Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 96, Nos 3 & 4, February 1986, pp. 155-166.
© Printed in India.

Cluster expansion of the wave function. Potential energy curves of
the ground and excited states of CO
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Abstract. The sAC (symmetry-adapted cluster) and sac-ci (sac-configurational interactions)
theories have been applied to the calculations of the potential curves of the ground and excited
states of the CO molecule. The states studied are valence type X'Z*, (4)'Z*, A'T1,I'S", DA,
a@®I,a'3L*,d%A,and e*X ", and of Rydberg type B'L*,C'L*,and F'Z*. For the description
of the X'T* and (4)'T* states, we took advantage of the fact that the sacand sac-c1 solutions
satisfy orthogonality and Hamiltonian orthogonality to each other. Near the avoided crossing
region of these states, however, the saC theory fails because of the multi-reference nature of the
correlation. Our theoretical potential curves of the ground and various excited states are very
similar to the RKR (Rydberg-Klein-Rees) potential curves based on experimental data. The
spectroscopic constants calculated also agree well with experimental values.

Keywords. Symmetry-adapted-cluster theory; symmetry-adapted-cluster-configurational-
interaction theory; Rydberg and valence excited states; Thouless theorem; non-variational
method; coupled-cluster-many-electron theory; quasi-degenerate correlation; Dunham
theory; Rydberg and valence transitions.

1. Introduction

Adequate description of electron correlation is very important for the study of open-
shells and excited states of molecules. This is especially so when we study potential
energy curves of the ground and excited states. For this purpose several approaches
have been developed, for example, MR (multi-reference)-c1 (configuration interaction)
(Beunker and Peyerimhoff 1983), Mc-scF (Das 1973; Grein and Banerjee 1975) and
cluster expansion (Mukherjee et al 1975, 1977; Nakatsuji 1978, 1979; Nakatsuji and
Hirao 1978; Paldus et al 1978; Mukherjee and Mukherjee 1979; Adnan et al 1980, 1982;
Haque and Mukherjee 1984). In the cluster expansion approach, the multi-reference
type theories are also being developed (Mukherjee et al 1975, 1977; Jeziorski and
Monkhorst 1981; Nakatsuji 1985) in order to apply to quasi-degenerate states.

In this series of studies, we have developed and applied that sac (symmetry-adapted-
cluster) and sac-ci1 theories (Nakatsuji 1978, 1979; Nakatsuji and Hirao 1978). The sac
theory is based on the cluster expansion of the wave function (Cizek 1960; CiZzek and
Paldus 1971; Bartlett 1981; Paldus 1983) and we usually apply it to the ground state of
a molecule. The sac-c1 theory is the c1 theory within the sub-space of the sac wave
function (Nakatsuji 1978, 1979; Nakatsuji and Hirao 1978). It has been effectively
applied to various kinds of excited and ionized states. (see for example, Nakatsuji 1984,
Nakatsuji et al 1985, and references therein). The success is basically due to the
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orthogonality and the Hamiltonian orthogonality between the sac and sac-c1 wave
functions. The linear response theory due to Mukherjee and co-workers (Mukherjee
and Mukherjee 1979; Adnan et al 1980, 1982; Haque and Mukherjee 1984) seems to be
related incidentally to the sac-c1 theory. 4

In this paper, we report a calculation of the potential curves of the ground and
various excited states of the CO molecule. This molecule is interesting because of the
following reasons. In figure 1, we explain intuitively the electronic structures of the
two !Z* states (ground X'X* and (4)'T* states) within the double excitations from the
HF (Hartree-Fock) configuration. Near the equilibrium geometry, the HF configuration
is a main configuration of the ground state XX *. As the distance increases, the weight
of the HF configuration decreases and finally becomes zero at the dissociation limit.
There, the molecule dissociates into the 3P state of oxygen and the 3P state of carbon,
i.e, C(3P)+ O(3P). This state corresponds to a doubly excited configuration from the
HF configuration. On the other hand, the (4)'X* state is an ordinary singly excited state
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Figure 1. Nature of the potential curves of the two 'T* states of the CO molecule.
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near the equilibrium geometry. The main configuration of this state also changes
substantially as the CO distance increases and finally the HF configuration becomes a
main configuration near the dissociation limit. There the state is essentially C('D)
+O('D). Thus, the ground state and the (4)'Z* state should suffer strong avoided
crossing in the intermediate region. We study the potential curves of these states by the
sac and sac-ci theories. We apply the sac theory to the HF dominant state and calculate
the other state by the sac-ci theory. The basis of the study is the theoretical consistency
of these two theories which we discuss in the next section. The other states of the CO
molecule studied here, Rydberg excited states B'X*,C'T*, F!£*, and valence excited
states A'TI, I'T~, DA, a®I1, '3Z*,d3A, e3L ~ are essentially singly excited states near
the equilibrium geometry. They are calculated by the sac-c1 theory.

The potential curves of the CO molecule have been studied by several authors.
O’Neil and Schaefer (1970) reported extensive full-ci calculations within the valence Mo’s
of the minimal sto basis. They explained rough natures of the various excited states,
though the crudeness of the basis set may be serious in clarifying the actual system.
Caughram et al (1973) applied the equations-of-motion method to several excited states
of the CO molecule, with the aid of the experimental potential curves of the ground
states. Cooper and Langhoff (1981) reported the Mrsp-cI calculation for several states
of the CO molecule, using extensive sTo basis set. This calculation seems to be the most
reliable one so far reported. We have calculated the potential curves of the lower four
13+ states (Nakatsuji and Hada 1985), using minimal STO-3G basis, as the test
calculation of the multi-reference version of the sac (Nakatsuji 1985). The Mr-sac
calculation reproduced well the full-c1 potential curves of the ground and excited states.

2. sac and sac-ci theories

In this section, we briefly explain the sac and sac-c1 theories. Major emphasis shall be
laid on the non-variational formulation of the theoretical consistency of these two
.theories. The variational formulation was given before (Nakatsuji 1978, 1979). The sac
wave function for the singlet (ground) state is written as

Worc = pr[z cl_'sz] 10>, )
0> ={Wsa¥iB - - ViohiB - - Yoo, B. @

As a reference function |0, we usually adopt a restricted Hartree-Fock solution, but
this is not essential because the sac theory satisfies the Thouless theorem, i.e., the self-
consistency (Thouless 1960). The operator S} is a symmetry-adapted excitation
operator. A single excitation from occupied orbital i to virtual orbital a is given by

St = 715 (alaaia+ alpaip) 3

where a), and a,, mean the creation and annihilation operators for spin a. The double
and higher excitation operators can be written by the products of these excitation
operators.

We use a non-variational method to determine the expansion coefficients C, in (1).
We require the Schrodinger equation (H-E)|Wgxc> = 0 to be satisfied in the space of



158 O Kitao and H Nakatsuji

the linked configurations and we get (Nakatsuji 1979)
(O|H —E[¥5c> =0 @
<0|SI(H ""E)l\ySAC) =0. )

Because the Hamiltonian includes up to two body operators, the energy is calculated
exactly from (4) as

1
ESAC=EO+ZC,(0|HS}|0>+§ZC,C,(0|HS}S}|O). (6)
1 n

For the excited states, we consider the sac-c1 expansion (Nakatsuji 1978, 1979). We
define the configuration function as

®y = RkWsac )]

and define the sac-c1 wave function by a linear combination of these configuration
functions.

¥saca = Z dx(px- ®)
K

In (7) the operators { R} } consist of the identity operator I = R} and the symmetry-
adapted excitation operators. When we consider the excited states which belong to the
same symmetry as the sac solution, the operators { Rk} are the same as the operators
{51} used in the sac expansion. With an appropriate choice of the operators { R} }, we
can deal with not only the excited states of different spin-space symmetry, but also
ionized and electron attached states (Nakatsuji 1979; Nakatsuji and Hirao 1981). We
use the non-variational method to determine the coefficients dy in (8). Requiring the
Schrodinger equation (H — E)|Wsac.c; > = O in the space of the linked configurations,
we get (Nakatsuji 1979)

<0|H "El\PSAC-Cl> =0 (9)
<0|RK(H —E)l‘PSAC-Cl> =0. (10)

We note that the sac and sac-c1 wave functions Wg,c and Wg,c. satisfy the common
set of equations, (4) and (5), and (9) and (10). Especially, when we consider the excited
states belonging to the same symmetry as the ground state, the operators {Rk}
represent the same set of the operators as the operators {S}}. The solutions of the
Schrodinger equation belonging to different eigenvalues are orthogonal and
Hamiltonian orthogonal. The sac-c1 wave function defined by (8) can represent the sac
wave function as a special case (d, = 1 and d, = 0, I > 1). Therefore, the sac-ci solution
belonging to different energy from the sac solution should satisfy

(Fsac|¥saca> =0 (11
(¥saclH|¥suca> =0 (12
within the space under consideration. Similarly, different sac-c1 solutions should satisfy
(¥aca | ‘I’IS’AC-CI > =0, (13)
<‘P§Ac-c1|H l\PgAc-cO =0. (14)

Equations (11)-(14) are the necessary conditions the exact state functions should satisfy
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and therefore are important prerequisites for the theory dealing with the properties
involving different states (e.g., transition energy, transition moment, etc.).

3. Calculational details

The basis set used in the present calculations is the [4s2p] set of Huzinaga-Dunning
(Dunning 1970; Dunning and Hay 1977) for the valence part. For the Rydberg part,
diffuse s and p functions with exponents 0-023 (s), 0-021 (p) for carbon and 0-032 (s),
0-028 (p) for oxygen were placed at the nuclear position. The number of the basis set is
28. The HF MO’s of the closed-shell system were used as reference Mo’s for all of the
states calculated here. They were calculated by the HONDOG program (King et al 1979).
The space of the active MO’s consists of all the valence and Rydberg orbitals. The
number of active MO’s is 24.

We applied the sac method to the HF dominant state and the sac-ci method to
generate the other states. In the short internuclear distance we calculated the ground
state by the sac method and the excited states by the sac-ci method. At the long
internuclear distance we calculated the HF dominant (4)'Z* excited state by the sac
method. The ground state was calculated by the sac-c1 method as a de-excited state.

In the sac calculations we considered single and double excitations as linked
operators and only the products of double excitations (quadruple excitations) in the
unlinked terms. We obtain from (5) (Nakatsuji 1979)

Hy; +3Y Cy(Gyy— EspcTy) = 0, (15)
J

where
H, = <0|S1H|0 >,

1
Gy — EspcTyy = {OIS,(H — E5x)S}10) +3 Y, Cx{O0IS,(H — E5,)SkS}0).
K

Equations (6) and (15) were solved iteratively. For closed shells, the solution is
equivalent to that of the ccMET (coupled-cluster many-electron theory) (Cizek 1960;
Cizek and Paldus 1971). The sactheory itself is equally applicable to open-shell systems
(Nakatsuji 1978; Nakatsuji and Hirao 1978; Hirao and Nakatsuji 1981).

In the sac-ci1 calculation, the wave function was truncated at the second order for the
coefficients d, and C,.

¥saca =2dx [RL + ZC}RLSI]|0> (16)
K 1 :

where C; = ng,C,. We include single and double excitations to R} and only double
excitations to S'. The unlinked terms therefore consist of triple and quadruple
excitations. Inserting (16) into (9) and (10), we obtain

Z (sz._ ESAC-CI TKI.)dL =0, a7
L

where
HKL"ESAC-CITKL = <0|RK(H —ESAc-a)R“0>

+ ZCI <0|RK(H _ESAC-CI)RESHO>'
1
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This equation constitutes an eigenvalue problem of a non-symmetric matrix (Hirao and
Nikatsuji 1982).

In (16), we renormalized the coefficient C; by the renormalization factor ng,¢ of the
sac wave function. This factor was introduced from the following consideration. In the
sac-cl formalism, we calculate the wave functions using an approximate transferability
of the electron correlation from the sac wave function. The sac wave function is
intermediate normalized, taking the weight of the Hartree-Fock part to be unity. On
the other hand, the sac.a wave function is normalized to unity. Therefore when the
electron correlation becomes relatively large, it would be better to transfer the
normalized quantity of the electron correlation of the sac wave function in order to
maintain a balance in the sac-c1 wave function. Note however that this modification is
rather temporary because the single reference sac theory itself will breakdown when
ngac is considerably larger than unity (Nakatsuji 1985). Actually in the region of the
avoided crossing between the X' * and (4)!Z " states, the sac solution was unreliable,
so that we could not obtain the sac-c1 solution either.

To diminish the size of calculations, we selected the linked operators in the way
reported before (Nakatsuji 1983). In this calculation the thresholds 4, and 4, were
1 x 10° and 2 x 10~ % au, respectively, for singlet states and 4, for triplet states was
5x 10~%au. We included both single and double excitations as main reference
configurations used in the selection procedure (Nakatsuji 1983). As the result the
practical dimension to be solved is approximately 1600 at the most. As for the S}
operators included in the unlinked terms, we adopted double excitations whose
coefficients in the sp-c1are larger than 5 x 103 for sacand 1 x 10~ 2 for sac.c1. The Rk
operators in the unlinked terms of sac-ci consists of single and double excitations
whose coefficients in the sp-c1 are larger than 8 x 1072,

We note that in the present calculations, we include only single and double
excitations as the linked operators of the sac and sac-ct methods. This space is not
enough for the description of the 'Z* valence excited states. Within the present space,
the (4)'T* state is the lowest valence excited state. However, due to the full-c
calculations based on the minimal basis sets (O’Neil and Schaefer 1970; Nakatsuji and
Hada 1985), there are two other T+ states in the energy region studied here. Our lowest
valence excited !Z* state is close to the (4)'* state studied by Cooper and Langhoff
(1981). Hence, we denoted this state as (4)'Z*.

4. Potential curves of the CO molecule

The potential curves of the X'X* and (4)'Z* states of the CO molecule calculated by
the present method are shown in figure 2. For the X'X* state, the curve from 1-8 au to
3-5 au was calculated by the sac method and the curve from 5-0 au to 8-0 au by the sac-c1
method. For the (4)!Z* state, we used the sac-ci method for the curve from 1-8 au to
3-5 au and the sac method for the curve from 5-0 au to 8:0 au.

First we discuss the X!Z* state. Since we did not use d-polarization functions, the
calculated equilibrium bond length (1:17 A) is little longer than the experimental data
(113 A). The experimental rkr (Rydberg-Klein-Rees) potential curves of the CO
molecule (Krupenie 1966; Tilford and Simmons 1972) are shown in figure 4.

Near the avoided crossing region, our calculated result at 4-0 au shows a large
deviation from the whole potential curve. One may think that the point at 50 au is not
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Figure 2. Potential energy curves of the X'X* and (4) 'X* states of the CO molecule
calculated by the sAc and sAc-c1 methods.

adequate and the potential curve goes through the calculated point at 4-0 au. From the
following two reasons we think that the potential curve drawn in figure 2 is better and
the point calculated at 4-0 au is out of order.

First is the consideration on the breakdown of the single reference theory. In table 1,
we collected the norm of the sac-Nv wave function. A remarkable feature is seen at
4-0 au in the problem. If the single-reference cluster expansion theory is appropriate,
the norm of the wave function should not exceed unity by very much. However, at
4-0 au, the norm is much larger than those of any other calculated points. This indicates
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Table 1. Norm of SAC-Nv wave function of the HF dominant state of the CO molecule.

Bond length Bond length

(au) norm (au) norm
1-8 1-04 29 1-11
20 1-05 30 1-13
2-132 1-05 315 1-16
22 1-06 335 1-27
24 1-07 35 1-40
25 1-:07 40 2:492
2:6 1-08 50 1-39
275 1:09 80 1-17

2This value indicates that the result at 4-0 au is unreliable (see text).

that the quasi-degenerate correlation which is not described by the single reference
theory occurs in this region of the internuclear separation (Nakatsuji 1985).

The second reason is based on the spectroscopic constants calculated by the two
different potential curves. We analyzed the potential curves by the Dunham theory
(Dunham 1932). The results are compared in table 2 where the values given in the
second row in parentheses were obtained from the curve going through the calculated
point at 4-0 au. The vibrational anharmonicity w, x, reflects the shape of the potential
curve very sensitively. The upper figure in table 2, w,x, = 15-7 cm ™! almost reproduces
the experimental value, 13-3 cm ™ !. The same value from the curve going through the
calculated point at 4-0 au is 5-48, which is only a half of the experimental value.

Next we discuss the (4)'L* state. Because an appropriate sac solution was
unavailable at 4-0 au, we could not calculate the sac-ci solution at this point. The
potential curve was extrapolated from the reliable curves in shorter and lomger regions.
The avoided crossing part is therefore unreliable. We assign this state to the
valence n — 7* excitation. No experimental data seems to have been given about this
state; for example, see the RkR curves shown in figure 4. Cooper and Langhoff (1981)
calculated this state by the MrsD-C1 method, so that we compare our spectroscopic
results with their results in table 2. The equilibrium bond length r, is almost the same.
Remarkable differences are seen in the term energy 7, and the vibrational anharmo-
nicity w, x,. For the former, our result is lower than theirs by 0-6 eV, and for the latter
our result is almost twice as large as theirs. This is probably due to the lack of
the linked three and four excitation terms in the present calculation.

In figure 3, we draw all the potential curves calculated with the sac and sac-c1 theory.
In figure 4, the potential curves drawn by the rRkr method based on the experimental
data (Krupenie 1966; Tilford and Simmons 1972) are displayed. The arrow in the upper
right corner shows the lower dissociation limit of figure 3. The agreement of the rRkR
curves and our calculated curves is very good. The theoretical and experimental
spectroscopic constants are summarized in table 2. The agreement between theory and
experiment is satisfactory.

At the upper left corner of figure 3, we see three typical Rydberg transitions, B'Z*,
C'Tt*, and F'I*. The natures are predominantly n—3s, n —»3p, and n — 3d,,
respectively. The equilibrium internuclear distances of these states are slightly shorter
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Table 2. Spectroscopic constants of the ground and the excited states of CO?2.

State T,eV) r,(A) o (m™!)ox(em') B (m™') o m')
X':* ground Calcf 0-0* 117 2012 157 179 00184
Calc? ©0)  (118)  (1896) (548) REL) (00122)
Expl. 00 113 2170 133 193 00175
I'Y- nw-na* Cal. 774 1-46 1025 14:5 1-15 0-0173
Expt. 8-07 1-40 1092 107 127 00185
D'A m-n* Calc. 779 1-46 1041 13-5 1-15 00159
Expt. 817 1-40 1094 102 126 0017
A'Tl n->n* Calc 7-89 129 1390 191 1-47 00192
Expt. 8:07 1-24 1518 194 1-61 00232
@)zt n—on* Calc 10-89 162 795 14-5 093 00149
C-L* 11-49 1-52 974 73 — —
B'X* n-3s Calc. 10-66 1-14 2070 119 1-89 0-0327
Expt. 10-78 112 2113 . 152 196 00261
C'x* n-3p, Cal. 11-19 1-15 2252 164 1-86 00147
Expt. 11-40 1-12 2176 147 195 00196
F'T* n-—3d, Calc. 12-68 113 2059 153 191 00315
Expt. (1237)  (I15)  (2034)  (198”) (1:86) —
a’1 n—n* Calc. 574 1-25 1728 169 1-58 00181
Expt. 605 121 1743 143 1-69 00190
a?Tt m-n* Calc 640 1-42 1164 8-01 121 00104
Expt. 692 135 1229 10-5 1-35 00189
d’A n—n* Calc. 7-18 1-44 1092 779 1-18 00114
Expt. 7-58 137 1172 106 131 00178
e’ n-on* Calc 7-48 145 1089 8-81 1-17 00113
Expt. 796 1-38 1118 107 1-28 00175

°Experimental values are taken from Huber and Herzberg (1979); *dissociation energy is 9-98 eV
(calculation) and 11-226 eV (experiment, Krupenie 1966); ‘our final results (see text); ‘calculated values
obtained if we assume that the potential curves goes through the calculated point at 4-0 au (see text);
*theoretical result due to Cooper and Langhoff (1951); / this experimental data might be unreliable (see text).

than that of the ground state, and they have a sharp curvature. As seen from the
spectroscopic constants shown in table 2, our potential curves reproduce well the
experimental results. For the F' T* state, the experimental vibrational anharmonicity
o, X, is extraordinarily large (Krupenie 1966), i.e., 198 cm ™. Our results indicate that
this state has the potential curve very similar to the B'X* state, so that this value might
be incorrect.

Around the middle left of figure 3, several = — n* valence transitions are seen. In this
region, the states, !A, X7, 3Z7, 3A, 3+ have the potential minima. These states have
the curves of relatively shallow minima. The average internuclear distance of these
states is longer than that of the ground state. The singlet pair D*A, I'Z~ and the triplet
pair d3A, 3T~ have similar spectroscopic constants but these two pairs cross around
4-0 au. At the shorter bond length region the singlet pair lies at higher energy level than
the triplet pair, but is the reverse at the longer bond length region. This crossing is also
seen in the experimental RKR curves.

The A'Il and a1 states are from n— n* transition. The average internuclear
distance is slightly longer than that of the ground state. We did not calculate the longer
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Figure 3. Potential energy curves of the CO molecule calculated by the sac and sac-c1
methods.

internuclear region of these potential curves. The reason is as follows. In the present
calculations we considered up to double excitations as linked operators. From the
full-c1 study (Cooper and Langhoff 1981), in order to describe these states
appropriately at longer internuclear distance it is necessary to include triple and higher
excitations in the linked operators.
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