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SAC (symmetry-adapted-cluster) theory has been extended to excited states. Calculations are reported for excited

states of Be, H,O and CH,. SAC theory reproduces full CI results to high accuracy for singlet excited states of Be. Calcu-
lated Rydberg excitation energies for H, O show good agreement with experiment. The singlet—triplet separation in CH,

is estimated to be 11.8 kcal/mol.

1. Introduction

One of the more successful ways of studying elec-
tron correlation in atoms and molecules has been that
based on the so-called cluster expansion of the wave-
function [1-3]. In the symmetry-adapted-cluster
(SAC) expansion [4], the ground state of a given sym-
metry is expressed as

¥, =0 exp($)®g

=[1+S+0(S2/21 +83/31+..)] ¥, , 1)
where the S is the linked cluster generator and a sum
of essentially i-fold excitation operators
S‘=SI+A§2+»N+A§N=ECIS; (2)

I

and SIJr is a symmetry-adapted excitation operator-
which generates a symmetry-adapted configuration
when operating on the reference function. The Cj is
the expansion coefficient. The &y, is the reference

function and chosen usually as a restricted Hartree—
Fock (HF) wavefunction

¢0 = ” wlawlﬁ...wqawqﬁw q+1a t[/pa " . (3)

O is the symmetry projection operator which applies
in the ground-state theory only to the unlinked clus-
ters.

The main advantages of the cluster expansion the-
ory are as follows. First, the expansion is based more
on physics. That is, one can choose the physically
most important terms as linked clusters for the in-
vestigation of a particular physical problem, such as
pair excitation operators for the closed-shell electron
correlation problem, the spin polarization excitation
operators for the open-shell spin correlation problem,
etc. Then, these higher-order effects can be automat-
ically accounted for through the unlinked clusters
and one can get rapid convergence compared to the
configuration interaction (CI) expansion. Second, the
variational cluster expansion includes self-consistency
effects for orbitals in an expansion form. The function
space spanned by the one-electron cluster expansion
wavefunction is invariant with respect to the choice
of the reference function. The variational cluster ex-
pansion W = exp(S; )®, is reduced to the conventio-
nal HF wavefunction, which is known as Thouless’
theorem [5]. Thus, the general cluster expansion
theory is a natural extension of SCF theory, which
has been successfully applied to the electronic struc-
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tures of atoms and molecules. We have already pro-
posed new orbital theories [6], a pseudo-orbital theory
[7] and SAC theory [4] by taking advantages of the
cluster expansion of the wavefunction.

There are several possible ways to extend the clus-
ter expansion theory, which is suitable for the ground
state, to excited states [8—10]. An interesting approach,
termed SAC CI was formulated by one of us and applied
to various excited states, ionized states and electron at-
tached states of molecules having a closed-shell ground
state [11]. The most essential feature of the SAC Cl is
that it starts from the correlated ground state (SAC
ground state) and calculates the change with respect
to the SAC ground state, rather than to introduce
again all the correlations into the uncorrelated reference
function. Clearly, it is based on the assumption that
since the excitation or ionization only involves one or
two valence electrons, the majority of the correlation
effects will not be drastically changed.

On the other hand, the cluster expansion of the
exact wavefunction for each excited state is also pos-
sible as well as for the ground state. The SAC theory
based on this expansion might be equally justified. The
alternative, closely paralleling the ground-state formal-
ism, is called the SAC theory for excited states. This
formalism may be advantageous for more general ex-
cited states and expected to give a higher accuracy
than the SAC CI theory. The purpose of the present
paper is to develop the SAC theory for excited states
and to examine utility and accuracy of the theory.

2. SAC theory for excited states

In the following, we treat the singlet excited state
as an example but the formalism is general enough and
can easily be extended to other states with different
spin multiplicity.

For dealing with excited states, the SAC theory has
some difficulties. One of them is how to choose the
reference function. Consider the singlet excitation in
the orbital approximation from ¥, to y,,, then the
wavefunction for this state is expressed as

@ = 11212 Yy a1 B... Yy, ¥y (0B — Bl - @

This is not a single-determinant function. To select the
reference function for excited states, we considered
three guiding principles. First, the formal simplicity of
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the cluster expansion lies in the fact that it starts from
a single Slater determinant. It is desired to choose a
single determinant as a reference function. A formula-
tion based on the multi-reference function is, of course,
possible but in such a theory, the simplicity and beauty
of the cluster expansion may no longer be preserved.
Second the excitation operators should be mutually
commutable. This arises from a purely mathematical
requirement. The third point is that it is expected that
the derived theory can be related to some other SCF
theories for excited states.

Another difficulty is the variational theorem for
excited states. On this point we call attention to the
following theorem. Let ¥; and E; be exact eigenfunc-
tions and eigenvalues

H\Ill=El‘l,l’ EO <E1 <E2 <.... (5)

Assume that we have the corresponding approximate
wavefunctions ®; and their energies J;. Suppose that
we are interested in the kth excited state. If the approx-
imate wavefunctions ®; fulfil the relations
(O HIPp) =T, (D;|P=6,

0<i,j<k, ©

that is, they are orthogonal and orthogonal with re-
spect to the hamiltonian, then the approximate en-
ergy J; for the kth excited state is an upper bound
for the kth exact eigenvalue £},

Ep <Jy

Q)
and the mean-square deviation of the kth excited wave-
function ®; from the true eigenfunction Wy is ex-
pressed as

k-1

Jp—FE E, —J;

e [1 D ___k__f_]
Epe1 —Ex U j=0 Ex —Jr—1

@®

This is the application of the Eckart theorem for the
ground state to the excited states [12]. The error ex-
pression is in the limit proportional to J; — E}.. There-
fore, one can make the error as small as one likes by
making J; sufficiently close to £} without knowledge
of the exact lower state wavefunctions.

Keeping these two problems in mind, we formulated
the SAC theory for excited states. We choose the fol-
lowing @ as a reference function:

S — @ 2 ar<
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Dy =lYod B ... Yol Bl ®

@, is a single determinant but symmetry-broken. -
The SAC expansion of the wavefunction for the ex-
cited state is given by

W, =0exp(S)Py =0 (1 +S+52/21 +..)0, . (10)

O is the symmetry projection operator. Note here that
unlike the ground-state theory in (1), O applies even to
the reference function to recover the spin symmetry:

0@y = 0y=112"12y 10918 .. Yy, ¥y (0B — ) I -
(11

This selection of the reference function follows the
three guiding principles mentioned above. If one
chooses one-electron singlet type excitation operators
for S, then one can obtain the so-called non-orthog-
onal HF wavefunction in an expansion form.

Let us examine the variational theorem. Applying
the variational principle, one can obtain the SAC varia-
tional equation [4]

(U |(H—E)S] 1w =0, W, =exp($)dy. (12)

This variational equation has the same form as the
generalized Brillouin theorem, which implies the in-
clusion of the SCF effects in the SAC wavefunction.
Now define a set of functions { xg } on the basis of the
SAC excited state W,

Xk =POSKUL, P =1 [T I¥,) . (13)

Pis the projector and S;( is a symmetry-adapted ex-
citation operator. Then, we see that the functions xg
satisfy the relations

(W lxgd=0, (W lHIxg)=0. (14)

It means that a set of functions xg form a basis for the
excited states including lower states relative to the ex-
cited state ¥, under consideration. Thus, it is guar-
anteed that the energy E,, for the excited state W, gives
an upper bound to the exact energy with an appropriate
choice of Sk- Thus, the expansion in (10) is our SAC
expansion for the singlet excited state.

The variational and non-variational solutions are
considered as the ground-state theory [11]. Applica-
tion of the variational principle leads to (12) as shown
above. The energy of the system can be calculated by

(U |H—E V=0, @15)
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The features of the SAC variational (SAC V) solution
are as follows. It gives an upper bound to the exact en-
ergy. It includes SCF effects in an expansion form.
However, a computational difficulty of this procedure
is that it includes matrix elements between unlinked
clusters. This leads to a very complicated system of
non-linear equations for S.

The SAC non-variational (SAC NV) treatment can
be derived by projection of the Schrédinger equation
onto the subspace spanned by the reference function
and linked clusters:

(®p| H—Eo|We)=0, (16)

17)

The energy does not have the upper bound nature and
there is no SCF concept. However, a remarkable merit
of the procedure is that is does not involve matrix ele-
ments between unlinked clusters. It is very useful from
a practical point of view.

So long as the SAC expansion is accurate enough,
we may expect that the difference between SAC V
and SAC NV solutions should be small.

Now we derive formulas necessary for actual calcu-
lations. We limit ourselves to one- and two-electron
excitations in the linked cluster expansion. The un-
linked clusters which appeared in the linked cluster
expansion are neglected. In the variational treatment,
we truncate the expansion of the wavefunction at sec-
ond order, assuming that S is small, that is, the absolute
value of the coefficient Cy is small compared to unity.
The energy expression and the SAC V equation are
given by

(@I Sy(H - EI¥e)=0.

E,=E,+ %) C; (010S; 10)
.f.
- g;{ C1CyC (O1SySgHOS] 10y, (18)
i > i

(0IHOS; 10) + - Cy{0|S;(H - E;)0S; 10

¥ % JZK) C;Cx ({01 S;SxHO S} 10)

+(0ISg SFHOS] 10) +(01S;SHOSE10) =0 . (19)
These equations are the same as those for the ground-
state theory except for the projection operator. The

energy expression and the SAC NV equation are also
derived in the present approximation as
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Ee = Eq + 21 CHOIHOS] 10), (20)
i > i

(OLHOS; 10) + Z4Cy (OISy(H ~ E)OS[10)

‘%,Z;/ CyCx (01S;SxHOS]10Y=0. @1)

—0.017500
0.424945
0.788148
3.094951
3.553543

Full CI [14]

We denoted |0) by a reference function |®) and £,
by (0| HO|0). Note here that in the non-variational
procedure one must solve the non-symmetric equation
for determining the unknown coefficients. We have
developed a new procedure for calculation of the real
eigenvalues and eigenvectors of large, non-symmetric
matrices by extending Davidson’s algorithm [3] for
the iterative calculation of eigenvalues of real sym-
metric matrices. Details of this procedure will be pub-
lished elsewhere. On the other hand, one can obtain
solutions for SAC V method by solving the symmetric
equation. These two equations, (19) and (21), are
solved iteratively.

—0.017488

(0.00001)
0.424945
(0.00000)
0.788157
(0.00001)
3.094992
(0.00004)
3.553544
(0.00001)

SAC NV

—0.017488
(0.00001)
0.424947
(0.00000)
0.788155
(0.00001)
3.095003
(0.00005)
3.553533
(—0.00001)

SACV

(0.00001)
0.424785
(—0.00016)
0.787615
(—0.00053)
3.096674
(0.00172)
3.558963
(0.00542)

3. Some numerical results

SAC CINV [11]
~0.017488

SACV

To illustrate some of the points mentioned here
and to test the accuracy of the theory, we treated the
Be atom, and the H,O and CH, molecules with the
SAC theory for excited states.

In the linked cluster expansion, all single and
double excitations are generated relative to the refer-
ence function, having non-zero hamiltonian matrix
elements with the reference function. The linked clus-
ters which do not interact directly with the reference
function are not included in the present treatment.
Note here that one-electron excitation among open-
shell orbitals for excited singlet states includes de-
excitation from the excited state ¥, to the ground
state. When we construct the unlinked clusters,
GCrS; S}IO), we discard them if the absolute values.
of Cy and/or Cy in the CI expansion are less than 10~ 3.

The SAC expansion uses ground-state orbitals for
all states for Be. While, for H, O and CH,, the SAC
expansion for each state uses orbitals from an SCF
calculation on that state or at least from a closely re-
lated state, rather than using ground-state orbitals
for all states.

First, the SAC theory is applied to singlet excited
states of Be with a 5s STO basis. Table 1 summarizes

SACCIV [11]
~0.017488
(0.00001)
0.424644
(~0.00030)
0.790760
(0.00261)
3.094659
(~0.00029)
3.560788
(0.00724)

SACV

a+2yc®
_0.017445
(0.00006)
0.437361
(0.01242)
0.801752
(0.01360)
3.101967
(0.00702)
3.567507
(0.01396)

MC SCF [14]
~0.013947
(0.00355)
0.428570
(0.00363)
E,(2-3,2-3) 0.801399
3.109372
(0.01442)
E4(2-3,2>4) 3.566049
(0.01251)

(0.01325)
CI denotes the CI with all single and double excitations.

E32-4)

a) Al energies are relative to the Hartree—Fock energy, —14.572924 au. Values in parentheses are relative to the full CI results.

Ground and excited 1S states of Be compared with full CI results a)
Y (1+2)

ground  E
excited E;(2 - 3)

Table 1
State
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the results. The SAC solutions obtained are optimized
for each state. The present results are compared with
results of different theories and full CI results [14].
Values in parentheses are relative to the full CI results.
For both ground and excited states, the SAC theory
reproduces the full CI results to very high accuracy.
SAC results are closer than those of other methods

by two or three orders of magnitude. We can see that
the SAC theory for excited states is more accurate
than the SAC CI method. Another interesting point

is that there is little difference between SAC V and
SAC NV solutions. This is true for triplet excited states
summarized in table 2.

The second system to which the SAC theory was
applied is HyO. We used the standard Huzinaga—
Dunning [3s2p/2s] basis [15,16] augmented by
Rydberg 3s (¢ = 0.032) and 3p (§ = 0.028) gaussians
on oxygen. The 1s oxygen core orbital remains doubly
occupied. The calculation was performed on the equi-
librium geometry (OH = 1.8111 au, ZHOH = 104.45°).
The CI with single and double excitations gives
—0.11536 au for the ground state relative to the HF
energy and the SAC NV gives —0.12139 au. Thus, the

Table 3
Vertical excitation energies (eV) of water a)
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Table 2

Excited 3§ states of Be @)

State 1+2)c1®  sacv SAC NV
E;2-3) 0.337467 0.325053 0.325053
E,2-3,2-3) 3.062086 3.055410 3.055409
E32-3,2-4) 3.457463 3.440685 3.440686

a) All energies are relative to the Hartree—Fock energy,
—14.0572924 au.

(1 + 2) CI denots the CI with all single and double excita-
tions.

energy lowering due to the inclusion of unlinked clus-
ters is 0.006 au. Table 3 shows the vertical excitation
energies of H,O for various Rydberg excitations. The
SAC NV results are compared with the CI results with
larger basis sets [17,18] and with results obtained by
the equation-of-motion method [19]. The SAC NV
results give good agreement with experiment. This ex-
cellent agreement is rather fortuitous. However, this
may be attributed partly to the fact that the SAC
theory takes into account correlation effects in the
ground and excited states in a well-balanced way. Our

State Orbital CI EOM [19] SAC NV Exp. [17]
picture [17] [18]

138, 1b; —»3sa, 7.26 6.90 6.89 7.02 7.0,7.2

11B, 7.61 7.30 7.22 7.46 7.4,7.49 A

134, 1b; — 3pyby 9.34 9.04 8.97 8.96 8.9,9.1,9.2

114, 9.46 9.20 8.89 9.12 9.1

23B, 1by - 3pzaq 9.99 9.84 9.47 9.77 '9.98

21B, 10.06 9.90 9.48 9.83 10.01,9.996 €

334, 1b; = 3pyb,y 9.74 9.65 9.39 9.45 9.81,9.80

314, 10.16 10.32 9.61 9.76 10.17,10.14 D

234, 3a; - 3sa, 9.44 9.01 9.34 9.22 9.3

214, 9.82 9.80 9.54 9.60 9.67,9,73 B

138, 3a; — 3pyby 11.11 10.99 - 10.88

11B, 11.47 11.21 - 11.19

33B, 3a; - 3pyby 11.87 11.68 - 11.55

31B, 11.92 11.72 - 11.64 11.91

434, 3a; - 3pza; 11.77 11.53 11.69 11.47

414, 12.08 - 11.82 11.76

2) The molecule is in the yz plane and the z axis is the C, axis. HF energy for the ground state is —76.010267 au and SAC NV

energy is —76.131658 au.
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results are comparable to the more accurate CI calcu-
lations although the number of independent variables
is much smaller than in the other methods. This sug-
gests a rapid convergence of the cluster expansion in
contrast to the CI expansion.

Finally, we applied the SAC NV theory to CH;. In
recent years, there have been many experiments [20]
and calculations [21] to determine the singlet—triplet
energy separation. So this is a good example to test
the accuracy of the theory. We calculated first the three
lowest 3By, LA, and 1B, states.The basis set used is
the Huzinaga—Dunning [4s2p/2s] basis [15,16] aug-
mented with carbon d and hydrogen p polarization
functions. The d exponents for CH, are employed as
0.74 for triplet and 0.51 for two singlet states. The p
function on hydrogen has exponent 1.0. The equilib-
rium geometries of the 3B, (CH=1.08 A, LHCH
=134°),1A; (CH=1.11 A, ZHCH = 102.4°) and 1B,

Table 4

Total energies (au) for the three lowest states of CH,

3Bl
RHF energy
CI energy (909) 2)
SAC NV energy (909)

IAl
RHF energy
CI energy (729)
SAC NV energy (729)

lB1
RHF energy
CI energy (893)
SAC NV energy (893)

~38.927783 au
~39.030023 au
~39.031821 au (1.13 kcal/mol) ®)

—38.886484 au
—39.008204 au
—39.012950 au (2.98 kcal/mol)

—38.862088 au
—38.966580 au
—38.968433 au (1.16 kcal/mol)

energy separation (1 Ay — 3By)

RHF

CI

SAC NV
exp. [20]

25.9 kcal/mol
13.7 kcal/mol
11.8 kcal/mol
8.3,9.0,19.5,8.1

energy separation (!B; — 1A

RHF

CI

SAC NV
exp. [20]

15.3 kcal/mol
26.1 kcal/mol
27.9 kcal/mol
20-31 kcal/mol

2) Number of independent variables.
b) Contribution from unlinked clusters.

15 April 1981

(CH =1.05 A, LHCH = 140°) states of methylene are
well known and assumed here. The 1s core orbital for
carbon is treated as frozen. In table 4, we give SCF,
CI and SAC NV energies for these three states. We also
list the number of variables (number of linked clusters)
and contributions from the unlinked clusters in paren-
theses. The energy separation between 1A1 and 3B1 is
calculated to be 25.9 kcal/mol on the SCF level. In the
CI calculation, the splitting is estimated to be 13.7
kcal/mol. The inclusion of unlinked clusters decreases
the separation from 13.7 to 11.8 kcal/mol. The SAC
theory also confirms the importance of the quadruple
excitations to get an accurate singlet—triplet separa-
tion. The actual splitting is established to be ~9 kcal/
mol. So there is still a few kcal error but we think the
accuracy of the present theory is satisfactory, taking
the double-zeta quality of the basis set into considera-
tion. As to the energy separation between 1B; and 1A,
SAC theory predicts the splitting to be 27.9 kcal/mol.
The results obtained for a few model systems are
encouraging. We conclude that the SAC theory yields
a very good approximation for the calculation of cor-
relation energies for both ground and excited states.
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