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Free Complement Method for Solving
the Schrodinger Equation: How Accurately
Can We Solve the Schrodinger Equation

H. Nakatsuji and H. Nakashima

Abstract Free complement (FC) method provides a general and systematic method
of solving the Schrodinger equation. In this method, the Hamiltonian of the system
modified for the singularity of the potential is used to generate the FC functions that
span the exact wave function of the system. Thus, by applying the variation principle
to the sum of the complement functions, which we call FC wave function, we can
calculate the essentially exact wave function and energy for the ground and excited
states of the system. We here show that the Schrodinger equation can be solved to
an arbitrary accuracy with the FC method by examining the upper and lower bounds
of the energy, local energy, H-square error, cusp condition, and so on, for the helium
atom.

Keywords: Solving the Schrodinger equation - Free complement method -
Cusp condition - Upper and lower bounds

1 Introduction

~ This chapter summarizes briefly the lecture of Nakatsuji given on July 10, 2008, at

the QSCP-13 workshop at Lansing organized by Prof. Piotr Piecuch of the Michigan
State University. Let us first celebrate our exciting memories of this workshop for
its high-quality science and good performance, and nice organization, all of which
were due to the careful coordination and organization of the workshop by Profs.
P. Piecuch and J. Maruani. So, let us first deeply thank Profs. Piotr Piecuch and Jean
Maruani for all of this. .

The Schrodinger equation has long been believed to be insoluble for over 80
years, since it was discovered by Prof. Erwin Schrodinger in 1926 [1], though it
was believed to govern all of chemistry and most of physics [2]. For this reason, all
we could have done in quantum science was to formulate “approximate” theories
to “understand” or “interpret” the main features of chemical phenomena [2]. Thus,
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48 H. Nakatsuji and H. Nakashima

quantum chemistry has long been characterized as an approximate science that can
never predict phenomena in full accuracy. However, recently, we have found simple,
general, and accurate methods of solving the Schrodinger equation [3-13]. We
referred to them 4s iterative complement (configuration) interaction (ICI) method
[3, 4] and the free ICI [6] or free complement (FC) method [12], the latter two being
the same.

The FC method is completely different from the conventional quantum chem-
istry. In the state-of-the-art quantum chemistry, one first defines Hartree—Fock
orbitals based on the initially chosen basis set and then expands many-electron
correlated wave functions by means of the Hartree-Fock orbitals. In this approach,
any theory lies between the Hartree—Fock and the full CI and so, the full C1 is a goal
of this type of the theory. However, the full CI cannot be the exact solution of the
Schrodinger equation because of the incompleteness of the basis set first introduced.
When we use numerical Hartree—Fock that is free from the basis set, the full CI
becomes infinite expansion that cannot be handled in principle.

Explicitly correlated wave function theory [14] is another important approach
in quantum chemistry. One introduces inter-electron distances together with the
nuclear—electron distances and set up some presumably accurate wave function and
applies the variation principle. The Hylleraas wave function reported in 1929 [15]
was the first of this theory and gave accurate results for the helium atom. Many
important studies have been published since then even when we limit ourselves to
the helium atom [16-28]. They clarified the natures and important aspects of very
accurate wave functions. However, the explicitly correlated wave function theory
has not been very popularly used in the studies of chemical problems in comparison
with the Hartree-Fock and electron correlation approach. One reason was that it was
generally difficult to formulate very accurate wave functions of general molecules
with intuitions alone and another reason was that this approach was rather compu-
tationally demanding.

Thus, quantum chemistry has long been a science mainly for understanding and
interpretation. It was difficult for quantum chemists to become truly confident on
the calculated results. One reason was the approximate nature of the theory and
another reason was an incompleteness of the basis set. For example, many people
might have experienced the feeling of “maybe, my basis set was not good enough.”
In the author’s opinion, quantitative reliability is a key of the theory. Otherwise,
one cannot do “confident prediction.” For getting truly quantitative reliability in
theoretical quantum science, there is no other way than solving the Schrodinger
equation and the Dirac-Coulomb equation accurately.

2 Free Complement Method

In 1999, one of the authors got an inspiration that the Schrodinger equation might
be able to be solved. He clarified the structure of the exact wave function and
showed a method of obtaining the exact wave function by introducing the ICI
method and its variants [3, 4]. However, there still existed a big obstacle, called
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Free Complement Method for Solving the Schrodinger Equation 49

singularity problem [6]. Namely, the integrals involved in the formulation diverge to
infinity when the Hamiltonian involves Coulomb potential, as it does for atoms and
molecules. Howcver a simple idea came. Instead of solving the original Schrodinger
equation,

(H-E)yy =0, . (N
one may solve an equivalent equation, called scaled Schrodinger equation [6].
g(H - E)Y =0. 2

The factor g is called scaling function. It is always positive but can become zero
only at the singular points. Even there, the g function must satisfy

lin(x)gH # 0 < o0, 3)

for not to erase the information of the Hamiltonian at the singular regions. Then,
we can formulate the simplest ICI (SICI) method based on the scaled Schrodinger
equation as

V1 = [1 + Cog(H — Ep)] Y, 4

where E, is defined by (Y| g(H — E,)|¢¥,) = 0. This SICI was also proved to
become exact at convergence, and for the existence of the g-function, we do not
encounter the singularity problem in the course of the iterative calculations.

When we do the SICI calculations to n-th iteration, the right-hand side of Eq. (4)
becomes a sum of the analytical functions multiplied with the coefficients C;. Now,
we reformulate it as follows. We take all the independent analytical functions from
there and group them as {¢; }, which we refer to as complement functions, and using
them, we expand again our wave function as

Mn
Vi) = ) Cidhi. = (5)

We referred to this wave function as the free ICI wave function. It converges faster
to the exact wave function than the original SICI one, because of the increased
freedom. In the SICI scheme, the (n + 1)-th result, ¥,,.1, depends on all the former
results, ¥,, and C,(m = 0...n), but in the free ICI method, all the coefficients
c; are reoptimized at each n, and therefore, this method is not an iterative method.
Then, the naming, the free ICI method may be confusing. So, hereafter we use

the new name “free complement (FC)” method instead of the free ICI method. We

refer to n of the FC method as an order, instead of an iteration number. Thus, the
FC method gives a general method of solving the SE in an analytical expansion
form. ’ . ,

The FC formalism for the exact wave function may be summarized as follows.
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- and the expansion order n. We show here that, in principle, we can get the solution

“of the exactness of the wave functions [12, 13]. We have further studied the effect of
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1. The Hamiltonian defines the system. ,
2. The Hamiltonian paves the way toward its exact wave functions in the analytical

expansion form starting from a given initial function Yo: Eq. (4) in the SICI case
or Eq. (5) in the FC formalism.

3. This formalism is applicable for any system when its Hamiltonian is defined
unambiguously.

4. We have no basis set nightmare: the complement functions, which may corre-
spond to the basis set, are generated by the Hamiltonian of the system and so
should be a best possible functions for the system.

A general method for calculating the unknown coefficients in the FC wave func-
tion given by Eq. (5) is the variation principle. Applying the variation principle to
the FC wave function, we obtain the secular equation

(H-ES)C =0, (6)

where the Hamiltonian and overlap matrices are defined by

H=|. [¢:Hpjdr |.5 = Jeddr. | M

For simple few-electron atoms and molecules, these matrix elements are easily
calculated. We apply here our FC formalism only to such systems. Then, starting
from the initial wave function v, and using some appropriate scaling function 8,
we can calculate the solution of the Schrédinger equation in an analytical expansion
form. The accuracy of the calculated results would depend on the choices of v, g,

of the Schrodinger equation to any desired accuracy in this formalism.

3 Super-Accurate FC Calculation of Helium Atom

Helium atom is the simplest case for which the Schrodinger equation cannot be
solved in a closed form. There have been many attempts to solve the Schrodinger
equation of the helium atom accurately, starting from the famous study by Hylleraas
[15-28]. These studies have produced a lot of important insights about the nature
of the accurate wave functions of atoms and molecules. We applied the FC method
described above to the helium atom immediately after this method was discovered
[6]. It gave a strong support that the FC method was correct and useful. We have
given more extended accurate calculations [9, 10] and examined the accuracy of the
calculated wave functions by studying several properties that are the stringent test

nuclear motion [29] and the excited states with and without considering the effect
of nuclear motion [30]. ‘ '
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Here we overview our applications to the helium atom ground state. In the Hyller-
aas coordinate defined by

: s=r+r, t=rn-nrn, u=ry, (8)
the Hamiltonian in the fixed nucleus approximation is given by

H— ( o & a2m> st 3t i(s® —u?) @
T o\as? a2 dur)  Tu(s?—1?)3sduu(s? —12) dudt’
4 3 20 4 0 4sZ 1

9)

s2—129s wudu s2—129r sT—12 u

)

where the last two terms represent the nuclear—electron attraction potential (Z is
nuclear charge) and the electron—electron repulsion potential. The other terms orig-
inate from the kinetic operator. Using these potentials, we chose the g-function as

1 1

= — 10
g VNe M Vee ( )

Tﬁe initial function ¥y was chosen as
Yo = [1 + In(s + u)] exp(—as), an

where the exponent o was dealt with as a variation parameter. The logarithmic
dependence on s and u was introduced to describe well the three-particle coales-
cence region [16, 18, 20). Then, the FC calculations are automatic and its wave
function is guaranteed to become essentially exact at convergence. The FC wave
function in this case is written as

¥ =Y cs"t™um [In(s + )} exp(-as), (12)

where /; runs both positive and negative [9, 19] integers, {m;, n; } run non-negative
integers (m; is even integers) and j; is O or 1.

Table 1 shows the convergence of the variational energy [9]. The bold face
implies that the figure is confidently reliable. A landmark calculation of the helium
atom with the explicitly correlated wave function approach was done by Schwartz

- [28], who obtained the energy correct to 37 digits by applying the variation principle

to his intuitively generated trial wave function. This was a surprising result. In the
FC method, all we have to do is to fix ¥ and g function. Then, the FC formalism
automatically generates a series of analytical functions in the form of Eq. (5). It is
generated by the successive applications of the Hamiltonian and the g-function of
the system to the starting wave function ¥, as expressed by Eq. (4). So, no severe
intuition is necessary. Because this FC algorithm is automatic, we could continue
the calculations up to the order n of 27 and obtained the energy correct to 41 digits.

i
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Table 1 Ground-state energies of the helium atom calculated with the g function given by Eq. (10)
and the initial function y given by Eq. (11)?

[J

n M?  Optimala Energy (a.u.)
0 2 1.827 —-2.865370819026 71
1 10 1.475 ~2.903 536 812 281 53
. 2 34 1.627 —2.903 724 007 321 45
;‘E 3 77 1.679 ~2.903724 375094 16
i 4 146 1.683 —2.903 724 377 022 34
& 5 247 1.679 —2.903 724 377 034 05
: 6 386 1.693  —2.903724 377034 119011 25
® 7 569  1.704 —2.903 724 377 034 119 592 84
= 8 802 1.707 ~2.903 724 377 034 119 598 24
, 9 1091  1.713 —2.903 724 377 034 119 598 309 973 48
10 1442 1.724 —~2.903 724 377 034 119 598 311 136 32
1 ) 11 1861 1.738 —2.903 724 377 034 119 598 311 158 76
; 12 . 2354 1757 —2.903 724 377 034 119 598 311 159 23
: 13 2927  1.779 —2.903 724 377 034 119 598 311 159 244 938 53
; 14 3586 1.806 —2.903 724 377 034 119 598 311 159 245 187 71
ho 15 4337 1.837 ~2.903 724 377 034 119 598 311 159 245 194 18
- 16 5186 1.866 —2.903 724 377 034 119 598 311 159 245 194 39
= 17 6139 1.899 —~2.903 724 377 034 119 598 311 159 245 194 403 526 60
;‘ 18 7202 (1.93) —2.903 724 377 034 119 598 311 159 245 194 404 346 36
1 19 8381 (1.96) —2.903 724 377 034 119 598 311 159 245 194 404 433 80
1 20 9682 (1.99) —2.903 724 377 034 119 598 311 159 245 194 404 444 33
™ 21 11111 (2.02) ~2.903 724 377 034 119 598 311 159 245 194 404 446 40
| 22 12674 (2.05) —2.903 724 377 034 119 598 311 159 245 194 404 446 646 839 61
- 23 14377 (2.08) —2.903 724 377 034 119 598 311 159 245 194 404 446 687 685 92
: 24 16226 (2.11) =2.903 724 377 034 119 598 311 159 245 194 404 446 695 101 79
. 25 18227 (2.14) —2.903 724 377 034 119 598 311 159 245 194 404 446 696 542 44
i 26 20386 (2.17) =2.903 724 377 034 119 598 311 159 245 194 404 446 696 840 21
3 27 22709 (2.20) —2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37
=
a Ref. 28 10259 —~2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
4 2 Order of the FC wave function.
k| ® Number of complement functions at order n.
n ¢ Surely correct digit is shown by the bold face.

R

The 37-digit accuracy was attained at order 20. There, the number of the comple-
ment analytical functions was 9682, which is a bit smaller than 10,256, the number
of the analytical functions used by Schwartz. »

More recently, we have found that the exponential integral (Ei) function describes
the three-particle coalescence region better than the logarithmic function [10]. So,
starting with the Ei function, we could obtain a better energy at the order n = 27
with smaller number of variables; the energy was correct up to 43 digits.

We have applied the same method as above to the helium iso-electronic ions
with Z from 1 to 10. The resultant FC wave functions had exactly the same form as
Eq. (12) with only one difference in the exponents o. We performed the calculations
up to the order 20 and obtained the lowest variational energies ever obtained [9].
The calculations consisted of three steps: (1) complement function generation step
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Free Complement Method for Solving the Schrodinger Equation 53

using MAPLE [31], (2) integral evaluation step, (3) dlagonallzauon step in arbitrary
accuracy. It took about 3 hours for the step (1), 2 days for the step (2), and 1.5 days
for the step (3) with a single Intel(R) Core2 Duo 2. SGHZ workstatlon We used
MAPLE also in the second step, which means that this step can be substantially
accelerated. Anyway, roughly 4 days were enough to get the world best energies
and the analytical wave functions of the helium iso-electronic ions.

4 Properties Suitable for Checking the Exactness
of the Calculated Wave Functions

To verify the exactness of the calculated results, the calculated energy alone is
insufficient. We examine here several quantities that offer stringent test about the
exactness of the calculated energy and wave function. Most of the properties shown
here are useful only for the wave functions near the exact limit, otherwise, they show
quite arbitrary numbers.

The Schrddinger equation is a local equation that must be satisfied at any local

- coordinate r. It is written as

(13)

where ¥ (r) is the wave function at a coordinate, r. The left-hand side of Eq. (13) is
called local energy, E.(r), as

Hy(r)
y(r)

If ¥ is not an exact wave function, then E,(r) may depend on r. If E.(r) is a
constant at any point r, then Eq. (14) becomes Eq. (13), which is the Schrodinger
equation. Therefore, the constancy of the local energy over the coordinate r is a
straightforward test of how well the wave function ¥ satisfies the Schrodinger equa-
tion.

In the formulation of the structure of the exact wave function, we introduced the
H-square equation [3, 4],

Ei(r)= (14)

(YI(H-E}|y)=0 (15)

as the equation that is equivalent to the Schrodinger equation. When we define the
left-hand side of Eq. (15) as

o = (Y| (H — E)’ |y) (16)

for the normalized wave function and call it as H-square error, it is also the quantity
that is very sensible to the exactness of the calculated wave function, because it is

.
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an integral sum of the positive quantities over all the coordinates. o2 = 0 means
that the corresponding wave function is exact. The H-square error is also related to
the local energy by

o* = (E}),. = (EL)ye. an

where (Q)y: represents the expectation value of Q over the weight function |y|2.
Thus, o2 is the variance of the local energy weighted by |¢/|2.

When we use the variation principle, the calculated energy is an upper bound
to the exact energy, but as far as we do not know the exact energy, we cannot say
how close the calculated energy is to the exact energy. A good theoretical way is to
calculate the lower bound to the exact energy at the same time. If we can calculate
both upper and lower bounds to the exact energy in high accuracy, we can predict
the energy of the system with the error bars. The utility of such method lies entirely
in the smallness of the error bars. As far as we use the variation principle, the upper
bound of the exact energy is calculated twice more accurately than the accuracy of
the wave function itself.

= For the lower energy bound, Weinstein formulated the following expression [32],

EV .= (IHIy) - Vo2 (18)

The Weinstein’s lower bound is calculated for any state when its o2 and energy
expectation value are known. However, a problem of this method is that the quality
(accuracy) of this lower bound is not good enough: it is usually too low to be useful.
Another method was proposed by Temple [33] for the ground state as

0.2

E\—(yIHIy)’

ET e = (WIHY) - (19)

which requires the energy expectation value, 02 and, furthermore, the exact energy
E, of the first excited state having the same symmeitry as the ground state. In
general, the exact energy E; is not known and so we have to modify Eq. (19).
If one replaces E, with its lower bound energy, then one obtains the energy that
is lower than the Temple’s lower bound energy given by Eq. (19). We used the
Weinstein’s formula, Eq. (18), for calculating the lower bound to the first excited

state, EY = (y| H [¥) — /o, where ¥, and o} are the quantities for the first
excited state. Then, E, > EY. When this further satisfies E) > (y| H |¥), then

we can define the modified Temple’s lower bound energy by

2
, e
ET . =(y|HI¥)— , (20)
lowe EV — (y| H |y)
which satisfies
Eexal‘f ->- El7¢-)wer —>- EIZ;VE’" (21)
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The modified Temple’s lower bound energy can be calculated only with the
available theoretical quantities. Combining Eq. (21) with the result of the variation
calculation, Epp,r, We Obtain

T
Eupper 2 Eexact b El(nuer' (22)

When we calculate both the upper and lower bound of Eq. (22), we can say that the
exact energy should lie in a definite region of the energy.

The cusp values of the wave function are also the necessary conditions of the
exact wave function. Kato [34] rigorously derived the cusp conditions for many-
electron systems as

8y

= Ay (r =0), (23)
or

r=0

where ¥ represents the spherically averaged wave function around the inter-particle
coalescence region, r = 0. The value A should be ~Z (nuclear charge) for the
electron—nucleus coalescence and 1/2 for the electron—electron singlet-pair coales-
cence. We examine here the cusp values for the helium atom. The electron—nucleus
and electron—electron cusp values for the helium wave function Y are expressed,
similarly to Eq. (23), as
1 ay '
Cusp(r') = =0 o R (24)

where r = |r, — r3| [13]. The difference from Eq. (23) is that the cusp value of
Eq. (23) depends on the other coordinate r' = r3 — r, [35). Without any spher:-
cal average, if the particles 1 and 2 approach each other perpendxcularly tor,ie.,
r ' = 0, then the cusp value still depends on the distance r’ (Cusp(r’)), but at any

, it should be —Z for the electron—nucleus case and 1/2 for the electron—electron
smglet-palr coalescence case.

5 Exactnéss Check of the Calculated Wave Functions

We examine the exactness of the helium wave function calculated by the FC method
by calculating the quantities summarized in the above section.

Figure 1 shows the plots of the local energy at different orders up to n = 27
{12]. The helium nucleus is at the origin, one electron is located at z = 0.5 a.u. on
the z-axis and the other electron moves along the z-axis from z = —1.0 to +1.0,
experiencing the nuclear singularity at the origin and the electron singularity at 7 =
0.5. The vertical axis shows the relative value of the local energy, Ey, which is
scaled by the factor, &, shown on the top of the vertical axis of each graph. Therefore,
the local energy at each point, E, is calculated from the energy, E, shown on each
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Fig. 1 Local energy plots of the FC wave functions for the orders n from 5 to 27. The arrows
and circles in the left-hand figures show the digits of the total energy, in which the local energy is
shown on the vertical axis changes

graph and the value of E y from E; = E+¢Ey. Atthe ordern = 5, the local energy
oscillates near the nucleus and another electron in the order of 10~3 a.u. However,

‘at n = 6, the local energy becomes almost constant, except for the regions very

close to the singularities. At n = 9 and n = 12, the local energy appears to be
constant in the scale of 10~ a.u. However, when we use a microscope and enlarge
the figure by a scale of 10°, we again see the fluctuations near the nuclear and
electron singularities. Again, as we increase the order n from 12 to 15, 18, and 21,

these fluctuations disappear and the local energy becomes completely flat. The same
is true again in the last three figures in a finer scale.

In Fig. 2, we showed a very fine-detailed behavior of the local energy near the
nuclear singularity and the electron singularity. Though there are fluctuations there,
their half widths are very narrow, of the order of 1075 a.u. and the heights of 0.5 —
1 x 10716 a.u. In all other regions of the space, the local energy is highly constant.

We next show in Table 2 the H-square error g2 and the energy lower bound
calculated by the modified Temple equation. As the order n of the FC wave function
increases, the H-square error gradually decreases and converges towards zero, the
exact value. It is as small as 1.29 x 10732 at n = 27. When the H-square error
becomes zero, it means that the wave function becomes exact. So, this table means
that, as the order n increases, the FC wave function approaches the exact wave
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(x 10-15) (X 103 )
0.0 : : 0.0 : ‘
Electron-Nucleus Electron-Electron
-2 £ ~ 02 | .
3 3
L : L .
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u 06 |— 12 A Y L
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! ‘ !
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0.0 - 1/2000 0.0 0.0 + 1/2000 0.5 - 1/2000 0.5 0.5 +1/2000
z(a.u.) z(a.u.)

Fig. 2 Local energy‘plots atn = 27 (M, = 22709) around the regions very close to the electron—
nucleus (z = 0) and electron—electron (z = 0.5) singularities, where the local energy singularities
are within 1.0 x 10~'® and 5.0 x 10~'7 a.u., respectively, for an interval of 1/100000 a.u.

Table 2 Convergence of the H—square‘ error, o2, and the modified Temple’s energy lower bound
with increasing order n of the FC wave function

“Order,n M3 H-square error, 02 Energy lower bound®
5 247 2934869 x 10-°  —2.903 724 38097
6 386  4.782529 x 10710 —2.903 724 377 674
9 1091 1.095586 x 1075 —2.903 724 377 034 121 066
12 2354  5.007353 x 1072'  —2.903 724 377 034 119 598 317 869
15 4337 1.835489 x 1072 —2.903 724 377 034 119 598 311 161 704
18 7202 5372350 x 10727 —2.903 724 377 034 119 598 311 159 252 393
21 11111 4.000913 x 1072 —2.903 724 377 034 119 598 311 159 245 248
24 16226 5.665577 x 10~3'  —2.903 724 377 034 119 598 311 159 245 195 163
27 22709  1.293955 x 10~32  —2.903 724 377 034 119 598 311 159 245 194 421 785

2 Number of the complement functions for order n. '
b Correct figure is expressed in bold face.

function, as shown clearly by the theoretical formulation [3, 4, 6]. This table con-
firms this numerically and further shows that the convergence speed is good.

~As the order n of the FC wave function increases, the accuracy of the energy
lower bound also increases. It approaches the exact value from below. This is in

~ contrast to the variational energy shown in Table 1, which approaches the exact

value from above. Using these lower and upper bounds to the exact energy, we can
confidently predict that the exact energy should lie between the two bound energies,
that is, :

—2.903 724 377 034 119 598 311 159 245 194 421 785 < Eexact <
—2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37, (25)

where the bold-face digits show that this number is confidently correct. Thus, we can
predict in confidence that the exact non-relativistic energy of the helium atom in the
fixed nucleus approximation is —2.903 724 377 034 119 598 311 1592451944 a.u.,
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which is correct to 32 digits. From the experience of the variational calculations, we
can estimate the correct digits of the exact energy in higher accuracy, as shown in
the upper bound of the exact energy shown in the above formula (25). Though we
are confident about the correctness of the bold-face digits, the most a priori estimate
of the exact energy is due to the accurate calculations of both of the upper and lower
bounds of the exact energy, as shown in the above formula (25).

Finally, we examine the cusp values for the helium atom. Table 3 shows the
nuclear-electron and electron—electron cusp values at the distance r’ = 1.0 a.u,,
which was explained below Eq. (24). Both nuclear-¢lectron and electron—electron
cusp values approach the exact values of —2.0 and 0.5, respectively, as the order n
of the FC calculation increases. At n = 27, the cusp values are correct to 22 digits,
which is about a half of the correct digits of the variational energy, 41 digits, given
in Table 1. This result is natural from a theoretical point of view.

Table 3 Electron-nucleus and electron—electron cusp values of the FC wave functions of helium

atom?

Cusp(y; “(r', 6’ = 1/2) (a.v.)

Cuspy, (r', 8’ = 7/2) (a.u.)

Order, n MP r'=1.0 r'=1.0

0" 2 ~1.71469176186748896865309 0.1123082381325110311346903
1 10 —2.037695302738053451073425  0.5388261133165970364082007
2 34 —2.002504052234478500223599 0.4931913843555658894128673
3 77 —2.000095337681210167679009  0.4993133049214858311939703
4 146 —~1.999960751001985481002999  0.4999264052122836846890241
5 247 ~2.000004034901946326124536  0.4999888812723545347905886
6 - 386 —2.000000252006472327502965  0.4999993481518041394710234
7 569 ~1.999999990139523025500075  0.4999998678901444684668622
8 802 —2.000000001732245168503244  0.4999999843747191143208148
9 1091 —1.999999999954741231937599 0.4999999991854449195682342
10 1442 ~2.000000000028992139510927  0.4999999999520485964408054
1t 1861 —1.999999999994506214502899  0.4999999999968561359042406
12 2354 —2.000000000000770317391674  0.5000000000000789589242552
13 2927 —1.999999999999918885202492  0.5000000000000750757147237
14 3586 —2.000000000000007641057691  0.5000000000000128229900478
15 4337 —1.999999999999998856501484  0.5000000000000008582572593
16 5186 —2.000000000000000172175707  0.4999999999999999293406817
17 6139 —1.999999999999999968175846  0.4999999999999999740766894
18 7202 —2.000000000000000006492680  0.4999999999999999957258457
19 8381 —1.999999999999999998818275  0.4999999999999999996645368
20 9682 —2.000000000000000000112782  0.50000000000000000001 24903
21 11111 —1.999999999999999999973697 - 0.4999999999999999999850833
22 12674  —2.000000000000000000016585  0.5000000000000000000087634
23 14377  —1.999999999999999999997746  0.4999999999999999999989519
24 16226  —1.999999999999999999998202  0.4999999999999999999995815
25 18227  —2.000000000000000000000911  0.5000000000000000000005676
26 20386  —1.999999999999999999999660 - 0.4999999999999999999997157
27 22709  —2.000000000000000000000175  0.500000000000000000000069 1
Exact -2.0 05

? Correct figure is expressed in bold face.
b Number of the complement functions at order n.
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Free Complement Method for Solving the Schrodinger Equation

6 Concluding Remarks

We have shown here that the FC method for solving the Schrédinger equation gives
a series of analytical complement functions that span the exact wave function. By
increasing the number of the complement functions with increasing the order n,
one can calculate the solutions of the Schrodinger equation as accurately as one
desires. This was shown for the helium atom as an example. Not only the variational
energy, which is an upper bound of the exact energy, but also the other properties
like local energy, H-square error, lower energy bound, and nuclear—electron and
electron—electron cusp values all approached the exact values as the order n of the
FC method increased. Theoretically, the variational energy is always more accurate
than the wave function itself and other properties. The present results constitute
a numerical proof that with the FC method one can calculate the solution of the
Schrodinger equation as accurately as one desires. " '

We could not show here the results of solving the relativistic Dirac—Coulomb
equation. The FC method can be extended to the case of the Dirac-Coulomb equa-
tion with only a small modification {36). It is important to use the inverse Dirac—~

Coulomb equation to circumvent the variational collapse problem which often

appears in the relativistic calculations [37].

For complex atoms and molecules, the analytlcal integrations involved in Eqs. (6)
or (7) are difficult to perform. For such cases, we have proposed the local Schrodinger
equation (LSE) method. It is based on the potential exactness of the FC wave func-
tion given by Eq. (5) for large n. For more details, we refer to Ref. [11]. Using the
LSE method, we can calculate the analytic wave function of atoms and molecules
without doing the analytical integrations. This method is very general, since the inte-
grations in Eq. (7) are difficult to perform for the complement functions of general
atoms and molecules.

The programs for the variational calculations of the helium atom and its iso-
electronic ions and the diagonalization program in arbitrary accuracy used for
obtaining the data shown in this chapter can be obtained with charges. For details,
please refer to the web site of our QCRI (www.qcri.or.jp).
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