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A theorem reported for Hartree—Fock SCF theory is shown to be valid for general MC SCF and open-shell RHF theories
— a sufficient condition for these wavefunctions to satisfy the Hellmann—Feynman theorem is that the basis set includes the
derivative AO 9dx,/9x, for any basis x,. The new force approach is applicable to wider fields including electronic processes in
chemical reactions. Test calculations are given for some simple systems.

1. Introduction

Derivatives of the potential energy hypersurface of
a molecular system are of fundamental importance in
many aspects of theoretical chemistry. The Hellmann
—Feynman theorem [1] gives a viewpoint on the elec-
tronic origins of the force. However, since most con-
ventional wavefunctions do not give reliable Hellmann
—Feynman (H—F) forces, the direct analytic derivative
of the energy (energy gradient) has been used for nu-
merical purposes *. It is necessary to develop a syste-
matic method for improving the wavefunction so that
it satisfies the Hellmann—Feynman theorem.

In a previous paper [2], we have given a theorem
which gives a sufficient condition for the Hartree—Fock
SCF wavefunction to satisfy the Hellmann—Feynman
theorem. It provides a basis for a new systematic force
approach which was shown to be very encouraging. In
this paper we show that the same basic theorem is also
valid for general MC SCF theories [3—5] and RHF
theories for open-shell and excited states [5,6]. Some
type of GVB theory [7] is also included. This fact means
that the new force approach is applicable to wider fields
including chemical reactions and open-shell and excited
states with these SCF theories as a tool. Test calcula-
tions are given for methylene (open-shell RHF) and the
hydrogen molecule (MC SCF) at several nuclear con-
figurations.

* See references cited in ref. [2].

2. Theorem

A force acting on nucleus A, F, is written as

Fy = ~CVI0H[OR, V) ~ 22 A, 8x, /R, )

where the first term is the H—F force and the second
term is an error term composed of an AO error A, of

a basis x,. (R is nuclear coordinate and x, the center
of the basis x,.) We show that the AO error is expressed
as

A, =2 2 ¢,; (SCF requirement projected on |r)),

’ @)
where c,; is a mixing coefficient of the basis x, in an
orbital ¢;, and r' is the derivative 9y, /dx, of the basis
r =X,.Eq. (2) proves the theorem: a sufficient condi-
tion for a general SCF wavefunction to satisfy the Hell-
mann—Feynman theorem is that the basis set includes
the derivative r' for any basis r. The basis set {r, r', r",
..} is such a basis. If the basis is recurrent in the sense
r=r", then the number of elements can be finite. This
theorem is valid for general SCF theories including
Hartree—Fock, UHF, RHF for open-shell and excited
states, general MC SCF, and some type of GVB theory.
Note that if only the force acting on a nucleus A, F is
concerned, the derivative 7' may be limited only to those
bases whose centers are on nucleus A.
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3. Force in general MC SCF and open-shell RHF
theories

We give the proof of the theorem stated in the above
section for general MC SCF theory. RHF theory for
open-shell and excited states, GVB theory, etc. are in-
cluded as special cases.

A general MC SCF wavefunction may be expressed
as

¥ = EA @ )

K"K’

where @y is a Slater determinant composed of the or-
bitals {¢;}. They are expanded by a basis set {x,} as

¢i - ? GriXe - @)

The basis {x,} usually includes several (non-linear)
parameters {ap} in which our special concern is the
center x, of the AO x,. The wavefunction ¥ thus in-
cludes (variational) parameters 4 g, ¢,;, and 0. The
normality and orthonormality conditions for ¥ and
¢; give, respectively,

2 -
LAt =1,

c'se=1, 5
& )

where S, = (x,|X;). We consider the MC SCF theory in
its most general form [3] and write the energy as

C(RA;AK,cn.,ap)

=Yy, 6, 0 HR DIV g ¢ (6a)
= Dy(ohlg) +5 Er,, wG8188)  (6b)
= Dy Dy lrinls)

#3210 T i sl 6)

where (rs|tu) = (x, (1)xs(1)11/r151%:(2)X,(2)) and {R,}
are a set of nuclear coordinates. v;; and I';; 3 are the
first- and second-order density matrices in the orbital
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representation
7i].=(‘lf|a;ail\lf), Fij,kl (‘Il|a alal\lf) @)

They depend only on the form of the MC SCF wave-
function and the coefficients {4 x}. In eq. (7),4; (a;)
is a creation (annihilation) operator associated with the
orbital ¢;. For simplicity we assume our wavefunction
¥ and orbitals {¢;} to be real, so that

Y =Yoo Vi ™ Ve = Trai ™ Uik i ®)

The MC SCF wavefunction thus defined is very general.
It includes the wavefunction for both ground and ex-
cited states [3—5, 8,9]. It also includes the full CI wave-
function as an extreme.

We apply the variational principle to the three param-
eters Ag, ¢,;, and @, . With the method of lagrangian
multipliers, the function to be made stable is

L=¢ —n[ZL?A% —1]——Tr[£(c+Stc—1)], ©)

where n and € are multipliers (¢;; =

e;,f). Optimization
of Ag and c,; gives

0C/[0A, =2nd (10)
and

0¢/dc,; = 2(Sce),;, (11)
respectively. Similarly, optimization of oy, gives
aé/aap =Trlec* (BS/aap)c]. (12)

When the MC SCF wavefunction is completely varia-
tional, it satisfies eqgs. (10)—(12). However, ordinary
MC SCF wavefunctions do satisfy eqgs. (10) and (11),
but seldom eq. (12). Therefore, we do not assume eq.
(12) in the present formulation.

It is convenient to rewrite eq. (11) in a more familiar
form. Using eq. (6), we obtain [3]

2 [01F19) - ;019)] ¢ =0, (13)
where
(rIF 1s) = .].(rlhls)

* E Z Tij Z; CoxCurrsItu)- (14)
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This is a well-known MC SCF equation.

We now calculate the first derivative of the MC SCF
energy with respect to the parameter A. It was derived
in more detail by Pulay [10] . We obtain from eq. (6a)

.2 ¢ 0y
OE/ON = (¥ 1aH/NIW) + 2 5= 55
aa
ac €
+E ax Z) o, o (15)

The first term is the Hellmann—Feynman term. The
second term is easily shown to vanish identically from
egs. (5) and (10). From the second relation of eq. (5)
we also have the condition

oa
Bc +o 0C [ 88 ] _
a)\ c+¢'S—< N +c ? FPREEY 0. (16)

Using egs. (11) and (16), we can rewrite eq. (15) as
OE/[ON = (¥ |0H/ON|¥)

+Z3[a6/aa — Treect 38/da,)] 00y, /ON . (17)

Referring to eq. (11), we see that the second term of

eq. (17) vanishes identically (i.e. the Hellmann—Feyn-
man theorem holds) when the MC SCF wavefunction

is optimized with respect to the remaining parameters
{a }. This term is therefore due entirely to the non-

varlatxonal errors included in the wavefunction. We refer

to this term as the error term accordingly.
Now we limit ourselves to consider the force acting
on the nucleus A,

F, =—3E/oR,. (18)

Then, in the set of parameters {ap}, we have only to
consider the center x, of the AO x, which belongs to
nucleus A. The other parameters may be fixed or op-
timized [11]. Eq. (17) then becomes

BE[OR , = (W|H/OR , | W) + Zr) A,3x,/0R,,  (19)

where
A, =03C/ox, — Tr(cec* 8S/ox,) . (20)

The error term is the sum of the AO contribution A,
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which we call the A0 error. Inserting € of the present
theory [eq. (6)] and using eq. (8), we obtain

A =223¢, [Z} v Z) ¢, (r'1hls)

+ ;Zkl; I‘l] k,Z‘,c ctkcul(r sltu)

- z]‘__) € ZSD cjs(r'ls)], @

where 7' is the derivative of the AO x,,r’ = 9x,/0x,.
From the definition of the Fock matrix given by eq.
(14), the AO error can further be rewritten as

Ar=2?cri

X [? [(1F15) — €;;('15)] cv] , (22)

which has the form of eq. (2). When the basis set {x,}
includes not only x, but also its derivative ', the MC
SCF solution satisfies [see eq. (13)]

Z; [(r'IF,-]-IS) - e].l.(r'|s)] ¢ =0, (23)
s

and therefore the AO error A, vanishes identically,
A =0. (24)

Thus, the theorem has been proven.

The above proof of the theorem is very general and
applies also to the RHF theories for open-shell and ex-
cited states [5,6] and more specific MC SCF theories
such as paired excitation MC SCF theory [5,12,13]
and GVB theory [7]. These theories are specified by
the non-zero elements of Yij and T'; z; in the energy ex-
pression (6) as
Yi=fo Ty =% Fijlji =by- 25)
The energy expression then becomes in a familiar form

_ |
€= filhli) +3 %) @+ byKy), (26)

where J;; = (ii|jj) and K; = (i717). The Fock equation,
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Table 1

Energy gradient, Hellmann—Feynman force, and error term before and after addition of first derivative AOs on the protons of

triplet and singlet CH, at LHCH = 150° 2

Triplet Singlet

parent b) family b) parent family
energy gradient -0.0153 —0.0143 —0.0283 —0.0278
Hellmann—Feynman force —0.0059 -0.0139 -0.0202 —-0.0268
error term —0.0094 —0.0004 —0.0081 —0.0010

a) The transverse force acting on the proton is given in atomic units.

) Parent denotes 4-31G basis and family denotes 4-31G basis plus first-derivative bases on hydrogen.

(13) and (14), the force and AO error, egs. (19)—(22),
and the theorem, eqs. (23) and (24), are also simplified
with the use of egs. (25) and (26).

4. A new force approach

The above theorem gives a systematic method of
improving a wavefunction so that it satisfies the Hell-
mann—Feynman theorem. We may expect that the
other properties are improved at the same time. As a
first stage of such an approach, we consider an approxi-
mation in which only the first derivative AOs {r'} are
added to the “parent” AOs {r}. (The set {r,r'} is called
a “family”.) Then, all of the AO errors of the parent
AOs vanish identically as eq. (2) shows, but the AO
errors of the added derivative AOs remain. However,
if the parent basis set is already a good basis, the mixing
coefficient c,; of the added derivative AOs r' should
be small, so that from eq. (2) the AO error of the added
AO7', A, , may be neglected. This approximation was
shown to be very good in the Hartree—Fock case [2] .
Here, we test this method for open-shell RHF and MC
SCF theories. We have calculated singlet and triplet
states of methylene by the closed- and open-shell RHF
theories, respectively, and the hydrogen molecule by
the MC SCF theory.

Table 1 and fig. 1 show the results for methylene.
The transverse force acting on a proton is shown against
the HCH angle. The 4-31G basis [14] was used as parent
AOs and the first derivative AOs were added only to
hydrogens. The CH length was kept fixed for both states
at 1.11 A which is the observed value for the singlet
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Fig. 1. Energy gradient and Hellmann—Feynman force versus
HCH angle for the singlet and triplet states of methylene.

state [15]. For the triplet state, it is 1.078 A [16].
From table 1 it is seen that the error term decreases
rapidly by the addition of the first derivative AOs. The
effect is larger for the triplet state than for the singlet
state. After the addition of the first derivative AOs,
the Hellmann—Feynman theorem is satisfied to a good
approximation. The change in the energy gradient by

97



Volume 80, number 1 CHEMICAL PHYSICS LETTERS 15 May 1981

Table 2

Energy gradient, Hellmann—Feynman force, and error term before and after addition of the first-derivative AOs for the hydrogen
molecule (au)

Hartree—Fock MC SCF (GVB)

R =1.4011 R=2.0 R =1.4011 R=2.0

parent &) family @) parent family parent family parent family
energy —-1.12477 —1.12836 —1.08511 —1.08856 —1.14440 —1.14688 -1.11664 —1.11842
energy gradient -0.0047 -0.0039 0.1015 0.1016 -0.0212 -0.0194 0.0780 0.0789
Hellmann—Feynman

force -0.0736 -0.0002 0.0410 0.1028 -0.0767 —0.0163 0.0347 0.0797

error term 0.0689 —-0.0037 0.0605 —0.0012 0.0556 -0.0031 0.0433 —-0.0008

2) Parent denotes [2s] CGTO and family denotes [2s] CGTO plus their first derivatives.

the addition of the first derivative AOs is due to the im-  angle. For the triplet state, the equilibrium angle was
provement of the wavefuntion. It is small in this case calculated to be 128.8° by the H—F force and 128.4°
since the first derivative AOs were added only to the by the energy gradient. The experimental value is 136°
AOs of the hydrogens. Fig. 1 shows that the error term [16] . For the singlet state, the corresponding value is
is consistently small over the wide range of the HCH 105.2° by the H—F force and 104.7° by the energy
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Fig. 2. Energy gradient, Hellmann—Feynman force, and energy versus interatomic distance for the hydrogen molecule.
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gradient. The experimental value is 102.4° [15] . These
results show a practical utility of the present method
for geometry predictions.

Table 2 and fig. 2 show the results for the hydrogen
molecule. The double-shell CGTO of Dunning {16] with
the scale factor 1.0 was used as parent AOs and the
first derivative AOs were added. The MC SCF calcula-
tion was performed for the two configurations
Aglool + A, 0™0™|, which is also equivalent with the
GVB wavefunction [17] . This system is well known
for which the MC SCF type correction is very important
for a proper description of the dissociation [18]. The
energy gradient for the MC SCF wavefunction was cal-
culated analytically [10,19] . Table 2 shows the Hartree—
Fock and MC SCF results. By the addition of the first
derivative AOs (family basis), the error term decreases
dramatically, the orders being almost the same for
both Hartree—Fock and MC SCF theories. For the fami-
ly basis, the error term is negligibly small. In fig. 2 we
have plotted the Hartree—Fock and MC SCF results
obtained with the family basis over a wide range of
interatomic distances. The energy gradient and Hell-
mann—Feynman force curves almost superpose each
other. The Hellmann—Feynman theorem is essentially
satisfied over the wide range of interatomic distances up
to the dissociation limit. Though the Hartree—Fock
theory itself breaks down in the range R > 2.5 au, the
smallness of the error termis kept. Table 3 shows the
bond length and vibrational frequency obtained from the
energy gradient and Hellmann—Feynman force. At both
Hartree—Fock and MC SCF levels, the quantities ob-

Table 3
Bond length and vibrational frequency of H, obtained from
the energy gradient and Hellmann—Feynman force

Bond length Vibrational
R (au) frequency
We (cm™)
Hartree—Fock
energy gradient 1411 4592
Hellmann—Feynman force 1.402 4613
MC SCF
energy gradient 1.453 4282
Hellmann—Feynman force 1.445 4236
exp. 1.401 4401
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tained from the energy gradient and Hellmann—Feyn-
man force agree with each other.

Thus, the results of the test calculations for the open-
shell RHF and MC SCF theories are very encouraging,
as in the previous Hartree—Fock case [2] . After the ad-
dition of the first derivative AQs, the Hellmann—Feyn-
man force gives essentially the same results as the en-
ergy-gradient method. Then, we can save time for cal-
culations of the energy gradient. The present result means
further that the utility of the new force approach is ex-
tended to important fields including electronic processes
in chemical reactions and in open-shell and excited states
with the use of the MC SCF and open-shell RHF theo-
ries. Intuitive pictures of the Hellmann—Feynman force
[20] will be used quantitatively to clarify the electronic
origins of these processes.
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