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Abstract. We examine the strength of the Weinhold-Wilson (WW) inequali-
ties for calculating the second-order density matrix(2-RDM) by the density ma-
trix variational theory (DMVT) using the P, Q and G conditions as subsidiary
conditions. We calculated the 2-RDM of various molecular electronic states and
found that some violations of WW inequalities occur especially for the systems
for which the DMVT(PQG) calculations were less accurate. We then developed
the DMVT method including further the WW inequalities as the restrictive con-
ditions, DMVT(PQG+WW), and applied it to CHq4, C2, CH2(*A;) and H20. The
WW inequalities certainly improved the results, but the improvement was not so
remarkable.

1. Introduction

As far as our world involves only up-to-two body elementary opera-
tors, this world should be described solely by the second-order reduced
density matrix (2-RDM). Professor Léwdin not only did a lot of great
works in this and related field(1; 2), but also encouraged many young
researchers. HN is one of such researchers and would like to thank
Professor Per-Olov Loéwdin for his great contributions in the field of
quantum molecular science and his encouragement warmly given to
him.

Recently, special attentions have been paid to the direct determina-
tion of the reduced density matrix (RDM), which is called as density
matrix theory(DMT). This approach adopts the 2-RDM as the basic
variable of quantum mechanics and there are two formalisms in the
DMT. One is based on the density equation(3), which is equivalent to
the Schrodinger equation in the necessary and sufficient sense. This
approach is called density equation theory (DET). Recent develop-
ment of the DET(4; 5; 6) has been remarkable and they have been
summarized in the review article (7). The other is based on the Ritz
variational principle expressed in terms of the 2-RDM and is referred
to as the density matrix variational theory (DMVT). The quality of
the calculated 2-RDM in the DMVT is dependent on how well we can
restrict our variable 2-RDM to be N-representable(8).
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The DMVT method was first introduced by Garrod and Percus.
They proposed the variational method using P, @ and G conditions
and some trivial N-representability conditions(9), and applied it to the
ground state of Be(10). Erdahl proposed to use convex programming
for the DMVT and applied it to Hez(11). The applications in these
early studies were limited to very small systems. Recently, Erdahl and
Jin(12) developed the DMVT using 3-RDM as variable and applied it to
the model system of one-dimensional periodic lattice of electron pairs.
Mazziotti and Erdahl(13) examined the positive semidefinite condition
of 3- and 4-RDMs for solving the DMVT combined with the DET and
calculated Lipkin model, namely, a boson model of two-energy-level
system.

In this series of our DMVT studies(14; 15), we could efficiently
implement the DMVT using the semidefinite programming algorithm
(SDPA)(16), and successfully calculate the 2-RDMs of the ground states
of many different spin-space symmetries for many atoms and molecules.
We also applied this method to the potential energy surfaces of molecules
and reproduced the full-CI curves in good approximation up to the
dissociation limit(15); the G condition was found to be very important
for describing the dissociation limit.

Another promising approach was initiated by one of the authors(17).
Since the exact ¥ is an eigen function of the Hamiltonian that has so
simple structure composed of only one- and two-body operators, the
VU itself should also have a simple structure reflecting this simplicity
of the Hamiltonian. Some explicit expressions of the structure of the
exact wave function were given and the theories for the ground and
excited states was formulated. Applications were given to a simple
model system and to atoms and molecules.

For improving the DMVT(PQG) method developed previously(14;
15), we may use some additional N-representability conditions. Some
inequalities for the 2-RDM were proposed by Weinhold and Wilson(18),
Davidson(19) and McRae and Davidson(20). Since all of these inequal-
ities can be written as linear conditions, it is easy to include these
conditions in our formalism. In our previous work(15), we actually ex-
amined these inequalities for the resultant 2-RDM of the DMVT(PQG)
calculations and found that two linear inequalities were violated in some
cases.

In this paper, we examine the Weinhold-Wilson (WW) inequalities
for calculating the 2-RDM by the DMVT(PQG) method. Examinations
have been done for all the systems that were calculated in the previous
studies(14; 15). Then, we propose an efficient formalism for including
these conditions as the subsidiary conditions.
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2. Theory and calculation

2.1. DEFINITIONS AND BASIC ALGORITHM

First and second order reduced density matrices (1-, 2-RDMs), v and
TI', are defined by:
7 = (Tlafa;|T) (1)

J1J2 21 712

L 1
T = 2 (Wla] 05,05 |9) )

where af and a are creation and annihilation operators, respectively.
Practical complete N-representability condition is not known for the 2-
RDM: we know only some necessary conditions. In the present DMV'T,
we use P, @, and G conditions. The P, @, and G-matrices are defined
by,

R;ll.;i = <\Il|a11a‘z!.za’j2aj1|\ll> (3)
QU2 = (U|a;, ai,al,al |T) (4)
G2 = (U]a] ai,al,a;, ) (5)

respectively. We enforce all of these matrices to be positive semidefinite.
We also use seven trivial conditions of 2-RDM, which are antisymmetric
condition, hermiticity, trace condition, number of electrons, number of
spins, and expectation values of S, and S2.

In the DMVT, we take 2-RDM as a variational variable, and mini-
mize the energy within N-representability conditions, namely,

JO—— i Iy
min I’IXI’;%) TrHT, (6)

where H is the Hamiltonian of the system, P is a set of 2-RDM
that satisfy approximate or nearly complete N-representability con-
dition. In the previous papers (14; 15), we performed two types of
calculations using the approximate N-representability conditions: the
DMVT(PQ) adopts the trivial representability conditions plus P and
@ conditions as the approximate conditions, and the DMVT(PQG) fur-
ther includes G condition. In this work, we also include the Weinhold-
Wilson inequalities, and we call the method as the DMVT(PQG+WW)
method.

2.2. WEINHOLD-WILSON INEQUALITIES

The Weinhold-Wilson inequalities which are independent from P, @,
G, and 7 trivial conditions are:
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Condition IV:

11—y =yl +2rZ >0 (7)
Condition V: ‘ .
yi—2Td >0 (8)
Condition VI:
7l —2r% — ortk 4 217 > 0 9)
Condition VII:
1~} — ) —f +2T% 4 2T + 219 > 0 (10)

Condition VIII: Positive semidefiniteness of the 2 matrix

v 20j3 203 - 2Tt m
2ris 73 2T35 -+~ 203 7

2F13 2F23 ,Y3 2F3t '73

_ '13 .23 .3 .3t .3 (11)
2ry} 2T3 2§ - ~f Af
S - S - TS A |

Note that different definition is employed for I" by factor 2. In this study,
we examined the 2-RDM by the DMVT(PQG) method with respect to
these five inequalities, and we found that two types of conditions VI and
VII were violated for some systems. Therefore, we develop the DMVT
method including these conditions.

2.3. DMVT METHOD INCLUDING WEINHOLD-WILSON INEQUALITIES

Since all the Weinhold-Wilson inequalities are linear conditions, it is
possible to include all of these inequalities in the SDP formalism si-
multaneously. However, the number of conditions becomes large since
it scales as N3, and therefore we enforce the inequalities only for those
molecules for which the WW inequalities were violated in the pre-
ceding DMVT(PQG) calculation. Then, the algorithm of the DMVT
(PQG+WW) is as follows:

1. Standard DMVT(PQG) is executed.
2. Weinhold-Wilson inequalities of type IV~ VIII are examined.

3. DMVT(PQG+WW) is performed with additional WW conditions
if some of the WW inequalities are violated.
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The procedure of 2 and 3 is repeated until all the inequalities are
satisfied. Note that the inequality holds after it is included in the
condition. Actually, this iteration is necessary only for one or two times.
As noted in section 2.2., the conditions VI and VII were violated for
the resultant 2-RDM calculated by the DMVT(PQG), and therefore
we developed the method of including only these two WW conditions.
In the DMVT method using SDPA, the conditions should be reduced
to the standard form and we introduce two types of constraint matrices
C’:ﬁc and CZE In the following, we employ the same notations as those
in the previous paper(14). In the DMVT(PQG+WW) calculations, we
extend the variable matrix Y given by Eq. (3.25) of Ref.(14) as Y,

P OO O 0

0QO0 O 0 Y o 0
Y=/ 00G 0 0 =] 0o wV' o (12)

000wVl o o0 0 wVvl

000 0 wVvl

where WV, and WV are the diagonal matrices and their diago-
nal elements are given in the right hand sides of Egs.(9) and (10),
respectively.

We define the constraint matrix C}ﬁc by

— 5208 6% 6P2 + 26% 63 6% &7 + 26% ok 6t ok

P17q17q2 P17pP27917q2 P1-p2°-q1 G2
- 25317)1 6:52551 61162’
VI
(Cijk)pi,paarge = for 1 < p1,p2,q1,92 < 3n,
1 for 3n+1 < P1,P2,q1,92 < 3n+nVIa
0 otherwise
(13)
and C;J{,ICI by
9 A o ok
N-1 (51171 51111 5111]22 + 531771 6?11 6522 + 5171 5!11 65){ )
Pr a1 a2 | g -
VII . - 26;11 6{?2 6311 5{12 + 26{)1 5102 5¢]11 642’
( ijk Jp1.p2.a1,02 = for 1 < p1,p2,q1,92 < 3n,
1 for 37’L+’TLVI+1 S D1,P2,491,492 S 3n+nVI _mVH,
0 otherwise,
(14)
where nV1 and nVI! are the numbers of the Weinhold-Wilson inequal-

ity conditions, which were not satisfied in the previous iteration. The
constants for constraints CV! and CVI! are all 0 and 1, respectively.
Then, these constraints work as

2 o

VI

Cijk oY = Z (—N _ 15;)15211 5522 + 2612716%26:116{12
pP1p2q1q92
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+28% 6% o1 ok — 28] ok 67 sk yymme 4 (WY,

P17p274q17q2 P17P27491 792/ Q192
2 ) . ) ki
= - N—_—Trg; + 2T + 20 — 2037 + (W)
p2

= —ni + 207 + 20 — 2T + (W)
=0 (15)

and

cilley' = ¥ (—]\72_—1 (85, 05,052 + 83, 83, 802 + 6%, &%, 002

P17q17q2 P174917q2 P17917q2
P1pP29192

— 28 &1 8t 51 _ 28t sk 5i gk

P17pP27q917q2 P17pP2791 792
- 261{1 552521 5”;2)}/;51}1;2 + (an)ijk
= Y+ +af - 20 — 2Tl - 2T + (WY,
=L (16)

since (W V1), and (WYL, are
‘ g . ”
(WY = 4 — 20¥ — 21k + 213k
WYk = 1=} =] —ak+ 2T + 2Tk +200p. (17)

We further antisymmetrize the indices i; < i3 and j; < ja, hermitize
the indices (i1,72) < (j1,72) to be suitable for the SDPA formalism,
and pack the elements to remove unnecessary variables.

The resultant SDP formalism of the DMVT(PQG+WW) method is
now given by,

( Minimize HeY'
subjected to F;e¢Y' = ¢;
~ 7/11’2 ’ _ . . . .
Ej1j2 oY = 5;16.17'2 B 6;2%? (18)

J]\ll-F [ Y = 0,
C%_}k L4 YI = O,
Clj%:[ [ ] Y, - ]..

\

where the matrices of F;, E, and J are defined in ref.(14).

3. Results

First we examined the Weinhold-Wilson inequalities for the 2-RDM
obtained by the DMVT(PQG) calculations. We calculated the vari-
ous electronic states of molecules, which were studied in the previous
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works(14; 15). For N3, CO, BH3 and HyO, the examinations were
performed at both the equilibrium geometry and dissociation limit.
In table I, we presented the results of the number of the violated
conditions whose absolute errors were lager than 1 x 107> together
with the DMVT(PQG) and full-CI energies. The violation occurred for
the conditions VI and VII in some cases, while the conditions IV and
V and VIII held for all the electronic states. For all the other atoms
and molecules which were calculated in the previous paper and were
not included in table I, all of these inequalities were correctly held. As
seen in table I, when the DMVT(PQG) calculations are less accurate,
the violation of the inequalities becomes large: the number of violations
are large for BH3, CH2(*A;), C2 and CHy.

We also calculated the artificially correlation enhanced system, in-
troduced in the previous study(15): namely, the Hamiltonian is parti-
tioned into F', Fock operator and the rest, V as:

H=F+)V, (19)

where ) is a real parameter that controls the strength of the elec-
tron correlation. Using this Hamiltonian, the DMVT(PQG) calcula-
tions were performed for HoO and the results for some A were summa-
rized in table II. The violations have occurred for the condition VI and
they were large for A = 1.5. Note that no violation has occurred for
large .

We examined the violations in details for C, CH2(*A;) and CH, and
artificially correlation enhanced system with A = 1.5 of H2O. In tables
III~ VI, we listed the violations with the indices and values, whose
absolute value is larger than 1 x 1072 for Cy, CHy and H30 at the
equilibrium geometry. As seen in table III, large violations occurred for
both conditions VI and VII for Cs: the largest values were in the order
of 1 x 1072, The violations mainly occurred for the valence orbitals,
which are po, pm and pn* orbitals, except for some violations with
respect to the 1s orbital for condition VI. The violation of conditions
VI and VII was also found for the 1A state of CHs. In this case, the
violation occurred for the variable for the valence orbitals and not for
the 1s core orbitals. In the case of CHy, the order of the violations was
smaller and the absolute errors were within 2.1 x 10~2 as shown in table
V. In this case, the violations were also found for the 1s orbital of C.
For HoO with artificially correlation enhanced Hamiltonian of A = 1.5,
the violations occur only for the condition VI. The errors are calculated
to be very small: the order is 1 x 1074, As shown in these examples,
the absolute values of the violations are related to the accuracy of the
DMVT(PQG), which indicates that these conditions may be effective
as the necessary conditions for the DMVT method.
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We performed, therefore, the DMVT(PQG+WW) calculations in-
cluding these two WW conditions. The results were presented in table
VII. The largest improvement was obtained for Cs as expected, but
it was not so drastic as 7.2 x 10™* au in total energy. The deviation
from the full-CI value is still large. For other systems, CHy(1A;), CHy4
and HyO, the effect of these conditions was not so prominent and the
improved energies were 1.7 x 1074, 9.0 x 107 and 1.0 x 10~ au, re-
spectively. These N-representability conditions actually improved the
results, however, did not effectively work at least in the combination
with the DMVT(PQG) calculation.

4. Conclusion

We examined the Weinhold-Wilson inequalities for the 2-RDM de-
termined by the DMVT(PQG) method. The violations of the con-
ditions VI and VII were found for some electronic states of several
molecules, though they were not so large; the largest error was in
the order of 1 x 1072, We therefore developed the formalism of the
DMVT including these inequalities for the SDPA, which is denoted as
DMVT(PQG+WW). These conditions certainly improved the results,
however, they were not so drastic; the largest improvement was in the

order of mhartree. These conditions were not so effective at least for
the DMVT method including P, Q and G conditions.
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Table I. Number of violated Weinhold-Wilson inequalities for the 2-RDM
determined by DMVT(PQG), whose absolute errors are larger than 1 x 1072,

System State Violation DMVT(PQG) FullCI

BH; ® 'A; VL 12, VIL 12 -26.3926(120)  -26.3822(100)
BH; ° 'A; VI 14, VI 6 -25.8678(103)  -25.8482(100)
Cp @ 'S VI 16, VIL: 32 -75.4793(117)  -75.4340(100)
Cp® ) VIIL: 4 -75.2187(105)  -75.1855(100)
co “ ) No -112.4544(108)  -112.4426(100)
co? ) VI 12 -112.1156(102)  -112.1096(100)
N, @ o VI: 4 -108.7123(108)  -108.7002(100)
Np ® 'ad No -108.4982(100)  -108.4982(100)
H,0 ° 'A; VI: 6 -75.7310(104)  -75.7290(100)
H,O°® 1A, No -75.4589(100)  -75.4589(100)
BH, 2A1 VIL: 6 -25.7089(115)  -25.7032(100)
CH* Iyt VI: 8 -37.8896(107)  -37.8853(100)
CH™ 3y~ VIL: 2 -37.9714(99)  -37.9718(100)
CH i VI: 2 -38.1916(111)  -38.1871(100)
CH, A1 VL 14, VIL: 17  -38.8228(119)  -38.8110(100)
CH, B;  VL: 2, VIL 4  -38.8556(107)  -38.8534(100)
CHa(linear) 3Ly  VI: 10, VII: 8  -38.8358(103)  -38.8342(100)
FH 1A, VI: 8 -99.8305(103)  -99.8294(100)
H,Ot A VI: 5 -75.4218(106)  -75.4192(100)
NH, A1 VI:4, VIL8  -55.3570(111)  -55.3525(100)
NH, By VL:1,VIL3  -55.4195(108)  -55.4157(100)
CH4 'A; VI 30, VIL:24  -40.2030(124)  -40.1905(100)

@ At equilibrium geometry

b At dissociation limit

Table II. Number of violated Weinhold-Wilson inequali-
ties for the 2-RDM of H20O determined by DMVT(PQG),
whose absolute errors are larger than 1 x 1075,

A Violation DMVT(PQG) FullCI
0.5 VI: 8 -56.5158(102)  -56.5155(100)
1.0 VI. 6 -75.7310(104)  -75.7290(100)
L5 VI:8  -95.0064(106) -94.9978(100)
A> 1.5 No - -
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Table VI. Violation of condition VI for H2O with various A

A =0.50
(3,7, k) violation (3,7,k) violation
(5,4,5) —1.05x107° (5,4,5) —9.78 x 107"
(5,5,7) —6.82x107° (5,5,7) —6.43x107°
(5,2,5) —4.94x10°° (5,2,5) —4.79 x 1075
(5,5,6) —4.47 x10°° (5,5,6) —4.12x107°
A= 1.00
(¢, 5, k) violation (3,5,k) violation
(5,4,5) —7.52x107° (5,4,5) —7.46 x 107°
(5,2,5) —4.25x107° (5,2,5) —4.15x107°
(5,5,6) —3.40 x 107° (5,5,6) —2.53x10°°
A= 150
2,7, violation 1 violation
(4,5, k) iolati (4,3, k) iolati
(5,2,5) —3.69 x 107* (5,2,5) —3.68 x 107*
(5,3,5) —3.00x107* (5,3,5) —2.99 x 107*
(5,4,5) —1.83x107* (5,4,5) —1.81x107*
(5,5,6) —5.63x 107° (5,5,6) —5.44x107°
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