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An efficient approximation in the multiconfigurational self-consistent field (MC SCF) method is presented for calculations on
large systems. In this method, the orbitals are spanned by adequate orthonormal orbitals, such as Hartree-Fock orbitals, instead
of by the entire set of basis functions, and certain of these are not included in the orbital optimization. These include the core
orbitals and high-energy virtual orbitals selected from the Hartree-Fock manifold. The computational time for MC SCF calcula-
tions dramatically decreases without significant loss of accuracy. This saving in computer time is primarily due to the reduction
in the size of the integral transformation. Test calculations are performed for Sc,, CO, and acetylene, and the accuracy of the

energy and the Hellmann-Feynman force are checked.

1. Introduction

In electronic structure calculations, MC SCF
(multiconfigurational self-consistent field) [1,2]
theory is often used when single-determinant
Hartree-Fock theory is not a good approximation;
for example, in the description of the quasi-degen-
erate state appearing in a bond-breaking process. MC
SCF orbitals are also used as reference orbitals for CI
(configuration interaction) calculations [3], since
the orbitals are optimized for reference configura-
tions composed of several determinants. The CAS
(complete active space) MC SCF method [4,5] is a
useful addition to the MC SCF approach. As the MC
SCF wavefunction satisfies the Hellmann-Feynman
(HF) theorem, it is useful for developing the force
and density concepts in chemical reaction processes
[6-9]. We have previously presented a practical
method of calculating reliable Hellmann-Feynman
forces by simply adding the derivative bases to the
basis set already used [10-12].

In spite of the special virtues of MC SCF theory,
applications to large molecular systems are rather

limited, although recent technical improvements
have been made [13-18] in MC SCF algorithms.
This is probably due to the fact that MC SCF cal-
culations are rather time consuming, particularly
when applied to large molecular systems. The key step
is the integral transformation appearing in every SCF
iteration cycle.

In this paper we propose an approximate method
of calculating the MC SCF wavefunction. It consid-
erably reduces the computational effort, while es-
sentially maintaining all the virtues of MC SCF
theory. it is based on the following practical obser-
vations in MC SCF calculations. First, the transfor-
mation of the two-electron repulsion integrals is the
most time-consuming step. Second, orbitals which
are always doubly occupied and low-lying energeti-
cally, such as core orbitals, scarcely differ in form
from simple HF SCF orbitals. These “inner orbitals™
may be frozen throughout the MC SCF calculation
[19]. Similarly, some unoccupied orbitals which have
high orbital energies or which are unimportant from
symmetry considerations may be excluded from the
variational space spanning the MC SCF orbitals. If
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the size of the variational space can be reduced, sig-
nificant savings in time and storage space for the in-
tegral transformation step could result, without much
affecting the accuracy of the final answer.

In the following sections, we first describe the
method we propose and then apply it to MC SCF
calculations on Sc,, CO, and acetylene. The effi-
ciency and the accuracy of the present method are
also examined. Although the test molecules studied
here may be too small to prove the utility of the
method, we have already applied it to somewhat
larger systems involving the reactions of palladium
and platinum metal clusters with a hydrogen mole-
cule and acetylene [20-23].

2. Orbital classification in MC SCF theory

A general MC SCF wavefunction may be written
as

W:;Akcbk, (1)

where @, is a Slater determinant composed of MC
SCF orbitals {;}, which are expanded in a set of ba-
sis functions y,,

WI':ZCirXr- (2)

The coefficients 4, and c,, satisfy

;Ai:l, c’Sc=1 s (3)

where S is an overlap integral matrix. Usually MC
SCF calculations are manipulated using the basis
functions {x,}. Alternatively, we may expand the MC
SCF orbitals {y,} in a set of orthonormal orbitals {¢;}
as

vi=) 1;9; (4)
with
tht=1. (5)

Practically, the orbitals {¢,} are usually Hartree-
Fock SCF MOs. They can be expanded in the same
basis set {x,} as

¢j=zderr (6)
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Fig. 1. Schematic picture of the orbital diagram showing the or-
bital classification scheme. Occupied orbitals and unoccupied
orbitals are shown by -e-e- and —, respectively.

with
d'Sd=1. (7)

Let us consider the MC SCF calculation using the
MOs {¢,} as an initial guess. These orbitals may be
classified into three types. A schematic picture is
shown in fig. 1. The first type may be denoted fro-
zen-core orbitals. They are doubly occupied and re-
main unchanged throughout the MC SCF calculation.
The second type may be called SCF orbitals. The MC
SCF orbitals are spanned by these orbitals. In the CAS
MC SCF method, the so-called active orbitals and
inactive doubly occupied orbitals, which constitute
the primary orbital space, and the secondary orbit-
als, which are unoccupied, are included within this
space. The last type may be denoted frozen virtual
orbitals. They are selected, for example, from the un-
occupied SCF orbitals of high orbital energy, and are
excluded from the variational space for the MC SCF
orbitals. Based on this classification of the orbitals,
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we assume that the transformation matrix t in eq.
(4) takes the following form

100
t=|0 t O], (8)
0 0 1

where 1 and O are unit and zero matrices, respec-
tively. The first unit matrix corresponds to the fro-
zen-core orbital part, the second matrix t’ to the SCF
orbital part, and the last unit matrix corresponds to
the frozen virtual orbital part. Thus the variational
space for the MC SCF calculation is limited to the
SCF orbital space and the frozen core and virtual or-
bitals are left unchanged. Variational theorems, such
as the Hellmann-Feynman theorem, are not satis-
fied by this approximate MC SCF wavefunction.
When the SCF space includes all the orbitals, the re-
sults are obviously identical to those of the ordinary
MC SCF method.

The energy expression is modified to distinguish
between frozen core and SCF orbitals,

SCF

SCF
E= Z yij( hij + U%ore) + ;{ F,jk/( l]kl) + He°ore
I Ul

SCF SCF

= z Vij Z t:'at}b(hab'i_UZ?)re
i ab

SCF SCF
+ Y Ty Y tiatjstictia(abed) + He™ | (9)
ijkl abed

core

Hcore=2 Z hmm+z [2(mm:nn)_(mn:mn)] >
m mn (1

core
Usee =Y [2(ij:mn) — (imyn)] , (1)
where h,; and (ij:kl) represent core Hamiltonian and
electron repulsion integrals, respectively. y; and I' ;,
are one- and two-electron coupling constants defined
by

vi=<¥lala|¥>, I'yu=(¥lalalaag|¥),
(12)

respectively. In eq. (12), af and g, are creation and
annihilation operators associated with orbitals ¢, and
¢, respectively. The symbols “SCF”” and “core” used
in the summation imply that the summations are
limited to the SCF orbitals and the frozen-core or-
bitals, respectively. As the frozen-core orbitals are
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fixed, H°"¢ in eq. (11) is a constant which should be
added to the total SCF energy. U™ in eq. (11) rep-
resents the integrals for Coulomb and exchange re-
pulsions between the electrons in the core and SCF
orbitals.

The variational parameters {4,} and {¢;} are de-
termined under the conditions expressed by eq. (5).
Details of the variational procedure are described in
the literature [1]. In the present method the varia-
tional space is automatically limited to that of the
SCF orbitals by using {¢;;} given by eq. (8). Integral
transformations are limited to within this SCF or-
bital space, which leads to a significant decrease in
computational time and storage space. If the same
calculation is performed using the basis set {x,}, we
need the projection operators which exclude the fro-
zen core and frozen virtual orbitals. The computa-
tional time may scarcely decrease, because the
integrals in eq. (9) are transformed by c;, in which
r runs over all the basis functions. As {¢;;} are non-
linear parameters in MC SCF theory, they are cal-
culated iteratively. The integral transformations re-
quired in the present method are carried out via the
coefficients {¢};}, which has the same dimension as
the SCF orbital space. When we start from the
Hartree-Fock SCF orbitals, the transformation into
the space of the basis functions {x,} needs to be done
once only when the MC SCF procedure has
converged.

3. Successive MC SCF calculations in small SCF
spaces

The MC SCF wavefunction may be obtained in
the following way:

(i) Carry out the MC SCF procedure within the
selected set of SCF orbitals.

(ii) After the convergence of step (i), select a new
SCF orbital set from the resultant MC SCF orbitals
and the frozen orbitals fixed in step (i). The active
orbitals must always be included in the SCF orbital
space. The dimension of the SCF orbital space in step
(ii) is usually larger than that in step (i), but can be
equal to or even smaller than it. The integral trans-
formation requied in each iteration only involves the
SCF orbitals.

(iii) Execute steps (i) and (ii) until the required
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accuracy is obtained. The orthonormality condition
between the SCF and fixed orbital sets is always sat-
isfied. When the SCF orbital space includes all the
orbitals, the resultant MC SCF wavefunction is
equivalent to the conventional one expanded in the
set {x,}.

4. Test calculations

Test calculations were performed for Sc,, CO, and
acetylene. We carried out CAS MC SCF calculations
using the Newton-Raphson method [17] for deter-
mining {¢;} in eq. (8). We have modified the pro-
gram “GAMESS” [24] for the present purpose. The
basis sets used were MIDI-4 [25] for the Sc atom
and 4-31G [26] for C, O, and H atoms. The deriv-
ative bases of the 4-31G set were added to the C, O,
and H atoms so that the Hellmann-Feynman (H-F)
theorem is approximately satisfied for the
Hartree-Fock and MC SCF wavefunctions
(10)-(12). As frozen virtual orbitals we took all or-
bitals which have A symmetry and those orbitals
which are highest in orbital energy. The electronic
states of Sc, and CO have been reported previously
[27,28].

In the calculations on Sc,, the configurations taken
involve all possible distributions of six electrons
within the two 4s6, MOs, the 4s6, MO, and the 3dn,,
MO of Sc,. We calculated the lowest singlet state at
R=2.5A. The reference HF SCF orbitals were taken
from the 'T* state with configuration (4sc,)*-
(3dn,)*. Although this is not the main configuration
of the lowest singlet state [27], we used these
Hartree-Fock orbitals as starting orbitals because the
resulting large orbital reorganization provides a
stringent test of our method. Table 1 gives the ener-
gies calculated by the HF SCF, CI, and MC SCF
methods at the various levels of approximation and
the CPU time for each MC SCF iteration. As can be
seen from the table, freezing the core orbitals has a
negligible effect on the energy. The difference in en-
ergy between IV and VI and between V and VI is less
than 0.000001 au. This means that the core orbitals
of the MC SCF wavefunction are essentially the same
as those of the HF SCF wavefunction. On the other
hand, the effect of excluding eight virtual orbitals
from the SCF space is more marked. The difference
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between III and VI is about 0.0004 au. Nevertheless,
these differences are sufficiently small to allow us to
use methods IV or I with considerable savings in
computer time without a significant loss in accuracy.
The total CPU time needed falls to §- of that of the
full MC SCF (VI) calculation even in this small
example.

For the CO molecule, configurations are generated
from all possible distributions of six electrons within
six orbitals; 5o, 60, 1%, and 2n. We took CO bond
lengths of 1.3 and 1.0 A, which are longer and shorter
than the equilibrium value (1.128 A). The energy
and the Hellmann-Feynman (H-F) forces acting on
C and O are shown in tables 2 and 3. The effect of
excluding fourteen virtual orbitals is less than
0.00001 au in energy. The effect of freezing the two
core orbitals is greater than this and also greater than
in the case of Sc,. The CPU time of calculation I is
about 4 of the full MC SCF calculation (IIT). Table
3 shows the H-F force and the energy gradient (EG)
calculated for these MC SCF wavefunctions. When
the two core orbitals are frozen to the HF SCF or-
bitals, the H-F force acting on oxygen at R=1.3 A
becomes worse. Hence for the H-F force, freezing
the core orbitals does not seem to be a good ap-
proximation. However, when only the fourteen vir-
tual orbitals are frozen, the H-F force is close to that
of the full MC SCF wavefunction. Although the error
is larger for the oxygen atom (about 6%), it is much
smaller than the error in the EG (16%) obtained
without including the derivative basis. This shows
the importance of the derivative basis for the EG and
the H-F force.

Table 4 shows the results for acetylene. We used
the 4-31G plus the derivative basis and the geometry
was somewhat distorted as shown in the footnote of
table 4. CAS MC SCF calculations were performed
with © and n* MOs as active orbitals. Again we see
that by freezing core and virtual orbitals, consider-
able savings in computer time can be achieved with-
out affecting significantly the energy or the H-F force.
However, note that when 38 virtual MOs are frozen
and the MC SCF calculation carried out within this
34 MO space (calculation I1V), the error becomes
considerable.

We next show the results of successive improve-
ment of the MC SF wavefunction, keeping an SCF
space of 29 MOs. We first calculate the MC SCF en-
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Total energies of Sc, at R=2.5 A calculated by the HF SCF, CI, and MC SCF methods at several levels of approximation and the CPU

time for each MC SCF iteration

Method Number of orbitals Energy CPU
(au) time ¥
SCF frozen frozen (s)
core virtual

I 34 10 8 —1516.357370 37

II 42 2 8 —1516.357371 144

111 44 0 8 —1516.357371 201

v 42 10 0 —1516.358791 69

\% 50 2 0 —1516.358792 230

VI® (full) 52 0 0 —1516.358792 302

—1516.335559 -
—1516.305830 @ -
(—1516.233137) © -

configuration interaction ¢’
Hartree-Fock SCF

2 Timing on the HITAC M280H computer. Overhead time before the MC SCF calculations is not included.

® The total number of basis functions for Sc, is 52.

) The reference orbitals and configurations used in this CI are the same as those used in the MC SCF calculations.

9 This HF configuration is (4sc,)?(4sc,)?(3do,)>

¢ This HF configuration is (4sc,)?(3dn,)*. This orbital set was used as the starting orbitals of the MC SCF calculation.

Table 2
MC SCF total energy and CPU time for CO at R=1.3 and 1.0 A calculated using the 4-31G set plus derivative bases »

MC SCF Number of orbitals Total energy (au) CPU
method time
SCF frozen frozen R=13A R=1.0A (s)
core virtual
I 40 2 14 —112.710084 —112.692724 47
11 42 0 14 —112.710091 —112.692749 58
III (full) 56 0 0 —112.710095 —112.692755 121

2 The MC SCF energies calculated without including the derivative bases are —112.657282 and —112.610284 au for R=1.0 and 1.3 A,
respectively.

Table 3
Energy gradient (EG) and Hellmann-Feynman (H-F) force for CO at R=1.3 A and R=2.0 A calculated by the MC SCF method
MC SCF R=134A R=10A
method ®
EG H-F force EG H-F force
C (6} C (0]
I 0.2093 0.2013 0.2509 —0.5125 —0.5364 —0.5276
II 0.2094 0.2042 0.2132 —0.5126 —0.5241 —0.5311
I (full) 0.2098 0.2016 0.1971 —0.5119 —0.5224 —0.5286
parent basis © 0.1753 - - —0.5924 - -

2) Definition of the force is C——«O.
® Definitions of the MC SCF methods are as shown in table 2.
© Calculation without including the derivative bases.
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Table 4

MC SCF total energy, CPU time, energy gradient (EG) and Hellmann-Feynman (H-F) force for acetylene calculated using the 4-31G

set plus derivative bases

MCSCF Number of orbitals Energy CPU Carbon Hydrogen
method (au) time
SCF frozen orbital (s) EG (au) H-F (au) EG (au) H-F (au)
virtual core
I 52 18 2 —76.723561 112.4 —0.0533 —0.0587 0.1012 0.0996
I 54 18 0 —76.723563 138.6 —0.0534 —0.0511 0.1012 0.1004
111 44 28 0 —76.723298 53.7 —0.0529 —0.0566 0.1009 0.0984
v 34 38 0 —76.721660 16.2 —0.0505 —0.0601 0.1002 0.1028
V (full) 72 0 0 —76.723565 427.3 —0.0534 —-0.0539 0.1012 0.1005
) Geometry of acetylene and definition of force are H—C—C—>—+H.
106A 12034  136A
® The energy gradient obtained from the MC SCF calculation without including the derivative bases is —0.0792 au for carbon and
0.0989 au for hydrogen.
Table 5 the core and virtual orbitals to the HF SCF MOs, we

Total energy of CO at R=1.3 A as calculated by the MC SCF
method in which SCF orbitals are successively replaced by frozen
virtual orbitals

Step Energy (au) H-F force (au) »
C (6]

1 —112.709130 0.2108 0.3161

2 —112.710016 0.2019 0.2073

3 —112.710094 0.2037 0.2061

full —112.710095 0.2016 0.1971

@) The numbers of SCF and frozen virtual orbitals are 29 and 27,
respectively. In each step, 19 SCF orbitals are replaced by 19
frozen virtual orbitals.

®) The energy gradient of the full MC SCF wave function is 0.2098.

ergy within the lowest 29 SCF MO space (No. 1) and
then replace 19 SCF orbitals with 19 frozen orbitals
and recalculate the MC SCF energy within the new
29 SCF orbital space (No. 2). We repeat a similar
step once again (No. 3) and present the results in
table 5. After two steps of this procedure, the energy
is already very close to the full MC SCF value. The
H-F force also shows good convergence.

5. Concluding remarks

A practically useful method for calculating MC
SCF wavefunctions is described. By fixing some of
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could dramatically reduce the computational time
for the MC SCF calculation without much loss of ac-
curacy. This is primarily due to savings in the in-
tegral transformation step which is necessary in every
iteration of the SCF procedure. The Hellmann-
Feynman force is also shown to be fairly reliable even
in this approximate MC SCF method, if the basis set
includes the first derivative bases and the core MOs
are included in the SCF space. The present results
can be improved by doing full MC SCF calculations
in the first few iterations, and then fixing some of the
MOs and performing succeeding in the reduced MO
space. We have already utilized the procedure pro-
posed here for several years for calculating MC SCF
wavefunctions in studies of the catalytic reactions of
small palladium and platinum clusters with hydro-
gen and acetylene [20-23]. Without this method, it
would have been difficult to perform MC SCF cal-
culations for such large systems.
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