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1. INTRODUCTION AND DEFINITIONS

Two basic principles in non-relativistic quantum mechanics are the
Schrodinger equation (SE),

A

Ad,..,N)¥(,...N) = E¥(l,..,N), (1.1)
and the Pauli principle,
Py(l,...N) = ()F wa,..,N), (1.2)

[note that the notation 1 = (r;,01) is used here and in the following]. The SE
is a determinative equation of the wave function ¥ and the Pauli principle
imposes an anti-symmetric constraint on ¥. The wave function depends on
all the N electron coordinates of the system, while the Hamiltonian,

) N N
Aq,...,N) = 20(1)+ Z\i/(i, i, (1.3)
1

1>]

is the sum of the one- and two-electron operators, V and W, respectively.
It is generally true that all the elementary physical operators of this uni-
verse are written with the sum of the one- and/or two-particle operators: they
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never include three and more particle interactions. This fact implies that any
physical property can be evaluated from the second-order reduced density
matrix (2-RDM) defined by

N *
Fz(l',Z';l,Z) =[2 ] J v 14,2'3,..,N) ¥({,2,3,..,N) dx3...dXN . (1.9

The reduced density matrices (RDMs) were first introduced by Husimi [1]
and developed in particular by Lowdin [2], McWeeny [3], and Davidson [4].
We can calculate electron density p(r) as a spin sum of the diagonal ele-
ment of the first-order reduced density matrix (1-RDM) given by

2
rasy = —— jrz(l',z;l,z) dx,y . (1.5)

The force F 5 acting on a nucleus A, which is a very important quantity for
studying molecular structure and chemical reactions [5-8], is given by

3 3
F,- -j py(r) Zpr T dr+B§AZAZB R,p Rop (1.6)

thanks to the Hellmann-Feynman theorem [9]. The energy of the system
reads

E=[ v 1“1(1';1)| jog 4%+ [ W(@,2)T,(14,251,2) dx; dx,,
1.7

(note that here and in the following the substitution 1' = 1, 2' = 2, etc. is
omitted for simplicity). Thus, since all the physical quantities are calculated
from I';, we may use it as a basic variable of quantum mechanics instead of
the wave function W. Further, if we can determine I'; without using ¥, we
have a closed form of quantum mechanics employing I'; instead of W. This
method has sometimes been referred to as ‘the wave mechanics without
wave’.

Several methods are known for determining the RDM directly without
using the wave function. It is straightforward to obtain an explicit expression
of the variational formula for the 2-RDM as '

EgSE[I"z] and 8E[I‘2]=0, (1.8)
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where Eg is the ground-state energy. In order to be of physical relevance, the
solution I'; must correspond to an N-electron wave function that satisfies the
Pauli principle. This condition, referred to as the N-representability condi-
tion [10-14], is not yet completely known, hence this variational method is
not yet feasible. When one performs variational calculations for I’ using
only some known N-representability conditions, one gets the energy that is
too low comparing with the exact value [12-14]. There has been, however,
progress in our laboratory along this line of the variational approach [15].

Another approach is the variational method for the electron density
p1(r) based on the Hohenberg-Kohn theorem [16]. It states that we have the
variational theorem for the non-degenerate ground state as a functional of the
electron density,

Eg <Elp]. (1.9)

However, this theorem is only an existence theorem and its explicit form is
not known. We have shown that if one knows the external potential v(i) as-
sociated to an arbitrary (trial) density p;(r) then the Hohenberg-Kohn theo-
rem can be explicitly written down [17, 18]. This fact was cleverly called by
Levy [19] as ‘v-representability’. Note that the N-representability condition
is known for the electron density p;(r) [10]. Parr and Yang [20] summarized
the basic theoretical aspects of this approach. The computational method
based on this theorem has been well developed recently as density functional
theory (DFT). However, because of the absence of the explicit expression
associated with the basic theorem, the DFT approach has a somewhat semi-
empirical nature.

In 1976, the author of this chapter presented the equation [21], called
density equation (DE), which is equivalent in necessary and sufficient sense
with the SE in the domain of the N-representable RDMs. It is written as

N
EI‘2(l',2';1,2)=(2]Gz(l',2';1,2), (1.10)

where G5(1',2%1,2) is the second-order energy density matrix (2-EDM) de-
fined by

G, (1,251, = W (1,23, N) A(1,2,3,...N) W(1,2,3,...N) dxg...dxy.
(1.11)

Using Eq. (1.3) for the Hamiltonian, the DE is rewritten as
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Wave Function Theory —— —— Density Equation Theory
Schrodinger equation Density equation
3 = necess
H(1,..,N) ¥(1,..,N) =E ¥(1,..,N) C mafy ET, 1212 _(NJ G212
Pauli principle sufficient 2
- N-representabilif
B ¥(1,...N) = ()P ¥(1,...,.N)) P v

Figure5.1 Wave-function theory and density equation theory.

ET, = [F()+9()+W(L2IT,
+3 j [9(3) + W(L,3) + W(2,3)] T dx,
+6 j WG4 T, dxy dx,, (1.12)

which includes not only I';, but also I'; and I'4. Solving the DE under the N-
representability condition is equivalent to solving the SE under the constraint
of the Pauli principle. Fig. 5.1 is an illustration of this equivalence. The
author’s conjecture is that the EDM including I'; and T'4 could be reformu-
lated in terms of only I'; and I'; upon imposing the N-representability con-
dition [22].

In the time-dependent case, the density equation is written as [22]

., 0 N

1h§1"2(l',2',t';1,2,t) = ( ) ] G2(1',2',t';1,2,t) s (1.13)
which is equivalent with the time-dependent SE,

HY=in—V. (1.14)

The author proposes to call the theory that describes the quantum me-
chanics in terms of only the RDMs the density matrix theory (DMT). The
DMT naturally includes the DFT, which is based on Eq. (1.9). The method
based on the DE, Eq. (1.10) is referred to as the density equation theory
(DET), and the variational method based on Eq. (1.8) is named the density
matrix variational theory (DMVT). Thus, the DMT includes the DFT, DET,
and DMVT as a family.

Note that Egs. (1.8) - (1.10) of the DMT are equivalent (in a necessary
and sufficient sense) with the SE. This necessary and sufficient equivalence
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is very important, since only equations that satisfy it have the same determi-
native power as the SE. Further, note that these equations claim that the sin-
gles (DFT) and the singles and doubles (DMT in a narrow sense) descrip-
tions of quantum mechanics are possible. The origin of the possibility of the
singles and doubles description lies in the fact that the Hamiltonian includes
only one- and two-particle operators. Recently, the author of this chapter
considered the structure of the exact wave function and the possibility of the
singles and doubles description of the exact wave function based on this
simple structure of the Hamiltonian [23].

The purpose of this chapter is to explain the underlying concept and the
recent developments of the DET for a direct determination of the RDM
without using the wave function. For a limit of the space and time, most
subjects are taken from those developed in the author’s laboratory.

2. THE DENSITY EQUATION

The nth-order reduced density matrix (n-RDM), which is assumed to be
N-representable, is defined by

rha',..,n%1,..,n)

N *
=(n ]J ¥ (1n, 0+, N) W(l,on, 041 N) dX iy
N
E(n) SR 2.1)

where we introduce a convenient notation of { ),. The n-RDM satisfies the
following recurrence formula

[ o@D piL,..cs (p=1),p) dxp

N-p+1 2.2)
-—_P7° T @heraP=D L (P=1) .
p

Using this W, we define the nth-order energy density matrix (n-EDM) as
Gp(1'...n’l,..,n) =(¥|H|¥), . (2.3)

Then, we define the nth-order density equation (n-DE) by
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N
E I'h(',..,n%1,..,n) =( ] Gn{',..,n%1,...,n), 2.4
n

which satisfies the following theorem:

Theorem: Each of the density equations with n =2 is equivalent to the
Schrédinger equation in the necessary and sufficient sense [21].

Proof: With the integral notation defined above, the nth-order DE reads
(Y| -E)|¥), =0. (2.5)
The necessity is trivial: (A-E)¥ =0 implies Eq. (2.5). The sufficiency is

proved as follows: We first consider the case of n = 2. Then, we have

1 ! N
ET,0,25L) =,

] G, (1%,2%1,2). (2.6)

By integrating Eq. (2.6), we obtain
ET, 1'D=NG, 15D 2.7
and

E=(¥|A|¥)= [t asndy + [ %(@,2)T,0,251,2) dx dx,.
(2.8)

Using Egs. (2.6) - (2.8), we arrive at
(w|a?|w) =(w|A|Aw) = N[ 6,051 ax,
+ [I: ]j w(1,2) G, (1,2"1,2) dx| dx,

=E[j0(1) Ty 51) dx

+{ w(,2) T, 1',251,2) dx, dx,]=E2. 2.9)
2 1 9%y
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The satisfaction of both Egs. (2.8) and (2.9) means that ¥ satisfies the SE
[24]). When E is degenerate, ¥ is a linear combination of the degenerate
states. Thus, the sufficiency is proved for n = 2. For the case n > 2, the inte-
gration of the DE over the last n - 2 coordinates yields Eq. (2.6). Thus, the
necessary and sufficient theorem is proved. (Q.E.D.)

The n-DE given by Eq. (2.4) is rewritten as
n n

ETy = [D 9@+ Wi, Ty
T =]

+ (n+1) j [0(n+1)+§;:v‘v(i,n+l)] Ty 4%

1 N
+ @+ (@+2) j Wn+Ln+2) T, dx ;dx o
(2.10)
and
j [Ap(,...nin+1,n+2)~E] T, dx_ dx_ ., =0, (2.11)
where
A n n
Hp(,omn+Ln+2)= Y 9@+ Y W, )
1 1>]

+ (N-n) [0(n+1)+§v‘v(i,n+1)]
1
+ % (N-=n) (N=n-1)w(n+1,n+2). (2.12)

For n =2, Eq. (2.10) reduces to Eq. (1.12).

From the theorem, we understand that every DE with n 22 is equiva-
lent to the SE for the N-representable RDM. The equivalence shown in Fig.
5.1 holds for each n larger than two. It is guaranteed that the N-representable
solution of the DE is identical with the RDM obtained from the solution of
the SE by using Eq. (2.1). In the DE, an increase in N does not cause a diffi-
culty in the solution, in contrast to the SE. The DE is applicable to both
ground and excited states and to both fermion and boson systems. Among
the DEs of different orders, the second-order DE (2-DE) is the simplest and
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therefore has much utility. We will discuss in the next section how to solve
the 2-DE.

The 1-DE is only a necessary but not a sufficient condition of the SE. It
becomes sufficient when the Hamiltonian involves only one-particle terms.
The Hartree-Fock (HF) Hamiltonian is one such example.

We note that the DE is not a hierarchy equation. The DE is formally
identical with a member of the coupled chain of hierarchy equations derived
by Cho [25] and Cohen and Frishberg [26], but they showed only the neces-
sary condition: they derived their equations from the SE but did not prove
the converse. Therefore, their equations couple with the higher-order ones up
to the SE. On the other hands, each DE with n =2 is equivalent to the SE: it
does not necessarily couple with the other member of the DEs. Though the
n-DE includes not only the n-RDM, but also the (n+1)- and (n+2)-RDMs in
the n-EDM, the latter two should be related with the n-RDM by the N-
representability condition [22]. Thus, the 2-DE given by Eq. (1.12) is as
powerful as all the higher-order DEs. The 1-DE is not as powerful as all the
other DEs. Mazziotti [27] has recently presented a second-quantized formu-
lation of the DE.

The theorem given above is both necessary and sufficient: it guarantees
that the DE has just the same determinative power as the SE. The only
problem that remains unsolved for the singles and doubles description of the
quantum mechanics in the DMT is the N-representability.

We note here how important is the necessary and sufficient equiva-
lence. There are several equations that are equivalent in this sense with the
SE, including the ordinary variational equation, the Weinstein-McDonald
variational equation [24], and some other equations summarized elsewhere
[23]. These equations guarantee that their solutions are exact when solved
appropriately. The DE is such an equation in the DMT and furthermore it
enables the singles and doubles description.

There are many equations that are only necessary conditions of the SE,
such as the Hellmann-Feynman theorem [9], the integral Hellmann-Feynman
theorem [28], virial theorem [29], etc., but none of them has the determina-
tive power of the SE. For example, one may imagine a calculation of the
electron density pj(r) of a molecule in the equilibrium geometry by the
Hellmann-Feynman theorem, requiring that the forces acting on the constitu-
ent nuclei vanish, but will find it impossible because the Hellmann-Feynman
theorem is not a sufficient condition of the SE: the Hellmann-Feynman theo-
rem is not determinative [30]. In a similar sense, we think that the 1-DE is
not as useful as the other DEs.

Lastly, we note that calling the DE the contracted Schrodinger equation
(CSE) [31] is not adequate for two obvious reasons. First, the CSE is derived
only as a necessary condition of the SE, so that it is entirely the same as the
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hierarchy equation derived by Cho [25] and Cohen and Frishberg [26]. Sec-
ond, it was derived much later than the hierarchy equation and the DE, and
therefore has no priority at all.

3. THE HARTREE-FOCK THEORY AS THE ZEROTH-
ORDER DET

The n-DE includes not only n-RDM but also (n+1)- and (n+2)-RDMs.
The complete N-representability would describe them in terms of the n-
RDM [22]. When the system consists of independent particles, namely when
the Hamiltonian of the system includes only the one-particle terms, the 1-DE
is equivalent (in the necessary and sufficient sense) with the SE. The HF
model of the many-fermion system also corresponds to this case. In such a
case, the p-RDM of the system is expressed by the 1-RDM as

rifasy rifasy) . rifasp)

HF HF HF
1 |0 @) Iy @2%2) .. I (@2%p)
TpE (1P Ly p) = - ! t 1 :

My I es2) . T pip
3.1
where the superscript HF stands for the independent-particle model. Thus, in
this system, the 2- and 3-RDMs in the 1-DE are certainly expressed in terms
of the 1-RDM and Eq. (3.1) guarantees the N-representability of the RDM

[2].
When we insert Eq. (3.1) into the DE and assume

N *
sy = IENCING (3.2)
then it is easy to show [21] that the 1-DE turns into
. N
h(1) ¢, (1) = El: e 90 (33)

where
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N
hQ) =) + Z ] 0= Kj(1)] (3.4)
j
and
ey = <(p1 [ ﬁ|<pk> . (3.5)

Eq. (3.3) is nothing else but the HF equation. Thus, the DE becomes the HF
equation for an independent-particle system. The zeroth-order approximation
of the DE in the correlation problem is the HF equation, as in the standard
correlation theories.

4. THE CORRELATED DENSITY EQUATION

As the HF theory is the zeroth-order approximation of the DET with re-
spect to the electron correlation, it would be instructive to transform the DE
in such a way that the electron correlation effects appear explicitly in the
solution [21]. For this purpose, we define the correlated density matrix
(CDM) as

Cp(leapilyesp) = Tp(lersPs1,ep) - rHEQ,...psL.p) - (41)

The CDM includes the correlation correction to all orders. Since ' satis-
fies the same normalization and recurrence formula as the exact RDM Iy,
we can show that the CDM satisfies the conditions

TGC ='[ Cp(l,...,p;l,...,p) dxl...dxp =0 4.2)
and

[ Cp@es (=151, (=1),p) g

N-p+1
= P Cp g (=D)L (p=1) - (4.3)
p

The correlated density equation (CDE) that directly determines the
CDM is obtained by inserting Eq. (4.1) into the DE and then simplifying the
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result with the HF relations given by Eq. (3.3). The 2-DE is transformed into
the 2-CDE that reads

[9()+9(2)+ W(1,2)~E] C, +3 j [0(3)+W(L,3)+ W(2,3)] C3 dxg
+ 6j %(3,4) C, dxy dx, + [W(,2)~E*T] FI2'IF

- j w(l,3) FIZLIF(I 12%1,3) rf‘F(3'; 2) dx,

[ w3 raf (2,152,3) T} (351) dx,

RIER) Tal(1,253,4) Ty (3,441,2) dxg dxy =0. (4.4)

- This equation includes not only C; but also C3 and Cy, the other terms being

known HF quantities. The relations for the 3- and 4-CDM in the EDM with

the 1- and 2-CDM are given by the N-representability and/or approximated

by physical and mathematical considerations. Since the physical intuition for

the CDM may be different from that for the ordinary RDM, the decoupling

approximation for the CDM may be more effective than that for the RDM.
The 1-CDE becomes particularly simple as given by [21],

R -E] C, +2[ [#(2)+ %(L2)] C, dx,
+3f (2,3) Cy dx, dxy =E©T IF. 4.5)

Some interesting properties of the CDM were summarized in Ref. 21.
Among others, from the Hermitian property of the CDM, we can define the
natural correlated geminals {n;} as

* 1
C(1,251,2) = w m; (1129 m;(1.2), (4.6)
1
where the sum of {u;} satisfies

Z u, =0. 4.7)
1

Other N-representability conditions for the CDM are obtained from those for
the ordinary RDM [21].
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S. SOLVING THE DE

We consider here the method of solving the 2-DE given by Eq. (1.12).
Since we do not yet know the complete N-representability condition, we
have to introduce some approximations for expressing the 3- and 4RDMs in
terms of the 1- and 2-RDM:s.

There are several methods of approximating the higher-order RDMs in
terms of the lower-order ones. The most common one is the independent-
particle approximation, which is zeroth-order in the electron-correlation ex-
pansion,

ifasy rffas nrass)
riFa,21,341,2,3) =% rifauy riFes) ey

rrEsn rres) I esd)

(5.1)
and
rI}F(l',z',3',4';1,2,3,4)
FPF axn FIHF(I'; 2) F{_IF(I £ 3) rle(l L 4)
L[ Tresn rifesy) rifesy ek
4t | rfFay riFEs2) riF@Ey3) ThF3s4)
rif@sn rif@s2) T @53 ) @54
(5.2)

As shown in section 3, the independent particle model gives the HF equation
as the zeroth-order approximation of the DE.

The first-order approximation was given by Valdemoro and her co-
workers [32-36]. The 3- and 4-RDMs were approximated as

1

3p=(lpx!px!D) + (>px'D) (5.3)

and

“p-(px!DxDx!D) + 2Dx!Dx!D) + (PDx'D), (5.4
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where "D stands for the nth-order spin-free reduced density matrix, which
is the spin sum of the n-RDM. These authors derived their equations from
the anti-commutation relations of creation and annihilation operators. Eqgs.
(5.3) and (5.4) are given rather schematically, the detailed explanations be-
ing available in the original papers [32-36].

The second-order approximation was derived by the author of this
chapter [37-39] with the help of the Green’s function method [40]. It reads

3D=(|||+...)+(H|+...]+(|_H+---] (5.5)

and

o= ([ =)o (HIT ) (1)
+(HH N ] (5.6)

where the first and second terms of Eq. (5.5) are the same as the corre-
sponding terms of Eq. (5.3), and the first three terms of Eq. (5.6) are the
same as those of Eq. (5.4). The last term of Eq. (5.6) is referred to as two-
pair (2-P) term and is defined as follows: First, we introduce the collision
term U as

1 1
- [U@Y,2%1,2)-00%,24%2,D1=T,(1',2%1,2)—-—
. )= U( =Ty ( -2

r,asy Iyas2)
I, @25 Ty252)
(CN))

b

where the second term in the right-hand side is the 2-RDM in the independ-
ent particle approximation given by Eq. (3.1), though the I'; in Eq. (5.7) is
not the HF one. Therefore, the collision term U represents the correlation
correction to the 2-RDM. The 2-P term in the 4-RDM is given by the appro-
priate product of the collision term U and therefore it represents the so-called
simultaneous collisions. The last term of Eq. (5.5) is referred to as the UV
term. A detailed explanation of its origin is given in Refs. 37-39. A different
formulation of the UV term was given later by Mazziotti [27, 41].

Since the DE is exact, the accuracy of the 3- and 4-RDMs represented
by the 1- and 2-RDM s is the key to the total performance of the DET. Table
5.1 shows the errors in the 3- and 4-RDMs calculated for the Be atom with
the above method in comparison with the exact full CI (FCI) values [37].
The errors in the first-order approximation given by Egs. (5.3) and (5.4) are
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Table 5.1 Errors in the first- and second-order approximations to the 3- and 4RDMs
of the ground state of the Be atom

Chapter 5

3-RDM
Element Approximation error FCI value
i1,02,i3,1,J2.J3 First-order  Second-order
2,3,3:2,3,3 3356.10%  7.250.107 1.758.10
2.2,3;2,2,3 3.17410%  -4751.107 2.029-10°
2,2,3;1,1,3 223310% 2552107 2.235.10*
1,1,3;1,1,3 201510 2814107 3.187.10™
1,3,3;1,3,3 175210%  4.459.107 3.364.10%
3,3,2:2,3,3 167810 -3.625.107  -8.789-10"
32,2223 1587.10% 2376107  -1.014.10"
4-RDM
Element Approximation error F CI value
i1,02,i3i4;j1,J2.j3.j4  First-order  Second-order

3322:3,322 -792810° 293110 3.933.107
3322:33,1,1 -5581.10°  1.169-10" 5.591.10"
33222323 396410° -1.466107  -1.967-10"
33,1,1:3,3,1,1  -3.922.10° 1779107 7.948.10”
442723311 -374010°  1.869-10° 3.742.10°
44332211 3652107  -1.731.107 3.657.107
43223311 2973100 -33290.10°  -2.977.10°
33221313 2791107  -5.84410°  2.796.107
44,1,1:33,1,1  2.62810°  6.203-10° 1.631-10°

almost as large as the values of both the 3- and 4-RDMs, so that the first-
order approximation is not adequate, while the errors of the second-order
approximation are from two to three orders of magnitude smaller than the
values themselves, so that the second-order approximation should work
much better. We also have similar results for H;O and other molecules [42].
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Figure 5.2 Ehergy and density errors in the iteration process of the H;O molecule. The den-
sity errors are given by the respective square norms of the differences between the DET and
FCI densities.

The DE is solved iteratively [37-39]. It is written as
N

with A being zero for the exact I';. The HF I'; is used as the initial guess.
We calculate Gy, which is the right-hand side of Eq. (1.12), using the sec-
ond-order approximation for I'; and I'4 given by Egs. (5.5) and (5.6). We
then calculate A from Eq. (5.8) and from it we estimate the updated I';. The
Newton-Raphson method was found useful in this procedure. We normalize
the new I'y, check its N-representability, and calculate a new energy E from
it. We repeat the iterations until convergence. More details of our method are
given in Refs. 37-39.

Fig. 5.2 shows the behavior of the energy, the 2-RDM, and the related
quantities during the iteration process for the HyO molecule. The energy
converges nicely within 6 iterations and other quantities within 10 iterations.
The converged 3-RDM differs somewhat from its FCI counterpart because
our Eq. (5.5) for I'; is only approximate.
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Table 5.2 Energies and properties calculated by the DET and the wave function theory

DET HF SDCI Fcr’
Molecule® Energy in au (percentage error in correlation energy)
Dipole or quadrupole moment in au’
O 776.14827  -16.00984  -76.15001  -76.15787
2 (6.48) (100) (5.30) (0.0)
(5x9, 10) 0.9801 1.0142 0.9826 0.9762
NH 5629888  -56.17599  -56.29717  -56.30433
3 (4.24) (100) (5.58) (0.0)
(4x10, 8) 0.9098 0.9226 0.9133 0.9081
CH. 24020582  -40.18546  -40.29405  -40.30009
4 (3.73) (100) (5.27) (0.0)
(4x12, 8) 0.0 0.0 0.0 0.0
HE 10021876 -100.02179 -100.21622 -100.22453
(412, 5) (2.85) (100) (4.10) (0.0)
’ 0.7920 0.8215 0.7931 0.7919
N -109.07909 -108.87826 -109.08219 -109.10719
2 (12.27) (100) (10.92) 0.0
(Ox11, 10) 2.046 1.808 1.993 2.054
. 112.87293 -112.68505 -112.87382 -112.90098
1L, 10) (12.99) (100) (12.58) (0.0)
' 0.0344 -0.1652 0.0586 0.0445
OH 77698006  -76.79907  -76.97559  -76.99230
212 (6.37) (100) (8.65) 0.0
(5x15, 10) 4.642 5315 4.817 47762
11471144 -114.58982 -114.71082 -114.71816
CH30H (5.24) (100) (5.72) (0.0)
(75, 14) 0.6024 0.6548 0.6058 0.5991
CHANH 05.06781  -94.93849  95.06505  -95.07286
3N (3.76) (100) (5.81) (0.0)
(76, 14) 0.5634 0.5754 0.5633 0.5619
O (ot 7920924 -79.06233 _ -79.20448 _ -79.20959
2Hs (stag.) (0.24) (100) (3.47) (0.0)
(77, 14) 0.4279 0.4589 0.4307 0.4284
CHsecly 7920405 7905636  -79.19925  -79.20435
2H6 (ecl. (0.20) (100) (3.46) (0.0)
(7x7, 14) 0.4843 0.5159 0.4876 0.4851

a'I'he active space and the number of electrons in it are given in parentheses.
MP4 energies for N,, CO, C,H,, and C,Hg; CISDTQ moments for N,, CO, and C,Hg;
and the CISDT quadrupole moment for C,H,.
Quadrupole moment is given in case of zero dipole moment.



Density Equation Theory in Chemical Physics 101

Our final results [38] are summarized in Table 5.2 for the following
molecules: H,O, NH3, CHy, HF, N,, CO, C;H,;, CH30H, CH3NH;, and
CyHg in the staggered and eclipsed conformations. These were the first
molecules for which the DET was successfully applied; the 2-RDMs of these
molecules were calculated for the first time directly without any reference to
the wave functions. The basis set was of the double-zeta quality for the first
seven molecules and STO-6G for the last four ones [38]. The energies (in
au), the percentage errors in correlation energies (in parentheses), and the
dipole or quadruple moments (in au) are listed. The active space is given in
each case by the number of occupied active MOs X the number of unoccu-
pied active MOs and the number of active electrons is listed. The DET re-
sults are compared with the results of the HF approximations, the single and
double CI (SDCI), and the FCI.

First, let us examine the energy. The DET results are better than the
SDCI ones for eight molecules and worse for three molecules. Generally, the
larger the molecules the better are the DET results. Next, let us consider the
electronic properties. The DET results are better than the SDCI ones for
eight molecules and worse for two molecules. As the DET directly deter-
mines the RDMs, the accuracy of the related properties should be high. For
the energy, the result of the variational method like SDCI is good to the
square of the errors involved, while the DET does not have such a property.
We may conclude that the DET results shown in Table 5.2 are satisfactory,
considering that they are the very first results obtained with DET.

Next, we examine the N-representability of the calculated I';. Some
necessary conditions of the N-representability are the positive semi-definite
properties of the RDM (P-condition), the hole RDM (Q-condition), and the
following g-matrix (G-condition) [12]

g(1',2%1,2) = 1‘2(1,2‘;1',2)+8(1—1")1“1(2';2)—1"1(1';2’) NG 2). (5.9

For the 1-RDM, the N-representability condition is that its eigenvalues must
fall between zero and two [10].

Table 5.3 lists the minimum eigenvalues of the second-order RDMs, the
hole RDMs (HRDMs), and the g-matrices. It also lists the range of the ei-
genvalues of the 1-RDM. We see that our 2-RDMs ‘do not satisfy the N-
representability condition: some eigenvalues of the 2-RDMs, 2-HRDMs, and
g-matrices are negative, though they are small. However, the computed 1-
RDMs are fully N-representable.

From our experience, we know that when the 2-RDM is far from being
N-representable, the convergence of our iterative procedure is poor or even
non-existent. Avoiding such a situation by some theoretical method is the
topic of the next section.
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Table 5.3 The minimum eigenvalues of the 2-RDM, 2-HRDM, and g-matrix, and the range
of the eigenvalues of the 1-RDM calculated with the DET

2-RDM 2-HRDM g-matrix

a
Molecule P 0 G

1-RDM

H0  -33410° -1.8510" -328.10° 194107 ...1.9998
(5x9, 10)
NH;  -45910° -1.4610° 270.10° 3.00.10™...1.9838
(4x10, 8)
CH,  -57110° -15910°% -32210" 2.35.107°..19815
(4x12, 8)
CH;OH -539.10° -43510" -539.10° 1.78.10™...1.9974
(7x5, 14)

N, 102107  -531.10°% 37010  4.30-10™ ... 1.9866
(5x11, 10)
Co 783107 33710  6.40.10° 5.51.107 ... 1.9884
(5x11, 10)

CH,  -15210° -59410° -3.10.10° 3.4010” ... 1.9796
(5x15, 10)

a . . . o
The active space and the number of electrons it contains are given in parentheses.

6. A GEMINAL EQUATION DERIVED FROM THE DE

In the previous section of this chapter, we have found that the 2-RDMs
calculated by the above method do not satisfy the N-representability condi-
tion. In particular, our I'; is not positive semi-definite. We describe here a
method to constrain our RDM to be positive semi-definite, which naturally
leads to a geminal equation. This is somewhat similar to the fact that the HF
equation is derived from the DE by imposing the independent particle ap-
proximation to the RDMs involved in the DE [21].

In quantum chemistry, the concept of a geminal is very old. Many con-
tributions to the development of this concept have been published [43-49].
However, in modern computational chemistry, it is not much utilized mainly
because the orbital concepts are much simpler and can be extended to elec-
tron correlation problems by using the CI and the coupled-cluster theories
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more efficiently than the conventional geminal approaches. For the history

and the recent development in the theory of geminals see Ref. 49.
We expand I'; with a complete set of two-particle functions {¢;(1,2)} as

r,(,2512) =‘i;jdij 6 (112) 0,00 =¢% 1129 d 0.2, (6.1)

where ¢(1,2) is a column vector whose elements are {¢j(1,2)}. We constrain
the matrix d with
d=c'c, 6.2)

hence d is positive semi-definite and Hermitian [50]. We define

N2 =c§2), | 6.3)
obtaining
T, ,25,2)= 3 01429 n,(1,2), 6.4)
1

where {n;(1,2)} satisfy the equation
(1,2 M:(1,2) dx, dx, = 8. A2 6.5
Jni(,)nj(,) 1 x2— ij i ()

which shows that {n;(1,2)} are unnormalized geminals. The normalized
geminals are obtained from

0,12 =2 n,(12), (6.6)
yielding
r@2s.=3 A2 o; (112 9,0,2). ©67)

From the normalization condition,
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N
;’w = (2] (6.8)

When we solve the DE taking {nj(1,2)} or {¢;j(1,2)} as basic variables in-
stead of I, itself, the DE produces geminal equation. Since Eq. (6.2) guar-
antees I'; to be always positive semi-definite and Hermitian, improved con-
vergence and accuracy are expected.

To utilize the above idea in the DE given by Eq. (1.12), I'3 and I'4 must
be expressed as products of I'; and I'j. A simple approach to doing so is to
utilize Egs. (5.1) and (5.2) as follows: For I'3, we expand Eq. (5.1) by the
third row, replace the 2X2 cofactor by I';, and obtain

1
r;1,2,3%1,2,3) = 3 r,.,2%,2)I,(343)-r,1',2%1,3) I;3%2)

+T, (1 12%2,3) I a3hnl, 6.9

where T'y is derived from I'; through Eq. (1.5). For Iy, we similarly expand
Eq. (5.2) by the first two rows as

l-\4(1 '12'93"4';1s 2939 4)

1
= = [TQ12512) TH3L453, 9+ T (1,253,4) T, (3,451,2)
- l"2(1',2';1,3) 1"2(3',4';2,4)—FZ(I',2';2,4) F2(3',4';1,3)
+ I"2(l',2';1,4) F2(3',4'; 2,3) +F2(1',2'; 2,3) I‘2(3',4';1, 4)] .(6.10)

The 4-RDM is also approximated by products of I'j and I'3 as
r4(l'92'93'94.;192’394)

1
= [T3002350,2,3) T (454 ~T3(1,2,351.2,4) T (459

+T5(1,21,351,3,4) T (452) ~T5(1,2,'352,3,4 T, (45 D], (6.11)

where we have expanded by the last row. Another possibility is to approxi-
mate "4 by an appropriate average of Egs. (6.10) and (6.11). Note that the
above formulae do not deal with all the three or four electrons equivalently,
but for example in Eq. (6.10), the electrons (1,2) are treated as the variables
of I'y, while the electrons (3,4) are dealt with as representing all the remain-
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ing N - 2 electrons that are finally integrated out in the DE, so that the re-
quired symmetry is satisfied within the electron pairs (1,2) and (3,4) but not
between them. As seen from the above formulation, it is also possible to de-
rive an approximate formula that satisfies the symmetries for all the elec-
trons involved. Actually, many different approximations are possible along
those lines, so searching for the best one is an interesting subject.

Next, we transform the DE using the approximations given by Egs.
(6.9) and (6.10). Putting these equations into the DE given by Eq. (1.12), we
obtain ’

M +¥(2)+w(1,2)]T,(14,251,2) o _

- j v(3) [I‘2 a425L,3) Ty (352)+ ', (1,243,2) T} 35 1)] dx4

+ [ 10,3+ W(2,3)] [T, (1,251,2) T (3%3) T, (1,251,3) [} (352)

-T,1,23,2) T, 35 D] dx,
+ [ W34 T,(11,253,9 T, (3,451,2) dx, dx,
+2[ W(3,4) [T, (1,251,4) T, (3',452,3)
+T,14,2452,3) 53,451, 9] dx5 dx, = 0. (6.12)

We note here that this equation does not include the term containing the en-
ergy E like the term on the left-hand side of Eq. (1.12). This term is actually
cancelled by the terms arising from the first terms of Eqgs. (6.9) and (6.10).
Other approximations to I3 and I'4 do not lead to such a cancellation. The

new DE given by Eq. (6.12) may be solved by the method similar to the one
described in the preceding section of this chapter.

In this section, the purpose is to constrain our I'; to be positive semi-
definite. Inserting the geminal expression for I'; given by Eq. (6.4) and per-
forming some manipulations, we obtain the geminal equation as

PO+¥@Q)+I0+I2)+Ww(1,2)] i(1,2)
-J' [0 +W(1,3)+W(2,3)] [i(1,3) T} (352)-i(2,3) T} (34 1)] dx,
+3° k(1,2) (kG3,4)|%(3,9) |i(3,4))

K

+2 Ek: J' i(1,4) k(2,3)+i(2,3) k(1,4)] W(3,4) k(3',4) dx; dx, = 0,(6.13)
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where i(1,2) is a shorthand for n;(1,2) and J (1) is the Coulomb repulsion op-

erator defined by

jy = j Ww(1,2) T{(22) dx, . (6.14)

The energy of the system is calculated from

E= j 9 T 5D dxg + Y, (i0,2)] w(,2) [i0,2). (6.15)
1

In actual calculations, it is convenient to expand the geminal function
i(1,2) with the reference orbital set {a(1)} as

i12)=Ycl ab@) , (6.16)
ab

which turns Eq. (6.13) into

gb; Cl [{g|9+Ta) 8y, +(n|9+3|b) 84g +(gh||ab)]

a

- % Cab Zi: Qg [e]¥[0) Bgadpg —85q3py)+(ec]W]ab) 8
+(he| W|db) 8gq —(ge|W|db) &y, —(he|W|ab) 8,4]

* % Cib ; gf: Pet ca [{eF| D) Bge Byq +2(ef|W|db) 8ga 3y

+2(ef | W|bd) Bgc 8y,1=0, 6.17)
where
i
Pbed = g Cab Ced (6.18)
(6.19)
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(ab|w|cd) =(a()) b(2)|%(1,2)|c(1) d(2)). (6.20)

The meaning of the density matrices P and Q in the reference space follows
from

r,0'251,2) = Zl‘, (11,29 10,2) = ; % Fab,cd 210 B2) c(D) d(2)

(6.21)
and
I, asD =-N—2_—1 [ra'z1,2) ax, = % Q a YbM.  (6.22)
The energy of the system is given by
B Qup (276 + 3 T By (30]5]cd). 62)
ab ab cd

Thus, the geminal equation has been derived from the DE. Since this
formulation guarantees the positive semi-definiteness of I', improved con-
vergence and accuracy of the solution are expected. We are currently exam-
ining the solution of the above equations, in addition to considering what
approximations to I'; and I'4 in the EDM are the most appropriate and what
accuracy of the calculated results should be expected.

7. APPLICATION OF DET TO THE CALCULATION
OF POTENTIAL ENERGY SURFACES

Structures, reactions, and properties are the three big pillars that support
chemical sciences. The potential energy surface (PES) of a system is directly
related to these subjects, hence our first concern after the initial success with
solving the DE without using the wave function was to examine the possi-
bility of applying DET to calculations of PESs of molecules. We show here
the results [51], obtained with the method described in section 3 of this
chapter.

When we elongated bonds from their equilibrium lengths, we observed
that the convergence of the DE became poorer for some molecules. This was
expected since our method is based on the Green’s function method and cor-
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Figure 5.3 Potential energy curves of the HF and CH, molecules calculated with the HF,
DE, SAC, and FCI methods.

rect to second order with respect to electron correlation. Upon elongation of
the C-H bond in CHy, for example, the well-known quasi-degenerate, multi-
reference problem arises and the HF wave function is not a good zeroth-
order approximation. When we analyzed the non-convergence problem in
our DET, we found that it originated from the breakdown of the N-
representability of the inner-core MO; the occupation number of the inner-
core MO happened to exceed two. Since the inner-core MO is very stable,
electrons tend to occupy it too much when one does not impose the complete
set of N-representability conditions.

We have avoided this difficulty by employing the frozen-core approxi-
mation. Though this is not a fully satisfactory solution, it certainly works
well. Fig. 5.3 shows the potential energy curves of HF and CH4 molecules
calculated with the DET. It also shows the FCI results, which are the exact
ones within the basis set used, the HF results, and the data obtained with the
SAC (Symmetry Adapted Cluster) method [52-55]. For closed-shell mole-
cules, the SAC results are identical with the coupled cluster (CC) ones. The
calculation level was singles and doubles (SD). We see from inspection of
Fig. 5.3 that the DE2 (which means the density equation method correct to
. second order) results are close to the FCI ones for a wide range of internu-
clear distances. At present, the SAC results are much better than their DET
counterparts in both accuracy and efficiency.
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Table 5.4 The equilibrium bond lengths and the totally symmetric harmonic frequencies
calculated with different methods

Molecule  Method R. (A) w, ( em” )
HF HF 0.9195 4025
DET 0.9416 3778
SAC 0.9487 3639
FCI 0.9495 3619
CHy4 HF 1.0783 3535
DET 1.0998 3306
SAC 1.1035 3245
FCI 1.1038 3240
BHj3 HF 1.1539 3114
DET 1.1743 2929
SAC 1.1774 2879
FCI 1.1778 2884

Table 5.4 lists the equilibrium bond lengths and the totally symmetric
harmonic vibrational frequencies of the HF, CHy4, and BH3 molecules. The
DET results are close to those obtained with the SAC and FCI methods. The
bor_lil lengths are correct to within 0.01 A and the frequencies to within 200
cm . Fig. 5.4 shows the dipole moment vs. the bond distance for the HF
molecule. The DET reproduces the FCI result quite well, whereas the HF
result is very different. More details about the results of the DET for the
properties related to the PES are given in Ref. 51.

8. DET FOR OPEN-SHELL SYSTEMS

The DET described in section 3 of this chapter was applied to open-
shell systems [39]. The calculations for closed-shell systems reviewed in
sections 3 and 7 were carried out using the spin-free RDMs in which the spin
variables were summed up, while the calculations for open-shell systems
were done using the spin-dependent reduced density matrices (SRDM:s).
Actually, the formulations and the basic equations given in section 3 were
for general open-shell systems, since the spin-sum was not done there. For
'y, the SRDM has 16 times more variables than the RDM, so that the open-
shell systems are computationally more demanding than the closed-shell
ones.
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Figure 5.4 The dependence of the dipole moment of the HF molecule on the H-F bond
distance calculated with the HF, DE, and FCI methods.

The computational algorithm was the same as in the closed-shell case,
but the convergence was less satisfactory. So far, we could calculate only
atoms. The calculations were done using only s-type basis sets, so that the
doublet states of the five-electron atoms are not the ground “P states but ac-
tually the excited ~S states and the triplet states of the four-electron atoms
are also not the “P states but the ~S states. Computationally, such S states are
easier to calculate than the P states. For more details, see Ref. 39.

Table 5.5 shows the results for the open-shell five-electron doublet and
four-electron triplet atoms. The DET data are compared with the results of
the HF and FCI methods. The correlation energy errors of the DET results
are all smaller than one percent. Though these results are more accurate than
those for the closed-shell molecules given in Table 5.2, one should note that
the open-shell atoms calculated here are all very small. Table 5.6 lists transi-
tion energies, electron affinities, and ionization potentials calculated with the
DET. Since the states involved are not the normal ground and excited states,
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Table 5.5 Results for the open-shell doublet and triplet states

DET HF FCI

Atom (State) Energyinau
(percentage error in correlation energy)

Error norm of the 2-RDM

-13.24020  -13.21284  -13.24016

Be (°S) (-0.1489) (100) (0.0)
2.20-10 2.79-10 0.0

) 2411436 2409747  -24.11431
B (S) (-0.300), (100) (0.0)
6.03.10° 228107 0.0

3655658  -36.54203  -36.55655
c* s) (-0.19032)  (100) (0.0)
377.10° 124107 0.0

s 51.61476  51.60237  -51.61474
N** (%s) (-0.1339) (100) (0.0)
2.47.10 1.73-10 0.0

,3 1331466  -13.30361  -13.31464
Be (S) (-0.1373) (100) (0.0)
1.43-10 2.67-10 0.0

2360534 2359233 -23.60532
B* (’s) (-0.1630) (100) (0.0)
521100 2.66.107 0.0

s 3530435 3029153  -35.30431
c* Cs) (-:0.2936) (100) (0.0)
6.10.10°  2.14-10 0.0

s 4936284  -49.34853  -49.36281
N () (-:0.1940) (100) (0.0)
45410 23210 0.0

the values themselves may look strange, but in comparison with the FCI re-
sults, the DET data are quite close. Table 5.7 lists the electron and spin den-
sities at nuclei of open-shell doublet and triplet atoms. The latter densities
are very important quantities measured in ESR experiments. The agreement
between the DET and FCI results is good. Since the spin densities calculated
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Table 5.6 Transition energies, electron affinities, and ionization potentials (au).

Atom Process DET HF FCI
B 223 + e-—)llS 0.44528 0.44083 0.44526
S-e—'S 013472 -0.13687 -0.13500
B* s 35 0.64374 0.64202 0.64399
A 's->3s2 1.11340 1.11230 1.11345
S+e—°S  -0.13884 -0.13824 -0.13879
o 15—9332 172478 172571 1.72479
Isres?s  -052714 052815 -0.52714
Table 5.7 Electron and spin densities (p and p;) at nuclei (au)
Atom (State)  Property DET HF FCI
9 o 33.568 33.568
Be (°5) Ds 2.249 2.253
8 ¢s) o 70.058 69.998 70.058
0s 1.902 1.594 1.896
ot s p 125.313 125.238 125.313
€S) 0 2753 2.380 2.746
N % p 203.820 203.732 203.820
S) Ds 3.843 3.396 3.836
3 o 32.530 32.401 32.530
Be (°S) Ds 3.608 2785 3.603
B s p 68.741 68.680 68.742
) 05 3.691 3215 3708
& és) o 122.143 122.064 122.142
0 6.860 6.103 6.836
197.798 7.70 197.7
N Cs) 0 9 197.705 97.798

Ps 11.316 10.273 11.287
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within the restricted HF approximation do not include the spin-polarization
effects [56, 57], they are always smaller than the DET and FCI values.

9. CONCLUSION AND FUTURE PROSPECTS

The dream of describing quantum mechanics with only the density ma-
trix, namely, the construction of the DMT, has long been held by many sci-
entists. This chapter describes progress achieved in the author's laboratory at
Kyoto University towards realization of this dream. The first opportunity for
the author to enter into the DMT was the presentation in 1973 of the Hell-
mann-Feynman force concept for predicting molecular geometries and
chemical reactions [6-8]. It has been already 24 years since the author made
the first contribution to the DET by presenting the DE [21]. At that moment,
the author was rather strict and tried to solve the DE without any approxi-
mations, since the DE seemed to imply that a singles and doubles description
of quantum mechanics is possible. The N-representability was a big obstacle.
Further, compared with the present days, the computational situation was
very, very, poor in author's laboratory.

Now the situation is quite different. How helpful is the use of powerful
computers in making a progress! A clue in the application of the DE was
given by Valdemoro [32-36] by her proposal to solve the DE, even if ap-
proximately. We reformulated her approach with the Green’s function
method and, realizing the importance of the second-order terms, obtained the
results described in the sections 3, 7, and 8 of this chapter. Later, Mazziotti
[41, 58, 59], Yasuda [60], and Valdemoro [61, 62] proposed some refined
methods that show some promise. The geminal equation approach described
in the section 4 is also expected to work. Certainly, the cumulant expansion
method [63] is useful in the formalism [41, 58, 64, 65]. The density matrix
functional theory (DMFT) [20, 66, 67] that is based on I'y(1%1) instead of
p1(r) is also very interesting. This approach clearly belongs to the DMT and
may be classified as a member of the DFT because of the similarity in basic
approach. Anyway, it is clear that much progress should be done for truly
realizing the dream of describing quantum mechanics (chemistry) by the
RDM alone.

It may be safe to conclude this chapter by saying that the DET has been
applied to a bit of real chemistry: I'; and E of atoms and molecules were di-
rectly calculated, to good accuracy, by the DET without any use of the wave
function. The 3- and 4-RDMs in the EDM of the DE were approximated by
products of I'j and I'. The calculated I'; were almost N-representable and
I'; were N-representable. The DET was also used to calculate the potential
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energy surfaces of molecules, yielding equilibrium geometries and vibra-
tional force constants, and further applied to open-shell atoms.

The author is quite optimistic about the future of the DET. First, the N-
representability problem should be studied not only mathematically but also
from a physical standpoint. In the DET, the key is a good representation of
'3 and I'4 in the EDM in terms of I'; and ', on which both the accuracy
and the convergence of the DE strongly depend. This representation is
closely related to the N-representability, so that we have to try to get good
ideas based on both physical and mathematical intuitions. The DE is just
equivalent to the SE, so that the DET would be suitable for obtaining very
accurate solutions for quantum-mechanical problems. Since the RDM is a
local property, constructing an N-order theory should be easy in comparison
with the wave function approach. Anyway, a small window has been opened
and a lot of exciting dreams must exist in future!
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