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The analytic second derivative of a potential energy hypersurface is studied with the use of the
Hellmann-Feynman theorem at the stage of the first derivative. As shown previously, the use of the {r, 7'}
basis in the SCF calculation guarantees that the Hellmann-Feynman theorem is essentially satisfied. (v’ is a
derivative of the AO r = y,, ' = 3y,/x,.) In comparison with the straightforward second derivative of the
SCF energy, the number of terms and the labors in calculations are much reduced in the present method.
Furthermore, the added {r'} basis improves the quality of the calculated force constant, and an intuitive
physical picture is associated with the calculated second derivative, as the intuitive Hellmann-Feynman force
picture is associated with the first derivative. The applications are given for the force constants of the
molecules N,, CO, and H,0. Some interesting features of the electron density reorganizations during

vibrations are reported.

I. INTRODUCTION

The derivatives of a potential energy hypersurface,
especially the first and second derivatives, are the
quantities which play a central role in many fields of
theoretical chemistry. In previous papers of this se-
ries, '™ we have shown that an SCF wave function is im-
proved, by an addition of the first derivative AO’s {r'}
to the “parent” set {r}, to essentially satisfy the Hell-
mann-Feynman (H-F) theorem. This method is based
on the theorem that a sufficient condition for an SCF
wave function to satisfy the H-F theorem is that the
basis set includes the derivative AO 7’ =X,/ 9x, for any
basis 7 =y,.! ™ The validity of this method has been con~-
firmed for closed-shell RHF,! 3 open-shell RHF,? and
MCSCF? theories. This method satisfies the two re-
quirements which seem to be necessary for the theory
of the derivatives®; one is the numerical accuracy and
reliability of the theory and the other is the conceptual
utility of the theory for understanding the electronic
origins of the derivatives.®” Though the energy-gradi-
ent method®!® has already realized the first require-
ment, it does not fulfill the second one because of an
existence of the error term which vanishes identically
for a correct SCF wave function.

For an analytical calculation of the second deriva-
tive, a use of the H-F theorem at the stage of the first
derivative affords some merits:

(1) The number of terms to be considered is much
reduced and they are much simpler than the straight-
forward expressions of the second derivative of the SCF
energy, 111718

(2) The intuitive physical meaning of the H-F force
is extended to the second derivative.

Though these merits have been noted by several au-
thors, * 1972 jt was difficult to realize them, except for
some of the simplest systems, because of a lack of a
practical method to calculate a wave function which sat-
isfies the H-F theorem. The previous studies of this
series!™ have removed this obstacle.

In this paper, we give the analytic second derivative
- of a potential energy using the H~F theorem for the first
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derivative and explain the physical meaning included.
Illustrative applications are given for the molecules N,,
CO, and H,0 and the electronic origins of the force con-
stants are discussed. The summary of this study is
given in the last section.

Il. ANALYTIC SECOND DERIVATIVE OF
POTENTIAL ENERGY HYPERSURFACE

The direct second derivative of the Hartree—Fock

energy is written as ’
2
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where H,, S,;, and P, are the core—Hamiltonian ma-.
trix, overlap matrix, and bond-order density matrix,
respectively and D, =3{*°¢; c,; c,;, With €, the orbital
energy. (7t su)is an appropriate sum of the Coulomb
and exchange repulsion integrals!! and Vaue is the nu-
clear repulsion energy. On the other hand, when the
Hellmann-Feynman theorem is satisfied for the first
derivative, only the parts of the first three terms of
Eq. (1) remain. Most of the complex terms drop out,
and we obtain
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This equation is much simpler to calculate than Eq. (1),
and, furthermore, a simple physical meaning is associ-
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ated with each term as follows®~2?%. The first two terms

of Eq. (2) show a change in the H-F force when only nu-
cleus A is moved while the electron density surrounding
it remains unaltered. They consist of an electric

field gradient at nucleus A and a contribution from the
density at the nucleus (Fermi term). The former is
related to the nuclear quadrupole coupling constant as
shown below. The third termincludes the derivative of
basis AO’s and represents a change in the H-F force
acting on nucleus A due to the movement of the AQ’s of
atom B with keeping the AO coefficients unaltered.
Then, the physical meaning of the first three terms is
considered to be a net effect on the H-F force when the
nucleus and the AQ’s associated with it are moved si-
multaneously without changing their AO coefficients,
namely, it represents the effect of complete following
of the AO’s during molecular vibration.”®2* The last
term represents the effect of reorganization of the elec-
tron density matrix due to the nuclear motion BP,,/BYB.
It arises from the two sources since it is given by a
sum of the two terms

“occ umocc

3YB Z CriCsj SiJ z Z uai (C i1CsatCra cst) (4)

The first term is the renovrmalization term which arises
in order to keep the total wave function normalized dur-
ing vibration and the second term represents the relaxa-
tion of the molecular charge distribution during vibra-
tion through the mixing between occupied and unoccupied
orbitals. In Eq. (4), c,; is the coefficient of the AO ,
in the molecular orbital ¢, and S{}’ is given by

(n _[29; 2¢;

Sij <a1/B ¢f>+< Hovy) (3)
usy’ gives the extent to which the occupied MO ¢, and the

unoccup1ed MO ¢, mix through molecular vibration and

is given by a solution of the coupled perturbed Hartree—

Fock theory. It is a solution of the linear equation®!!
(1-A)B=B,, (6)
where
B= {u( T ,
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The role of the reorganization term during a nuclear
rearrangement process is generally very important.
The renormalization term usually gives a positive con-
tribution to the force constant and is one of the impor-
tant origins of the electron-cloud incomplete following,
which is a density origin of a stable geometry.”®2

On the other hand, the relaxation term usually gives a
negative contribution to the force constant and works to
lower the barrier. Itisanorigin of the electron-cloudpre -
ceding, which is adensity origin of many nuclear rearrange -
ment processes.”®2® The role of the relaxation term
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during the course of a chemical reaction is of special
interest.

It is noted that the force constant is related to the
nuclear quadrupole coupling constant (eq, @ »/7) s,
where ¢, is given by

(@a)ee= 2y Py | (7 - 322)/74 | )+ TXE”
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With these quantities, we obtain from Eq. (2) the equa-
tion
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Based on this equation, Salem? discussed the relation
between the force constant and quadrupole coupling con-
stant of the MH molecule (M is an alkali metal or halo-

gen),

Ao
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Il1. APPLICATION TO N, AND CO

We study here the force constant of N, and CO.
Closed-shell Hartree—Fock calculations were per-
formed at the experlmental bond length (N-N=1, 097 68
&, C-0=1.1283 A)¥" with the use of the family set
{r, 7'} in which the parent set {r} is the 4-31G set® forN,
and [3s2p/2s] CGTO’s® for CO. (Reference 3 includes
the results of the H-F force for N, and CO with the
same basis set.) It is now well established that with
the use of the family set the H-F theorem is essentially
satisfied. '™ The second derivative (force constant) was
calculated with Eq. (2) and the derivative of the density
matrix was calculated by the coupled perturbed Hartree—
Fock theory [Eqs. (6) and (7)].

Table I shows the force constants of N, and CO and
their analyses., For the force constant of the A-B mol-
ecule, we have given four expressions -8F,/8X,,
8F,/8Xy, —08Fp/8Xy, and 89Fy/8X,, where the X axis
points from nucleus A to B. The analysis of the force
constant depends on a choice of a coordinate system,
though the force constant itself is free from such choice.

Mathematically, the quantities — 8F,/8X, and 8F,/8Xy
should be equal. In general, such a relation holds for
polyatomic molecules as Jg 8F,/8Xz =0, This equality
also holds for the sum of the first three terms of Eq.
(2), and for each of the renormalization and relaxation
terms. Interestingly, this equality does not hold for
each of the second and third terms but holds for their
sum, showing a physical unity of the latter. This equal-
ity means that when the electron cloud and the nuclei
are moved altogether in the x direction, nothing is
changed for the F,. On the other hand, the equality
between the two sets of terms - 8F,/8X, (or 8F,/3Xy)
and — 8Fy/08X, (or 8Fy/8X,) depends on whether the
Hellmann-Feynman forces F, and Fy satisfy the trans-
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TABLE I. Force constants of N, and CO and their analysis (a.u.).?

N, cO
_9Fy OF y1 _%Fe OF¢ _¥Fo 8Fo
X N1 X nt X X, X X
Nuclear term 10, 980 10,980 9. 906 9,906 9. 906 9. 906
3xi —rf\
Zp Y, Py \7 z s —-20,236 —16, 522 — 14,454 o
7.8 7a
Zy Y Py (r1 =3 16(A) | 5) 5098, 689 ° oee 3032, 572 oo 9899, 184 e
7S
x b
Z, ), Py, <r' 2 s> —5093. 035 —14,581 —3027,701 -11,651 - 9897, 233 -12,503
7,8 1‘A
Total -3.601 -3.601 -1,744 —1.744 —2,596 - 2,596
Renormalization term 5,883 5,883 4,061 4,061 5.697 5.697
Relaxation term —0.637 —0.637 -1.002 -1,002 -1,785 -1,785
Total 5,247 5,247 3. 059 3.059 3.911 3.911
Grand total 1.645 1.645 1,315 1.315 1.315 1.315
Experimental value 1.474 1,222
From energy gradient
For family set 1,625 1,288
For parent set 1,734 1. 422

2At the experimental geometry: N,, 1,09768 .Xx; CO, 1.1283 1&; 1a,u., =15,569187 mdyn/ii,

by’ =9x,/0x5.

lational invariance. In the present calculations of CO,
these numbers are equal up to four figures since the
Hellmann-Feynman theorem is essentially satisfied for
the present wave function.?

From Table I, it is seen that the force constant is a
sum of large canceling contributions. The nuclear term
is large and always positive. For the diagonal term
(i.e., 8F,/8X,), the electric field gradient and the
Fermi term give large contributions. Especially, the
latter is very large because of the 1s contribution of
C, N, and O. It increases with an increase in nuclear
charge. However, this large value is almost canceled
by the fourth term of Table I, which represents the
H-F force on A due to the displaced AO’s (inner and
valence) of atom A. The net effect of the second to
fourth terms of Table I is due to the AO density mov-
ing simultaneously with the nucleus (complete follow-
ing). This result shows that these terms should be
treated as a whole as a completely following term. The
mathematical invariance given above also supports this
analysis. Note that though the sum of the first four
terms is equal for — 8F,/8X, and 8F,/8Xy, they are
different between — 8F,/8X, and — 8Fy/8Xy when A
and B are different. The sum of the first four terms
is negative for N, and CO.

In the next two rows of the table, the reorganization
terms are given. In Fig. 1, the contour map of the den-
sity reorganization 3, - 8P, ,/8R 45 X,(T) X,(T) is plotted
for N, and CO. The top shows the renormalization term,
the middle the relaxation term, and the bottom the sum
of them. They show the change in density when the bond

distance is shortened. For covalent diatomic molecules,
the renormalization term seems always to be positive
(Table I). This is understood as follows from Fig. 1:
When two atoms A and B come closer, the overlap be-
tween the AO’s become larger. Therefore, in order

to renormalize the total density, the electrons should
flow out of the A-B region. When atoms A and B are
separated, the reverse flow of the electron density is
expected as a renormalization effect. Thus, the density
flow due to the renormalization corresponds to the elec-
tron-cloud incomplete following™™*% and gives a positive
contribution to the force constant. On the other hand, in
the relaxation term, the density increases in the bond
region as the two atoms come closer. This behavior is
the electron-cloud preceding. It works to shield the nu-
clear charge and stabilize the system. Then, the re-
laxation term gives negative contribution to the force
constant. This is confirmed from Table I. Such a
trend would be valid at least for diatomic molecules
with covalent bonds. The bottom of Fig. 1 shows the
total density differential, i.e., the sum of the renor-
malization and relaxation terms. It reflects mainly

the contribution of the renormalization term, giving a
positive contribution to the force constant. Actually, in
Table I the renormalization term is larger than the re-
laxation term and their sum is positive.

The sum of the nuclear term, the complete following
term, and the reorganization term gives the calculated
force comstant. It is 1.645 a.u. for N, and 1.315a.u.
for CO. The experimental values are 1.474 and 1.222
a.u. for N, and CO, respectively.? The present
Hartree-Fock values are larger than the experimental
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FIG. 1. Contour map of the density differential — J, ; 8P,,/8R,p X,(r) X(r) for N, and CO. The top shows the renormalization
term, the middle the relaxation term, and the bottom the sum of them, They show the change in density when the bond distance
is shortened. The real lines correspond to an increase in density, and the broken lines correspond to a decrease, with the
contour values of 0, +1, +2, +3, and +4 corresponding to 0,0, +0,01, +0,03, +0.1, and £0, 3 a.u., respectively.

values, as in the well-known trend, In the last two
rows of Table I, the values obtained by the numerical
differentiation of the energy gradient is shown. The
values obtained with the family set, 1.625 a.u. for N,
and 1,288 a.u. for CO, are very close to the present
results. The difference, which is less than 2%, is due
to a small error in the Hellmann-Feynman force and to

the error in the numerical differentiation. The last two
rows compare the force constants obtained from the
family and parent sets. The difference is large and

the result of the family set is closer to the experimen-
tal value. This shows that the {+'} basis, a kind of po-
larization function, included in the family set is im-
portant for the force constant. Thus, the added {r'}

J. Chem. Phys,, Vol. 77, No. 4, 15 August 1982
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TABLE II. Force constants of H,O and their analysis (a.u.).*»®  basis works not only to give the correct Hellmann—
Feynman force but also to improve the quality of the

VE oE second derivative.
_ 8@} 93
Nuclear term 3. 040 —1.481 IV. APPLICATION TO H,0
3% — o2 H,O is adopted here to show the result for a bending
Zx 2 P <’ » S> —2.212 -1.113 mode as well as a stretching mode. Only the totally
' symmetric mode is considered here. SCF calculations
Zy Y Py (ri=$ 15A) s) 26,016 46. 620 were carried out at the experimental geometry (Roy
e =0.957 A, 8404 =104.5°)® with the family set in which
z, 3, P, <r' % s> —26.270 - 46,261 the parent set is the [352p/2s] set.2*3! Table II shows
e ’ the force constants of the normal modes @, and @,, which
Total 0.574 —0.009 are mostly stretching and bending modes, respectively.
The coupling of the stretching and bending is shown in’
Renormalization term 0.376 0. 065 footnote b. Figures 2 and 3 sﬁow the cont;g)ur maps of
Relaxation term -0.338 0.076 the density reorganization 3, , 8P,,/8Q X () X,(7) for @,
Total 0.038 0,141 and @,, respectively.
Grand tofél 0.613 0.132 . First, we considfar the normal mode QI: Sixfc(.e this
(3938 cm™) (1803 em™) is mostly a stretching mode, the electronic origins have
" ” some similarities to those shown for the diatomic mole-
Experimental value 3657 cm 1595 cm

cules. Actually, the sign of each contribution shown in
Table II is the same as that in Table I. However, the

2At the experimental equilibrium geometry.

%Q,: mostly stretching mode; Q@ =0.735 (ARqy, +ARox,) sum of the first four terms (i.e., nuclear and complete
+0, 019 Roy AByoy; Qn: mostly bending mode: Q, =0.’052 following terms) is positive here but negative in Table
(AR o, +ARoy,) —~ 1. 517 Roy Adyon. I. The contribution of the reorganization term is smaller

FIG. 2. Contour map of the density dif-
ferential ¥, ,8P,,/8Q, X,(r) X,(r) of H,O
for the @ mode which is mostly the
stretching mode. The real lines corre-
spond to an increase in density and the
broken lines correspond to a decrease, .
with the contour values of 0, +1, +2,
+3, +4, and +5 corresponding to 0.0,
+0,01, +0,03, +0,1, +0,3, and +1,0
a,u,, respectively,

RELAXATION TERM

4
/0\
/H : H\

0y

TOTAL
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here than in Table I. These differences seem to be gen-
eral between hydride and nonhydride molecules from our
several data for these two types of molecules. Actually,
in the normal vibrations of H,O, the contribution of the
motion of the proton is large because of its small mass,
The calculated vibrational frequency is 3938 cm™, which
is 7% larger than the experimental value of 3657 cm™.
An inclusion of electron correlation will reduce this dif-
ference. * '

The density reorganization shown in Fig. 2 is for the
normal mode @,. When the OH bond is elongated during
the vibration, the overlaps between the AO’s of the oxy-
gen and protons reduce, so that in order to keep the
wave function normalized the electrons should flow into
the bond region. This is the origin of the renormaliza-
tion term and gives a positive contribution to the force
constant (Table II). The relaxation term works to re-
duce the electron density from the bond region and to
accelerate the bond stretching. It gives a negative con-
tribution to the force constant. In the total sum, the
density increases in the bond region, giving a positive
net contribution. We note that the density reorganiza-
tion in the renormalization term corresponds to the
electron-cloud incomplete following”®™ and that in the
relaxation term to the electron-cloud preceding.’™

RELAXATION TERM
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FIG. 3. Contour map of the density dif-
ferential }, ,9P,,/8Q;X,(r) x,(r) of H,O
for the @, mode which is mostly the bend-
ing mode. The real lines correspond to
an increase in density and the broken
lines correspond to a decrease, with

the contour values of 0, +1, +2, +3,

+4, and +5 corresponding to 0.0, +0,01,
+0,03, +0,1, +0,3, and +1,0 a,u,, re-
spectively.

The net effect is the electron-cloud incomplete follow-
ing.

We next consider the mode @,. Since this is essen-
tially a bending mode which has not been considered so
far, some difference may be expected. In Table II, the
signs of the first two terms (electric field gradient) are
different from those given hitherto. The origin of the
negative contribution of the nuclear term is as follows:
We denote the force acting on the proton as F(6), where
6 is the HOH angle. The force constant for the normal
mode @, is approximately given by

. [F(6+a6)=F(s)],
- im, Ron A0 ’

where L denotes an element perpendicular to the bond.
As expected, the interproton repulsion gives a positive
contribution. Though the force due to the oxygen is al-
ways parallel to the bond, it gives an element perpen-
dicular to the bond to the term F(8+A6) - F(8). Actually,
this contribution is negative and larger thanthe contribution
duetothe interprotonrepulsion, since the nuclear charge
Zo is much larger than Zy and the OH distance is smaller
than the HH distance. The positive contribution of the
second term in Table II (electronic term of the electric
field gradient) is due to a similar reason,

J. Chem. Phys., Vol. 77, No. 4, 15 August 1982
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The density reorganization in the bending mode is
shown in the contour map of the density differential given
in Fig. 3. The renormalization term shows typically a
formation of an outward bent bond, "™ which is an elec-
tron-cloud incomplete following in the motion shown by
the arrow. The decrease in electron density within the
HOH triangle is due to an increase of the overlap in this
region. The decrease in the lone pair region of oxygen
is due to an increase of the lone pair density by the @,
motion. These changes are necessary to keep the wave :
function normalized. Interestingly, the relaxation term
also shows an outward polarization near the proton, giv-
ing an effect similar to the renormalization term as
confirmed from Table II. Since the nuclear term is
negative, this positive contribution of the relaxation
term may be understood as working to diminish the nu-
clear term.”™ The sum of the renormalization and re-
laxation terms shows the nature of electron-cloud incom-
plete following. The calculated frequency for the @,
mode is 1803 cm™, which is again about 12% larger than
the experimental value of 1595 cm !, An inclusion of
electron correlation will reduce thls difference. 3

Lastly, we note that the density differential maps
shown in Figs. 2 and 3 are very similar to the corre-
sponding generalized Berlin diagrams™® reported
previously for H,O [Figs. 3 and 4 of Ref. 7(c)]. This
is true for both of the @, and @, modes. Further, such
similarity also holds for the diatomic molecules N, and
CO."*®* The generalized Berlin diagram defines a re-
gion-functional concept of electron density and divides
a space of the electron density into accelerating and regis- .
tering regions for aprocess under consideration, Thisisa
generalization of the Berlin diagram for diatomic mole-
cules.®® The observed similarity between the density
differential map and the generalized Berlin diagram im-
plies that the density reorganization at the equilibrium
geometry occurs very effectively in such a way to resist
the nuclear displacement. Namely, the electron-cloud
incomplete following occurs very effectively at the equi-
librium geometry.

V. SUMMARY
The points of an argument of this paper are as follows.

(1) As shown in the previous papers, =% the use of the
{r, 7'} basis in the SCF calculations (closed and open
shell SCF, MCSCF, etc.) guarantees that the Hellmann-
Feynman theorem is essentially satisfied.

(2) With the use of the Hellmann-Feynman theorem
at the stage of the first derivative, the number of terms
and the labors in the analytic calculations of the second
derivative are much reduced in comparison with the
straightforward second derivative of the SCF energy. ™
[Compare Eqgs. (1) and (2). ]

(3) Since the {r'} basis (a kind of polarization func-
tions) is usually important for the force constant and
other second derivatives, the quality of the numerical
result is improved by the present method in compari-
son with the direct analytic second derivative of the
SCF energy with only the parent {r} basis.

(4) Intuitive physical pictures are associated quantita-

1967

tively with the calculated second derivatives. With the
use of the Hellmann—Feynman force picture® "% for the
first derivative, and with ‘the use of the present picture
for the second derivative, we would be able to under-
stand more deeply the electronic origins of the impor-
tant aspects and behaviors of the potential energy hy-
persurface.

The present method has been applied to the calculation
of the force constants of the molecules N,, CO, and H,O
and some interesting pictures on the electronic origins
of the force constant are clarified. The difference in
the stretching and bending modes is discussed for H,0.
Some interesting features of the electron density re-
organizations during vibrations are reported.

ACKNOWLEDGMENTS

This study was supported in part by a Grant-in-Aid
for Scientific Research from the Japanese Ministry of
Education, Science, and Culture. Theé calculations
were carried out with M-200 computers at the Data
Processing Center of Kyoto University and at the In-
stitute for Molecular Science.

1H, Nakatsuji, K. Kanda, and T. Yonezawa, Chem, Phys.
Lett. 75, 340 (1980).

’H, Nakatsuji, T. Hayakawa, and M. Hada, Chem. Phys.
Lett. 80, 94 (1981).

3H, Nakatsuji, K. Kanda, M. Hada, and T, Yonezawa, J.
Chem. Phys. (in press, 1982).

. G. Hall, Philos. Mag. 6, 249 (1961).

5p. Habitz and C. Votava, J. Chem. Phys. 72, 5532 (1980).

6B, M. Deb, Ed., The Force Concept in Chemistry (Van
Nostrand Reinhold, New York, 1981).

"(a) H. Nakatsuji, J. Am. Chem, Soc. 95, 345, 354, 2084
(1973); H. Nakatsuji and T. Koga, ibid. 96, 6000 (1974); H.

- Nakatsuji, S. Kanayama, S. Harada, and T. Yonezawa, ibid.

100, 7528 (1978); H. Nakatsuji, T. Hayakawa, and T. Yone-
zawa, ibid. 103, 7426 (1981); (b) H. Nakatsuji, J. Am. Chem.
Soc. 96, 24, 30 (1974); (c) T. Koga, H. Nakatsuji, and T,
Yonezawa, J. Am. Chem. Soc. 100, 7522 (1978).

8p, Pulay, in Modern Theoretical Chemistry, edited by H. F.
Schaefer III (Plenum, New York, 1977), Vol. 4, Chap. 4
and references cited therein.

9J. GerrattandI. M. Mills, J. Chem, Phys. 49, 1719,1730 (1968).

05  Komornicki, K. Ishida, K. Morokuma, R. Ditchfield, and
M. Conrad, Chem. Phys. Lett. 45, 595 (1977).

Uy, A, Pople, R. Krishnan, H, B. Schlegel, and J. S. Bink-
ley, Int. J. Quantum Chem. Symp. 13, 225 (1979).

125 Kato and K. Morokuma, Chem. Phys, Lett. 85, 19 (1979).

33 D. Goddard, N. C. -Handy, and H. F. Schaefer III, J,
Chem. Phys. 71, 1525 (1979),

147, Tachibana, K. Yamashita, T. Yamabe, and K. Fukui,
Chem. Phys. Lett. 59, 225 (1978). ,

5M. Dupuis, J. Chem. Phys. 74, 5758 (1981),

8y, Osamura, Y. Yamaguchi, and H. F, Schaefer III, J.
Chem. Phys. 75, 2919 (1981),

M. D. Kumanova, Mol. Phys. 23, 407 (]972) K. Thomsen
and P, Swanstrom, ibid. 26, 725 (1973).

18, Takeda, M. Dupuis, and H. F. King, J. Chem, Phys. 75,
332 (1981).

Bw, Byers-Brown, Proc. Cambrldge Philos. Soc, 54, 251
(1958).

21, Salem, J. Chem. Phys. 38, 1227 (1963),

#p, Pphillipson, J. Chem. Phys. 39, 3010 (1963); 44, 633
(1966).

J. Chem. Phys,, Vol. 77,No. 4, 15 August 1982



1968 ' Nakatsuji, Kanda, and Yonezawa: Force in SCF theories

24, C. Hurley, in Molecular Ovbitals in Chemistry, Physics,
and Biology, edited by P, -O. Lowdin and B, Pullman (Aca-
demic, New York, 1964), p. 161,

BR, H, Schwendeman, J. Chem. Phys. 44, 556 (1966),

%R, F. W., Bader, Mol. Phys. 3, 137 (1960); R, F. W. Bader
and A, D. Bandrauk, J. Chem. Phys, 49, 1666 (1968); R, F.
W. Bader and J. L, Ginsburg, Can, J. Chem, 47, 3061
(1969),

%J, Goodisman, Chap. 5 of Ref. 6,

%Y, Nakatsuji and T, Koga, Chap. 3 of Ref. 6.

2K, P. Huber and G. Herzberg, Molecular Spectra and Mo-
lecular Structure, Vol. 4. Constants of Diatomic Molecules
(Van Nostrand, Princeton, N, J., 1979).

%R, Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem.
Phys. 54, 724 (1971), ,

BT, H, Dunning, Jr. and P. J. Hay, in Modem Theovetical
Chemistry, edited by H, F, Schaefer III (Plenum, New York,
1977), Vol. 4, Chap. 1.

30g,. Herzberg, Molecular Spectra and Molecular Structure.
I, Electron Spectra and Electronic Structure of Polyatomic
Molecules (Van Nostrand, Princeton, N, dJ., 1965),

3The derivative AO’s 7’ are limited to those pertinent to the
Ay mode,

%2B. J. Rosenberg, W. C. Ermler, and I. Shavitt, J. Chem.
Phys. 65, 4072 (1976).

%7, Berlin, J. Chem, Phys. 19, 208 (1951),

J. Chem. Phys., Vol. 77, No. 4, 15 August 1982



