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The excitation spectra of SnHs and Sn(CH3)s were studied theoretically by the SAC-CI (symmetry adapted
cluster—configuration interaction) method. The calculated spectra agree well with the observed vacuum-
ultraviolet (VUV) spectra. The results of the lowest states agree with the earlier works by Fernandez et al.
In higher energy region, the earlier works have overlooked many states which constitute broad observed
bands. The new assignments of the spectra up to the first ionization potential are given, and the natures of
the excitations are discussed. The excitations in this energy region are primarily Rydberg in nature, though
some states show a strong mixing with the valence antibonding states. The difference in the VUV spectra

between SnH, and Sn(CHs), is attributed to the difference in the nodes of the t,o* antibonding orbitals.

Introduction

Stannanes, together with silanes and germanes, are now
widely used in electronic devices.!? Their excited-state proper-
ties play a central role in the initial step of chemical vapor
deposition processes.!? Photochemical reactions of stannanes
are also of interest with regard to the pollution of sea water.?
Though some studies have examined the photochemistry of
methane and silanes,?* there are few experimental or theoretical
studies of stannanes.

Fernandez et al. recorded the vacuum-ultraviolet (VUV)
spectra of some stannanes and compared them with the results
of ab initio calculations,>® which are shown in the insets of
Figures 1 and 2. As shown, their assignments seem to be
reliable for the lower excited states but less reliable for higher
excited states, especially for Sn(CH3)4. In addition, no Rydberg
series were calculated, which must exist in this energy region.

It is generally recognized that most transitions of saturated
hydrocarbon analogues are Rydberg-type excitations,” some of
which mix with valence antibonding states. This mixing
strongly changes the nature of the Rydberg excitations.”# Since
the antibonding orbitals of stannanes are lower than those of
hydrocarbon analogues, Rydberg/valence mixing becomes more
important. We were also interested in the difference in mixing
due to the symmetry difference of various antibonding orbitals.
We can examine this Rydberg/valence mixing by ab initio
calculations with large basis sets including Rydberg functions.

In this study, we investigated the excited states of SnH, and
Sn(CH3),4 to explain the VUV spectra and the nature of the
excited states below the first ionization potential (IP). We used
the symmetry adapted cluster (SAC)%/symmetry adapted cluster—
configuration interaction (SAC-CI) method,!® which has been
applied to many molecules, including transition metal com-
plexes.!'> We have shown that this method is very useful for
investigating excited states over a wide energy range and has
yielded many reliable assignments of experimental spectra. A
review is given in ref 11.
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Figure 1. SAC-CI theoretical excitation spectrum of SnHy below the
first IP, 11.27 eV, compared with the observed spectrum (ref 5). Inset
is the spectrum calculated by Fernandez et al. (ref 5).

Method for the Calculations

We used the experimental bond lengths and angles in the
vapor phase:!3 for SnH:, Sn—H = 1.7108 A, ZHSnH =
109.47°; for Sn(CHa)s, Sn—C = 2.144 A, C—-H = 1.118 4,
4£SnCH = 112.0°, ZCSnC = 109.47°. We assumed T,
symmetry for Sn(CH3)s. Effective core potentials (ECPs) are
often used to account for relativistic effects with heavy atoms.
However, since some ECPs yield poor results for excited
states,'?® we used all-electron basis sets. We used Cartesian
Gaussian functions in this calculation: for SnHs, Huzinaga’s
Sn(16s13p7d)/[7s6p2d] set'* with two d-type polarization func-
tions (&4 = 0.253, 0.078)!* and Dunning’s H(4s)/[3s] set;'5 for
Sn(CH3s)s, Huzinaga’s Sn(16s13p7d)/[7s6p2d] set'* with one
d-type polarization function ({4 = 0.183),'* Dunning’s C(9s5p)/
[3s2p] set,' and Huzinaga’s H(4s)/[1s] set.'* Since Rydberg-
type excitations are expected to be important, several Rydberg
functions determined by Jungen’s method'¢ were added, as
shown in Table 1. For SnHy, we added five s, p, and d Gaussian
functions on Sn and two s and p functions on each hydrogen.
Since the overlap between the most diffuse functions on Sn and
H is nearly unity, no additional diffuse functions are needed on
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Figure 2. SAC-CI theoretical excitation spectrum of Sn(CH;)s below
the first IP, 9.70 eV, compared with the observed spectrum (ref 6).
Inset is the spectrum calculated by Fernandez et al. (ref 6).

TABLE 1: Diffuse Cartesian Gaussian Functions Used in
the Calculations

Gaussian type exponents
SnHy
on Sn
s type 0.025 71, 0.010 94, 0.005 414, 0.002 977, 0.001 769
p type 0.017 87, 0.008 135, 0.004 216, 0.002 398, 0.001 463
d type 0.025 71, 0.010 94, 0.005 414, 0.002 977, 0.001 769
on hydrogen
s type 0.047 63,0.017 87
p type 0.047 63, 0.008 135
Sn(CHs)s
on Sn
s type 0.021 34, 0.009 408, 0.004 768

p type 0.015 07, 0.007 069, 0.003 742

d type 0.047 63,0.017 87, 0.008 135
on carbon

s type 0.023

p type 0.021

hydrogens. For Sn(CH3)4, we added three s, p, and d Gaussian
functions on Sn and one s and p function on each carbon, which
were taken from ref 17.

For SnHy, the total number of atomic orbitals is 153, while
the total number of molecular orbitals is 142. For Sn(CHj3)s,
these are 133 and 131, respectively. Since our basis sets involve
very diffuse functions, none of them are linearly independent:
we eliminated the subspace of the basis set which is linearly
dependent to the others.

The ground-state electron correlations were calculated by the
SAC method,” while the excited states were calculated by the
SAC-CI method.'® The Hartree—Fock (HF) MOs were used
as reference orbitals. We used the SAC85 program'® in this
calculation.

The active space in the SAC/SAC-CI calculation consists of
4 occupied and 100 unoccupied orbitals for SnH, and 16
occupied and 82 unoccupied orbitals for Sn(CH3)s. This
includes all of the occupied valence MOs. All of the single-
excitation operators were included, while the double-excitation
operators were selected by the second-order perturbation
method.’® In the present calculation, we used the following
thresholds: 1.0 x 10~ au for the ground, excited, and ionized
states of SnHa, 4.0 x 10~ au for the ground state of Sn(CHj)s,
and 8.0 x 1073 au for the excited states of Sn(CH3)s. The
SACSS5 program includes some triple and quadruple excitations

Yasuda et al.

TABLE 2: Energies and Nature of Hartree—Fock Valence
Occupied Orbitals of SnH; and Sn(CHs),

symmetry orbital energy (eV) orbital nature®

SnH,

Sa; —17.96 Sn(Ss) + H(s)

6tz —12.28 Sn(5p) + H(s); HOMO
Sn(CHs)4

6a, —25.48 C(s) + H(s)

Tt —24.66 C(s) + H(s)

Ta —-15.70 Sn(Ss) + C(p)

8t —14.85 C(p) + H(s)

3e —14.77 C(p) + H(s)

1t —14.25 C(p) + H(s)

9t —10.76 Sn(5p) + C(p); HOMO

2+ indicates a bonding combination.

which are the products of the lower excitation operators.!® The
dimensions of the present calculations are about 1600—2600
for the ground states, 8600—9600 for the excited states, and
400—470 for the ionized states.

Results for SnH,

Ground State. The energies and the nature of the HF valence
occupied MOs of SnH, are shown in Table 2, in which +
denotes a bonding combination. The 5a; MO is the Sn(5s)+H(s)
bonding MO, while the highest occupied MOs (HOMOs) 6t;
are the Sn(5p)+H(s) bonding MOs. These four bonding MOs
represent the four Sn—H bonds. There are many unoccupied
MOs with small positive orbital energies, which mainly consist
of diffuse basis functions. They are electron-accepting orbitals
of neutral SnH,, rather than bounded Rydberg orbitals.

The Hartree—Fock total energy of SnH, is —6020.8211 au,
and the correlation energy calculated by the SAC method is
—0.077 23 au, which represents 12 kcal/mol per bond.

Comparison with the VUV Spectrum of SnH,. Figure 1
compares our SAC-CI results with the experimental spectrum
of SnHs. The dotted peaks show the result of the deconvolution
analysis by Fernandez et al.> Table 3 gives the details of the
calculated T, states. The T, states are the only optically allowed
states in the T, symmetry. The optically forbidden transitions
are shown in Figure 1 by open circles on the energy axis; details
are given in Table 4.

The inset of Figure 1 shows the result of ab initio calculations
by Fernandez et al. Though they gave only three T, states in
this energy region, our results show many T, states. For
example, the strongest absorption at 9.7 eV is not explained by
their result. For studying the excited states of saturated
molecules like SnHs,, it is essential to include not only the
valence-type basis functions but also many Rydberg-type basis
functions. Since Fernandez et al. did not include enough
Rydberg-type functions, their result is unreliable except for the
lowest state.

The first broad absorption centered at 8.7 eV appears as a
shoulder of the absorption spectrum. We calculated the 1T
state at 8.40 eV, which reflects a mixed Rydberg 6s and a;o*
antibonding nature. Fernandez et al. analyzed this band as a
superposition of three peaks separated by 0.4 eV and concluded
that they showed Jahn—Teller splitting.> The first band of the
photoelectron spectrum shows a similar Jahn—Teller splitting.2°
Since this T, state shows a mixture of Rydberg and antibonding
orbitals, and since no other T, states were calculated in this
region, we also interpreted these three peaks in the deconvo-
lution analysis as Jahn—Teller splitting.

The second broad absorption is centered at 9.7 eV, while the
deconvolution analysis shows a strong peak at 9.4 eV and a
weak peak at 9.7 eV. We considered this band to be a
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TABLE 3: Excitation Energies, Oscillator Strengths, and the Nature of the Singlet T, (Dipole-Allowed) Excited States of SnH,

Mulliken population”
excitation oscillator second Sn H

state energy (eV) strength (x107?) moment (au) vals valp Ryds Rydp Rydd vals Ryds nature?

XA, 0.0 112 086 124 -0.03 031 —0.01 1.05 0.33 ground state, Hartree—Fock

1T, 8.40 45.8 155 069 1.51 021 0.36 003 091 0.31 Sn(p)+H(s) — Sn(6s), Sn(5s)—H(s)
2T, 9.24 117 146 079 174 -0.02 041 027 091 0.17 Sn(p)+H(s) — Sn(5d), Sn(5p)—H(s)
3T, 9.47 0.82 204 0.77 138 0.00 1.01 0.13 090 0.23 Sn(p)+H(s) — Sn(6p)

4T, 9.77 37.6 192 077 151 —-0.02 0.33 0.63 091 0.16 Sn(p)+H(s)— Sn(5d), Sn(5p)—H(s)
5T, 10.07 21.8 333 0.76 1.59 0.33 029 0.63 091 0.15 Sn(p)+H(s) — Sn(7s)

6T, 10.41 17.8 378 0.81 162 —0.03 0.34 0.83 090 0.11 Sn(p)+H(s) — Sn(6d)

7T, 10.55 0.05 563 0.77 150 -0.01 0.99 027 090 0.15 Sn(p)+H(s)— Sn(7p)

8T 10.64 26.2 583 0.80 1.61 004 034 0.83 091 0.13 Sn(p)+H(s) — Sn(6d)

9T, 10.78 0.22 611 0.86 161 —0.06 0.33 064 090 0.05 Sn(p)+H(s)— Sn(8s)

10T, 10.97 0.72 1332 078 169 —0.04 0.32 0.82 090 0.09 Sn(p)+H(s)— Sn(8p)

11T, 10.99 159 923 077 170 -0.01 0.30 1.17 090 0.11 Sn(p)+H(s) — Sn(7d)

@ Abbreviations: val and Ryd = valence and Rydberg, respectively. # + and — indicate bonding and antibonding combinations.

TABLE 4: Excitation Energies and the Nature of the Singlet A,, E, and T, (Dipole-Forbidden) Excited States of SnH,
Mulliken population®
excitation second Sn H
state energy (eV) moment (au) val s val p Ryd s Ryd p Rydd val s Ryds nature®
XA 0.0 110 0.86 1.24 -0.03 0.31 -0.01 1.05 0.33 ground state, Hartree—Fock
IT, 8.27 128 0.76 1.68 —0.02 0.34 0.08 0.94 0.17 Sn(p)+H(s) — Sn(5p)—H(s)
1E 8.48 131 0.78 1.45 —0.02 0.43 0.13 0.95 0.21 Sn(p)+H(s) — Sn(5p)—H(s)
1A, 8.92 137 0.77 1.55 —0.02 0.61 0.07 0.92 0.20 Sn(p)+H(s) — Sn(5p)—H(s)
2A, 9.48 213 0.76 1.54 —-0.02 0.83 0.07 0.90 0.18 Sn(p)+H(s) — Sn(6p)
2T, 9.59 204 0.76 1.49 —0.02 0.76 029  0.90 0.18 Sn(p)+H(s) — Sn(6p)
2E 9.61 212 0.79 1.44 -0.02 1.09 009 090 0.21 Sn(p)+H(s) — Sn(6p)
3T, 9.75 192 0.76 1.48 -0.02 0.78 0.41 0.89 0.19 Sn(p)+H(s) — Sn(7p)
4T, 10.27 333 0.78 1.65 —0.02 0.31 .12 0.90 0.11 Sn(p)+H(s) — Sn(5d)
3E 10.35 356 0.78 1.66 —-0.02 0.39 1.00 090 0.11 Sn(p)+H(s) — Sn(5d)
3A, 10.42 450 0.78 1.56 —0.02 0.98 024 090 0.13 Sn(p)+H(s) — Sn(7p)
5T, 10.55 505 0.77 1.54 —0.02 0.53 072 090 0.15 Sn(p)+H(s) — Sn(5d)
4A, 10.57 460 0.78 1.56 —0.02 0.66 0.68 0.90 0.14 Sn(p)+H(s) — Sn(5d)
4E 10.57 601 0.77 1.57 —0.02 1.11 0.11 0.89 0.14 Sn(p)+H(s) — Sn(7p)
6T, 10.59 598 0.78 1.55 —0.02 0.95 026 090 0.14 Sn(p)+H(s) — Sn(8p)
7T, 10.88 750 0.78 1.73 —-0.02 0.26 126 090 0.07 Sn(p)+H(s) — Sn(6d)

@ Abbrevations: val and Ryd = valence and Rydberg, respectively

superposition of two states: 2T, calculated at 9.24 eV and 4T
at 9.77 eV. These represent the Rydberg 5d mixed with the
t,0* antibonding orbitals. As seen in Table 3, the 2T, state
has the largest calculated oscillator strength, which implies that
it has a stronger antibonding nature than the 4T, state. Note
that the 3T state calculated at 9.47 eV has a very small oscillator
strength. :

The ab initio calculation by Fernandez et al. showed that this
peak has a Rydberg p character. However, their calculated
Rydberg p state has a much smaller oscillator strength than the
experimental value. Since they did not include diffuse d
functions, they might have overlooked this Rydberg d state.

In the higher energy region, the spectrum shows several bands
centered at 10.2, 10.7, and 11.1 eV, while the deconvolution
analysis shows peaks at 10.2, 10.6, and 11.2 eV. We obtained
many states in this energy region. Among them, 5T, 6T>, 8T,
and 11T> have moderate oscillator strengths, which are mainly
Rydberg, as seen in Table 3. Though Fernandez et al. attributed
these bands to the Rydberg s states and valence antibonding
excitations, their result seems to be less reliable in this region,
due to the deficiency of the diffuse basis sets.

Nature of the Excited States. Table 3 summarizes the
excitation energies, oscillator strengths, and nature of the
optically allowed, singlet T excited states, while the results of
the singlet A;, E, and T, states are shown in Table 4. All of
the excited states calculated here represent the transitions from
HOMOs, 6t20 Sn(5p)+H(s) bonding MOs. The SnH; homo-
logues CHy, SiHy, and GeHy show Rydberg-type excitations.’

.+ and — indicate bonding and antibonding combinations.

We also calculated the ionized states. The lowest ionized
state is the ionization from HOMOs, 6t,0 Sn(5p)+H(s) bonding
MOs, with a calculated ionization energy of 11.46 eV, and the
second lowest state is from a; g, Sn(5s)+H(s) bonding MO, with
an energy of 16.47 eV. Our calculated energies agree well with
the experimental values of 11.27 and 16.88 eV.20

To analyze the Rydberg character of the excited states, we
examined the second moment, which is the expectation value
of 72 and reflects the size of the electron-cloud distribution.
Generally, Rydberg states have larger second moments than the
valence excited states, and those with higher quantum numbers
show smaller oscillator strengths and larger second moments.
We also examined the ratio of the kinetic and total energies,
which is the virial coefficient of a Rydberg electron. We defined
the kinetic energy of a Rydberg electron as the difference in
kinetic energy between the excited state and the ionized state.
The total energy of a Rydberg electron, which is called the term
value, is defined similarly. The virial theorem tells us that the
ratio of the two energies for a Rydberg electron is equal to unity
for a pure Rydberg state.

These two kinds of energies are shown in Figure 3 for each
T, excited state of SnHs: we see a trend for convergence to
the ionization limit with a small oscillation. The Rydberg s
state has a larger kinetic/total energy ratio than the Rydberg p
state, as expected from the difference in penetration. The 1T
and 2T, states have a larger kinetic/total energy ratio than other
states, which reflects their antibonding natures. Thus, an
electron is more likely to stay near the nucleus in these excited
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Figure 3. Kinetic energy and total energy of a Rydberg electron in
singlet T, excited states of SnHa.

states. The 1T state is Rydberg s mixed with a;o0*, Sn(5s)—
H(s) antibonding orbital, while the 2T state is Rydberg d mixed
with t,0%*, Sn(5p)—H(s).

Tables 3 and 4 show the Mulliken population analysis for
the calculated excited states. A population analysis is somewhat
risky when diffuse basis sets are involved. The large overlap
between the diffuse basis functions causes negative, unphysical
populations. Therefore, we mainly examined the valence
populations.

The Rydberg s states have large populations in the Rydberg
s functions on Sn. The Rydberg p and d states show similar
trends. In the 1T state, the Rydberg s functions on hydrogens
have relatively large populations, as expected from its a;o*
antibonding character. These diffuse functions seem to occupy
part of the valence atomic orbitals. In the 2T, state, the valence
Sn(p) function has the largest population among the calculated
T, states, which shows its t,0* antibonding character. We can
understand why the Rydberg 6s and 5d states mix with the
antibonding ones. The Rydberg 6s orbital has one more node
than 5s in the valence region. On the other hand, the a;o*
Sn(5s)—H(s) antibonding orbital has a node in the Sn—H bond,
like the Rydberg Sn(6s) orbital. Therefore, there must be
substantial mixing between these two orbitals. The same
explanation can be applied to Sn(5d) and t,0* Sn(5p)—H(s).
The 1T, 1E, and 1A, states, with excitation energies of 8.27,
8.48, and 8.92 eV, have relatively small second moments and
large populations in the valence H(s), as shown in Table 4. The
1T, state also has a large population in the valence Sn(p). This
reflects their t,0* Sn(5p)—H(s) antibonding character.

Results for Sn(CH;)4

Ground State. The energies and the nature of the HF valence
occupied MOs of Sn(CHs)4 are shown in Table 2, in which +
denotes a bonding combination. The HOMOs 9t, are
Sn(5p)+C(2p) bonding MOs. There are many unoccupied MOs
with positive orbital energies, as in SnHs. The Hartree—Fock
total energy of Sn(CHj3), is —6176.9084 au, and the correlation
energy calculated by the SAC method is —0.154 695 au.

Comparison with VUV Spectrum of Sn(CH3)4. Figure 2
compares our SAC-CI results with the experimental spectrum
of Sn(CHzs)s, which shows two broad absorption bands. The
dotted peaks show the results of the deconvolution analysis by
Fernandez et al.5 Table 5 gives the details of the calculated T,
states. The dipole-forbidden transitions are shown in Figure 2
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Figure 4. Kinetic energy and total energy of a Rydberg electron in
singlet T, excited states of Sn(CH3)a.

by open circles on the energy axis; details are given in Table 6.

The inset of Figure 2 shows the result of ab initio calculations
by Fernandez et al. Similarly to Figure 1 for SnHy, they gave
only two T states in this energy region, while our calculations
give a lot of states. In particular, they cannot explain the
strongest peak at around 9.0 eV. The reason is clear: they did
not include the Rydberg-type basis functions which are of crucial
importance for studying the excited states of saturated molecules
like Sn(CH3)s.

The first broad absorption centered at 6.7 eV is assigned to
the 1T, state calculated at 7.01 eV. This state is Rydberg 6s
mixed with the a;o* antibonding orbital, which is the same as
that given by Fernandez et al.% Its nature and the term value
are similar to those of SnHi, though Sn(CHj)s shows no
remarkable Jahn—Teller splitting. The Jahn—Teller distortion
of the Sn(CH3)4* cation has been studied extensively.?!

The second broad absorption centered at 8.9 eV is assigned
to the 8T, state calculated at 8.98 eV, which is Rydberg 6d
mixed with the t,o* antibonding orbitals. Many excited states
of moderate intensity were also calculated (3T, 5T, 6T, and
9T,). In contrast, Fernandez et al. did not calculate any states
in this energy region, due to the deficiency of the diffuse basis
function. The 10T, and 11T, states represent the excitations
to the Rydberg f-like orbitals, which were represented by the p
functions on carbons, since our basis set does not involve any
f functions. Some components of the Rydberg f orbital have
the same symmetry as the t; antibonding orbital in a T, molecule.
On the basis of their small intensities, we tentatively considered
them Rydberg f states rather than valence antibonding states.
Overall, our calculation agrees well with the experimental
spectrum.

Nature of the Excited States. Table 5 summarizes the
excitation energies, oscillator strengths, and the nature of the
singlet T, excited states, and the results for the singlet Ay, E,
and T, states are shown in Table 6. All of the excited states
calculated below the experimental first IP, 9.70 eV,2? are the
transitions from HOMOs, 9t,6 Sn(5p)+C(2p) bonding MOs.
We reproduced some members of the Rydberg series. To
analyze the Rydberg character of the excited states, we
calculated the second moment, as shown in Tables 5 and 6.
The 8T, state has a relatively small second moment, which
implies its antibonding nature. We also examined the ratio of
the kinetic/total energy of a Rydberg electron. Since we did
not calculate the ionized state, we defined the kinetic energy of
a Rydberg electron as the difference in kinetic energy between
the excited state and the ground state. This definition differs
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TABLE 5: Excitation Energies, Oscillator Strengths, and the Nature of the Singlet T, (Dipole-Allowed) Excited States of
Sn(CI-I3)4

Mulliken population®

excitation oscillator second Sn C
state energy (V) strength (x1072) moment (au) vals valp Ryds Rydp Rydd valp Ryds nature®
XA, 0.0 851 078 0.86 —0.06 —0.40 —0.29 332 0.34 ground state, Hartree—Fock
1T, 7.01 275 913 067 071 —-0.06 —0.18 0.11 3.15 0.50 Sn(p)+C(p)— Sn(6s), Sn(5s)—C(s)
2T, 7.78 0.50 946 0.74 0.74 —0.01 045 —-0.01 3.14 0.38 Sn(p)+C(p)— Sn(6p)
3T, 8.19 11.7 992 0.74 0.77 —0.05 —-0.30 0.34 3.15 031 Sn(p)+C(p)— Sn(5d)
4T, 8.31 1.88 1007 075 077 002 —-0.21 124 3.15 032 Sn(p)+C(p)— Sn(5d)
5T, 8.37 5.80 1138 071 0.76 124 —0.14 —090 3.15 036 Sn(p)+C(p)— Sn(7s)
6T, 8.65 4.09 1226 074 0.77 038 —044 -044 3.15 0.36 Sn(P)+C(p)— Sn(7p)
T 8.97 0.49 1243 073 0.75 —020 -0.10 0.58 3.15 028 Sn(p)+C(p)— Sn(8s)
8T, 8.98 30.2 1031 075 0.81 —-0.06 —0.04 027 3.15 0.30 Sn(p)+C(p)— Sn(6d), Sn(5p)—C(p)
9T, 9.13 13.3 1080 076 0.76 —0.16 —029 0.65 3.15 028 Sn(p)+C(p)— Sn(6d)
10T 9.17 0.55 1090 075 0.77 —0.05 —-0.09 0.59 3.15 028 Sn(p)+C(p)— Sn(f)

a Abbreviations: val and Ryd = valence and Rydberg, respectively. ® + and — indicate bonding and antibonding combinations.

TABLE 6: Excitation Energies and the Nature of the Singlet A;, E, and T; (Dipole-Forbidden) Excited States of Sn(CHz),

Mulliken population®

excitation second Sn C
state  energy (V)  moment (au) vals  valp Ryds Ryd p Rydd valp Ryds nature?
XA, 0.0 851 0.78 0.86 —0.06  —0.40 -0.29 332 0.34 ground state, Hartree—Fock
1A, 7.56 941 074  0.71 —0.05 0.67 -0.21 3.15 0.44 Sn(p)+C(p) — Sn(6p)
1T, 7.62 930 0.75 076  —0.05 0.51 005 3.14 0.37 Sn(p)+C(p) — Sn(6p)
1E 7.65 933 0.75 072  —0.05 1.22 -004 3.14 0.44 Sn(p)+C(p) — Sn(6p)
2T, 8.24 977 0.75 080 —0.04 —0.26 1.51 3.15 0.30 Sn(p)+C(p) — Sn(5d)
2A, 8.30 1002 0.75 076  —0.04 0.10 063 3.14 0.29 Sn(p)+C(p) — Sn(5d)
2E 8.34 1009 0.75 0.77 -0.04 —0.11 1.02 315 0.24 Sn(p)+C(p) — Sn(5d)
3T, 8.35 1016 0.75 078  —0.04 0.05 0.61 3.15 0.34 Sn(p)+C(p) — Sn(5d)
4T, 8.52 1109 0.75 0.81 —0.03 0.28 009 3.15 0.36 Sn(p)+C(p) — Sn(7p)
3E 8.54 1149 0.75 078  —0.05 0.40 -0.12 3.14 0.40 Sn(p)+C(p) — Sn(7p)
3A, 8.58 1207 0.75 074  —0.05 0.56 —0.21 3.15 0.37 Sn(p)+C(p) — Sn(7p)
5Ty 8.78 1146 0.75 0.78 —0.04 0.02 —-0.08 3.15 0.26 Sn(p)+C(p) — Sn(5p)—C(p)
4E 8.83 1132 0.75 080 —0.05 0.19 007 3.15 0.28 Sn(p)+C(p) — Sn(5p)—C(p)
4A, 9.04 1050 0.75 0.83 —-0.04 —4x107? 0.16 3.15 0.34 Sn(p)+C(p) — Sn(5p)—C(p)
6T, 9.14 1200 0.75 078  —0.05 0.27 038  3.15 0.28 Sn(p)+C(p) — Sn(6d)
5A, 9.17 1215 0.75 076  —0.04 0.77 0.14  3.15 0.19 Sn(p)+C(p) — Sn(8p)

a Abbreviations: val and Ryd = valence and Rydberg, respectively. ® + and — indicate bonding and antibonding combinations.

from the previous definition by a constant. The total energy of
a Rydberg electron is defined similarly.

These two kinds of energies are shown in Figure 4 for each
T, state of Sn(CHz)4. In this case, the 1T, and 8T} states have
a larger kinetic energy ratio than other states, which indicates
their antibonding character. The 1T, and 8T, states have
primarily Rydberg 6s and 6d characters, respectively, mixed
with Sn—C antibonding orbitals. The Mulliken population
analysis in Table 5 shows that the 1T, state has a relatively
large population in the Rydberg s function on carbon, which is
similar to the result with SnHs. Therefore, the mixed antibond-
ing orbital in the 1T state is a;0* Sn(5s)—C(2s). On the other
hand, the 8T, state has a relatively large population on the
valence Sn(p) function, which reflects its t,0* antibonding
character. We can understand why the Rydberg 6d orbital,
rather than 5d, mixes with the antibonding orbital. The mixed
orbital is the Sn(5p)—C(2p) antibonding orbital, which has one
additional node due to C(2p). Therefore, Sn(6d) is more suitable
than Sn(5d) for mixing with this antibonding orbital. The
difference in the VUV spectra between SnH, and Sn(CH3), is
attributed to the difference in the nodes of these t,0* antibonding
orbitals. The 5T, 4E, and 4A, states, with excitation energies
of 8.78, 8.83, and 9.04 eV, have relatively small second
moments and large populations on the valence Sn(p) function,
as shown in Table 6, which reflects their t,0* Sn(Sp)—C(2p)
antibonding character.

Summary

We used the SAC/SAC-CI method and large basis sets with
many Rydberg-type basis functions to calculate the excited states
of SnHy and Sn(CHj3)s up to the first IP. We successfully
reproduced the VUV spectra for both excitation energies and
intensities. The assignments of the lowest T states agree with
earlier works by Fernandez et al. In the higher energy region,
where inclusion of enough Rydberg-type basis functions is
essentially important, we calculated many states which have
been overlooked in the earlier works. We have provided new
assignments and clarified the nature of the excited states. The
excitations in this energy region are primarily Rydberg.
However, some states show a strong mixing with antibonding
orbitals and are characterized by smaller second moments and
larger oscillator strengths.

The difference in the VUV spectra between SnH. and
Sn(CH3), can be explained as follows: in SnHs, the Rydberg
Sn(6s) orbital mixes with the a;0* Sn(5s)—H(s) antibonding
orbital, while the Rydberg Sn(5d) orbital mixes with the t;0*
Sn(5p)—H(s) orbitals. In Sn(CHs)s, on the other hand, the
Rydberg Sn(6s) orbital mixes with the a;0* Sn(5s)—C(2s)
orbital, while the Rydberg Sn(6d) orbital mixes with the t,0*
Sn(5p)—C(2p) orbitals. The mixing with the C(2p) orbital
results in an additional node for the Rydberg orbital.
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