Wg><Wg| and RK is a symmetry-adapted
excitation operator for the symmetry of the excited state under consi-

. (R) . .
deration. o is the projector for that symmetry. We note that
when the ground state is a totally symmetric singlet state, the pro-:
. (R) .
jector O 1s unnecessary.

When the SAC wf Wg for the ground state satisfies the variational

equation (eq.(3)), the functions {@K} satisfy the relations
< > = < > = ‘
<1>K|\11g 0, (I’KIHl‘ig 0 (8)

which are the Brillouin theorem in a generalized sense. This relation

means that the functions {QK} form a basis for excited states. Then,

we may express the excited states in a form
Yy =% a9 (9)

This is the SAC-CI wf for the excited states.7

The SAC-CI theory for excited states seems to converge more rapidly
than the conventional CI expansion. (a) Theoretically the basis func-
tions {¢K} already satisfy the necessary condition (8) for the excited
state. (b) Since the basis ®K includes the electron correlation in
the ground state through Wg', the SAC-CI method has only to express
the reorganization in electron correlation in the excited state. The

similar the two correlations are, the more rapid would be the convergenc
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A. Variational solution (SAC-CI-V); Application of the variational

principle leads to a seqular equation
< - > =
E o, |H Be|q>L d_=0. (10)

Recently, Paldus, Cizek, and coworkers9 have considered in a diagram-
matic form a similar variational theory for open shell-systems using

the non-variational CP-MET solution for closed-shell ground state.

In their formulation the relation (8) which is a key in the SAC-CI
formalism does not arise.

B. Non-variational solution (SAC-CI-NV); If the SAC-CI wf were the exact
wf, it would satisfy the Schrd8dinger equation (H - Ee)IWe> = 0. Requ-
iring this condition in the space of the linked configurations R;|O>,

we obtain
L < - FE > = .
) oka(n E) |<I>L a =0 (11)

This equation- suffices to determine all of the unknowns in the SAC-CI wf.
When the basis functions {@K} satisfy eq.(3), the nth solution of
the variational eq.(10) gives an upper bound of the energy of the nth
excited state. The excited states obtained from eq.(10) show correct
. relations to each other. However, a merit of the non-variational solu-
tion is that it includes at most the element between linked and unlinked
terms.
3. Applications
In Table 1, we have summarized the results of the pseudo-orbital
theory applied to the calculations of the spin densities of first-row
atoms. Further, the SAC and SAC-CI theories have been applied to the

calculations of the electron correlations in the ground and excited
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states of relatively small molecules. . Approximations were considered
for £he variational solutions since time-consuming terms are involved.
The results for the ground and Rydberg excited states of H,0 are given
in Table 2 and compared with the very accurate CI results of Hausman,
Bloom, and_Bender.lO The present results show excellent agreement

with the accurate results with much smaller numbers of variables (sizes
of the matrices) involved.

4. Part of this study has been carried out in collaboration with Dr.
Kimihiko Hirao at Shiga University of Medical Science. The author also

thanks Professor T. Yonezawa for continuous interest in this study.
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Experiment
0.2313
-0.01693
0.0081
0.09705
0.11398
0.07183S

Present
0.2243
-0.0168
0.9694
2.484
0.0147
0.0487
0.1176
0.0712
0.0305

0.2065
-0.02222
0.0041
0.0288
0.0714
0.0628
0.0496

FOCI

0.2265
-0.0169
0.9938
2,516
0.0022
0.0423
0.1200

SOHF

SEHF
0.2406
-0.02304
1.008

2,521

0.0361
0.0733
0.1579
0.2137
0.2455

0.2248
—-0.01747
0.0192
0.0753
0.1853
0.1944
0.1298

UHF

2p
Be' 2§
Zp
3p
4s
3])

Table 1. Spin densities for first-row atoms
2p

Li 2s
B2+2S

B
C
N
O
F
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