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CONS P EC TU S

J ust as Newtonian law governs classical physics,
the Schr€odinger equation (SE) and the relativistic

Dirac equation (DE) rule the world of chemistry. So, if
we can solve these equations accurately, we
can use computation to predict chemistry precisely.
However, for approximately 80 years after the
discovery of these equations, chemists believed that
they could not solve SE and DE for atoms and
molecules that included many electrons. This Account
reviews ideas developed over the past decade to
further the goal of predictive quantum chemistry.

Between 2000 and 2005, I discovered a general
method of solving the SE and DE accurately. As a first
inspiration, I formulated the structure of the exact
wave function of the SE in a compact mathematical
form. The explicit inclusion of the exact wave func-
tion's structure within the variational space allows
for the calculation of the exact wave function as a
solution of the variational method. Although this
process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve
the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for
atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all
atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this
problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly
accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule.

The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC
method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and
the zeroth-order wave function. These basis functions are called complement functions because they are the elements of
the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to
the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very
accurate solutions of the SE for the ground and excited states of the Born�Oppenheimer (BO) and non-BO states of very small
systems like He, H2

þ, H2, and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the
complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE)
method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for
small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic
molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of
chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods
for the calculations of ordinary molecules would allow researchers to make these calculations more easily.
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Introduction
The Schr€odinger equation (SE) and the relativistic Dirac equa-

tion (DE) are thebasic equations that govern theworldof atoms

andmolecules,1 just as theNewton's andEinstein's lawsgovern

the macroscopic and cosmic world.2 In the latter world, the

basic principles are able to provide very accurate predictions

that enable applications such as interplanetary journeys to

occur. However, in the former world, such accurate predictions

are limited only to the hydrogen atom and some simple one-

electron systems. Formany-electron atoms andmolecules that

are daily subjects in chemistry, even modern quantum chem-

istry cannot provide predictions as accurate as those in the

Newtonian world. The reason for this is simple. The basic

equations in classical mechanics can be solved to their intrinsic

accuracies, but in the quantum world, the SE and DE have not

been solved in their limiting accuracies: they are solved only

approximately. People thought formany years, and aftermany

trials, that solving the SE andDEwas essentially impossible. This

was so for about 80 years after the discovery of the SE.

Modernquantumchemistry ismuchdevelopedandprovides

useful tools for understanding1 the underlying nature of chemical

phenomena. However, even the advanced theories encounter

difficulties when applied to bond-fission processes.3 However, if

a general andaccuratemethodof solving the SEandDE is estab-

lished, we will be able to enjoy truly predictive quantum chem-

istry. Someyearsago, theauthordiscoveredageneralmethodof

solving the SE and DE,4�10 and this method is now being devel-

oped in our Institute to realize the above dream. The purpose of

this Account is to provide an expository reviewof the basic ideas

and their applications to calculate the full configuration interac-

tion (CI) andanalytical solutionsof theSEofatomsandmolecules.

Onlyminimumpossible formulas andmathematics will be used.

How Accurate Are the SE and DE?
Thehydrogen atom is theonly example forwhich the SE and

DE are exactly solvable. The exact energy of the SE is

E(n) ¼ �μZ2=(2n2) (1)

where Z is the nuclear charge, n is the principal quantum

number, and μ is the reduced mass. Similarly, the exact

energy of the DE is given by11

E(n0, j) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where n0 is similar to n above, j is the total angular

momentum quantum number, and R = 1/137.03599 is

the fine structure constant. We used the atomic unit in

this Account (for energy, 1 au = 27.21134 eV, 627.5096

kcal/mol, or 219 474.6315 cm�1). For the hydro-

gen atom, the experimental ground-state energy12

is �0.499733191, the SE energy is �0.499 727840,

and the DE energy is �0.499 73449. We can calculate

the excitation energy for the excitation fromn=1 to n=2.

The experimental values are 0.374799317 for 2s(1/2),

0.374799158 for 2p(1/2), and 0.374800821 for 2p(3/2),

where small differences are observed for the 2s and 2p

states. The value in parentheses is the j value. The SE

gives only a single value of 0.374 795880 for these three

different states. TheDEgives a valueof 0.374 800452 for

the 2s(1/2) and 2p(1/2) states and 0.374 802115 for the

2p(3/2) state. The DE cannot explain the small difference

between the 2s(1/2) and 2p(1/2) states. This difference is

called the Lamb shift and is explained by quantum

electrodynamic (QED) theory,11 which is beyond the

scope of the present Account.
The reader has no doubt been very impressed with the

high accuracy of the energies predicted by the SE and DE.

The SE predicts the energy to four-digit accuracy and the DE

to five digits. Certainly, the DE gives a higher accuracy than

the SE, but the SE is already highly accurate for the hydrogen

atom. This is true for the first row elements in the Periodic

Table. For heavier elements, the relativistic effects expressed

by the DE become more important. Therefore, if we have a

theory that enables us to solve the SE and DE to a high

accuracy and if we can apply it to atoms and molecules that

appear daily in chemistry, then our science will be highly

elevated to be truly predictive for chemical science. In this

case, computer simulations would become a complemen-

tary methodology that would compete with experiments. Is

this just a dream? Is there anyway to realize this dream?We

are trying to realize this dream.

The Schr€odinger and Dirac Equations
What are the SE and DE? They have very simple and similar

forms. The SE is written as

Hψ ¼ Eψ (3)

where the Hamiltonian is given by

H ¼ �
X
i
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in ordinary notation. The SE is a second-order differen-

tial equation. This differential equation can be solved

analytically for the hydrogen atom, as explained above.

However, for more-than-two electron systems, there is no

direct analytical way to solve their differential equations. In

our generalmethodof solving the SE,wedonot try to solve

the “differential” equation. It is noted here that the differ-

entiation is always possible for the analytical functions. In

contrast, integration is not always “possible” for all analy-

tical functions, even though one may know intuitively the

existence of the integral values. It is fortunate that the SE

does not include any integration in its expression.
The DE is written similarly to the SE as

HΨ ¼ EΨ (5)

where the Hamiltonian,H, is not a scalar operator but is a

matrix operator with the dimension of N4, with N being

the number of electrons of the system. Similarly, Ψ is a

vector function with the same dimension. This Account is

mainly focused on the SE, so we will not give the explicit

formof theHamiltonian of theDE. However,we note that

what we call DE here is actually the Dirac�Coulomb

equation, which is a generalization of the one-electron

Dirac equation11 to the many-electron case. Because of

the similarity between the SE and DE, the method of

solving the SE can be applied to the DE9 with a small

modification. Finally, we note that we specify the true

solutions of the SE and DE by using the word “exact”.

Variational Principle
Probably the most frequently used principle in computa-

tional chemistry is the variational principle (VP),

δE[ψ] ¼ 0: (6)

Suppose that we try to solve the SE of a given system.We

use ψ as the candidate for a solution. It includes some

variable parameters within an assumed functional form.

An importantmerit of the VP is that it always provides the

optimal values for such parameters. However, it is sel-

dom to obtain the solution of the SE using this method,

because it is very difficult to predict the exact functional

form of a many-electron system by intuition alone. Even

so, this principle gives us the best possible wave function

within the assumed functional form.
If we can prepare a trial function that surely includes the

exact wave function within its functional form, the VP

method gives the exact wave function as its solution.

Most people would probably think that this is not possible.

However, it is both possible and easy, as shown below. We

shall designate such a functional form as having an exact

structure.

Exact Structure
Inaseriesofpapersstarting from2000, theauthorhaspublished

several ideas under the title of “the structure of the exact wave

function”.4,5,13�15 The details are given in the references, but

what we need here is simple. Let us compare three very

important fundamental formulas. The first is the SE itself,

(H � E)ψ ¼ 0 (7)

which defines the exact wave function and its energy. The

second formula is the VP, which is now written as

ÆψjH � Ejδψæ ¼ 0 (8)

The third formula is what we call an H-square equation,

Æψj(H � E)2jψæ ¼ 0 (9)

The H-square equation is unique in that it is equivalent to

the SE. Only the solution of the SE can satisfy this equation.

The proof is simple and has been given previously.,

Now let us compare eqs 8 and 9. Then, we can easily

reach the following theorem.

Theorem. Letψ be a function that includes a parameter C

and satisfies the relationship

δψ ¼ (H � E)ψ 3δC (10)

Then thisψ has an exact structure, because its variational

solution satisfies the H-square equation and therefore is

exact.
Proof. Because δψ is given by eq 10, we can substitute it

into the VP, eq 8, and obtain Æψ|(H � E)2|ψæ 3 δC = 0. Since this

equationmust hold for any δC, we obtain eq 9. Namely, when

ψ satisfies eq 10, its VP solution satisfies theH-square equation

at the same time, and therefore it is exact (end of proof).

Thus, when we prepare our wave function to satisfy

eq 10, its variational solution is guaranteed to be exact. It

is very important to use a wave function that has an exact

structure to formulate the method of solving the SE.

Simplest Iterative Complement Method
What ψ satisfies eq 10? There are several possibilities.8

Among these, a simple expression is given by the following

recursion formula:4,5

ψnþ1 ¼ [1þ Cn(H � En)]ψn (11)
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where n is the iteration number, Cn is one parameter in

each iteration, and En = Æψn|H|ψnæ. Because this is the

simplest form among what we call iterative complement

(IC) methods, we shall denote it as the simplest IC (SIC)

method. It is easy to prove that a SIC wave function

becomes exact at convergence., Applying the variational

principle to eq 11, we obtain a very simple 2 � 2 secular

equation, and by solving it successively, we are able to

obtain an exact solution of the SE at convergence.

Full Configuration Interaction
Whenwe solve the SEwithin a given basis set, the solution is

the so-called full CI (configuration interaction). This is usually

obtained after the diagonalization of a very large Hamilto-

nianmatrix,whichmakes thismethoddifficult to perform for

large molecules with a very good basis set.

Insofar as the SIC equation is correct, we should be able to

calculate the full-CI solution using the SIC method starting

fromanapproximate function, suchas theHartree�Fock, forψ0.

This is performed by replacing the Hamiltonian operator in

eq 11 with the Hamiltonian matrix over the full-CI config-

urations. Figure 1 shows the results for several molecules

using minimal basis set.16,17 Certainly, all the calculations

converged to the full-CI energies after the iterations were

performed. For HNCO, the full-CI calculation was per-

formed by the diagonalization of the Hamiltonian matrix

with a dimension of 216 247, while the same result was

obtained using the SICmethod after 68 iterations of a two-

dimensional diagonalization. However, the convergence

rate was very slow by the reason that will be explained

later.18

Singularity Problem
The full CI is best only within a given basis set. When we

improve the basis set, the dimension of the full CI increases

rapidly and a solution becomes impossible. Therefore, a

better way is to solve the SE analytically. However, whenwe

perform the SIC calculations analytically, we encounter a

significant obstacle that we call the singularity problem.6�8

This is caused by the Coulomb potential that is included in

the Hamiltonians of atoms and molecules. The nuclear�
electron attraction potential and the electron�electron re-

pulsion potential become infinite when two particles meet.

For this reason, the integral of the Hamiltonian over an

approximate wave function, ψ~, diverges to plus or minus

infinity when the integerm has a value ofmg 3, as follows.

Æψ~jHmjψ~æ ¼ (¥ (mg3) (12)

The proof is easy, as is shown in Figure 2. The upper part

shows the quantity ψ~*ψ~, which is always finite. The lower

part shows the mth power of the Coulomb potential multi-

plied by the Jacobian with order r2. Near to the origin, the

lower factor becomes minus infinity when m g 3, and

therefore the integral diverges to infinity. This singularity

problem is actually a significant obstacle. For example, in SIC

calculations (eq 11), the nth order function includes the term

Hnψ0. Therefore, the Hamiltonian matrix of this term

FIGURE 1. Convergence process of the SIC calculations to the full-CI
energy using the ordinary Hamiltonian matrix of the minimal STO-6G
basis. FIGURE 2. Illustrative proof of the singularity of the Hamiltonian

integral expressed by eq 12.
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includes H2nþ1, and so diverges even when n = 1. Therefore,

the analytical calculations break down.

Inverse Schr€odinger Equation
The author proposed two different ways to avoid the singu-

larity problem. The first was to introduce the inverse

Schr€odinger equation (ISE),6

H�1ψ ¼ E�1ψ (13)

where H�1 is the inverse Hamiltonian and E�1 is the

inverse of the energy E. This equation is equivalent to

the original SE6 Even infinite values become zero when

we introduce the inverse Hamiltonian.
In the SIC calculations of the full CI shown in Figure 1, we

multiplied the full-CI Hamiltonian matrix many times. This

could be done simply owing to the crudeness of the basis

set: the STO-6G set cannot be a complete set. But, with the

analytic Hamiltonian, this is, in principle, not possible because

of the singularity problem. Therefore, SIC calculations with

ordinary Hamiltonians are problematic, which is a reason for

the slow convergence observed in Figure 1.18 When we take

the inverse of the full-CI Hamiltonian matrix, then it is the

matrix of the inverse Hamiltonian, so what happens when we

performSIC calculationsusing the inverseHamiltonianmatrix?

Figure 3 shows a comparison of SIC calculations of

ozone using ordinary (blue) and inverse (red) Hamiltonian

matrices.18 When we use the inverse Hamiltonian, which is

free from the singularity problem, the convergence speed is

rapid.18 We note that a similar rapid convergence was also

seenwhenweused thegeneral singles anddoubles (GSD) case

with the IC method.19 However, in the analytical case, explicit

expression of the inverse Hamiltonian was difficult to achieve.

Scaled Schr€odinger Equation
The author then introduced the scaled Schr€odinger equation

(SSE)7 to avoid the singularity problem,

g(H � E)ψ ¼ 0 (14)

where g, the scaling function, is a function of the electron

coordinates. It has a positive value everywhere but can

be zero at a singular point, r0, and satisfies limrfr0 gV = a,

with a being a finite value and V the Coulomb potential.

This condition is necessary because gmust not eliminate

the information at a singular point: the existence of a

singularity may cause a problem, but it has a physical

origin. The SSE is equivalent to the SE, because we can

define g�1. We often use a g function with the form

g ¼
X

rAi þ
X

rij (15)

After the introduction of the SSE, we can redefine the SIC

method with

ψnþ1 ¼ [1þ Cng(H � En)]ψn (16)

which differs from the original form (eq 11) only in the

presence of the g term in front of the H term, and this SIC

gives, without encountering the singularity problem, the

exact wave function at convergence.7 Note here that

when we use the g operator given by eq 15, some

diverging functions are also generated, but they should

be discarded because the wave function must be inte-

gratable and finite. When we introduce a local g

operator,20 we can minimize such diverging functions,

and the wave function takes a physically compact

form.

Free Complement Method
When the SIC iterations are performed n times, then the

right-hand side of eq 16 becomes a sum of the analytical

functions having different coefficients. We select all the

independent functions {φi} (i = 1, ..., Mn), give each an

independent coefficient {ci} and write ψnþ1 as

ψnþ1 ¼
XMn

i

ciφi (17)

which is referred to a free complement (FC) method.7 The

function φi is referred to as a “complement” function,

because for sufficiently large n the functions {φi} span

the exact wave function: each φi is an element of the

complete function. The FCmethod was originally referred

to as the free iterative complement (configuration)

FIGURE 3. Convergence process of the SIC calculations of ozone to the
full-CI energy using the ordinary (blue, same as in Figure 1) and inverse
(red) Hamiltonian matrices of the minimal STO-6G basis.18
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interaction (free ICI) method.7 Theword “free” arises from

the fact that we make all the independent analytical

functions free in moving from eq 16 to eq 17. Using the

FCmethod, the convergence to the exactwave function is

accelerated more than in the case of the IC method.7,8

Figure 4 illustrates the use of the FC method for solving

the SE. The FC method describes the exact wave function

using a linear sum of the analytical complement functions

that are produced by applying the Hamiltonian to ψ0 (the g

function is also produced from the Hamiltonian). Thus, in FC

formalism, the Hamiltonian that defines the system pro-

duces the basis (complement) functions for describing its

exact wave function. The functional form of the comple-

ment function is determined by the form of the initial

function, ψ0. Slater-type complement functions are gener-

ated from the Slater-type ψ0, and Gaussian-type comple-

ment functions are generated from the Gaussian-type ψ0.
21

We believe that in this waywe obtain the best possible basis

functions for describing the system. We have no basis-set

nightmares in our formalism. This is true even for the atoms

and molecules in an external field such as a magnetic

field.22,23 The FC wave function has an exact structure at M

sufficiently large and so is a potentially exact wave function.

Therefore, the coefficients, {ci}, should be determined using

only the necessary conditions for the SE.

Figure 4 also applies to the relativistic FC method for

solving the DE,8 with a small modification in that we use the

inverse variational method24 to circumvent the variational

collapse problem. The small and large components are

correctly balanced automatically using the FC method.8

Variational Calculations of the Ground and
Excited States
Applying the VP to the FC wave function given by eq 17, we

obtain the secular equation

(H � ES)C ¼ 0 (18)

where the Hamiltonian and overlap matrix elements, Hij

and Sij, respectively, are given by

Hij ¼
Z
φiHφjdτ, Sij ¼

Z
φiφjdτ (19)

Analytical integrations are possible for a systemwith few

electrons, and below we briefly describe the results for a

helium atom, H2
þ, and H2.

The Helium Atom in Its Ground and Excited States.

Table 1 shows the VP results for a heliumatom calculated by

Nakashima25 of our Institute. The FC method gives the

energy in a chemical accuracy (three digits) in the first order

and in a spectroscopic accuracy (six digits) in the second

order. By continuing the calculations, we obtained the en-

ergy correct to 42 digits25 and even to 45 digits26 for the

variational upper-bound energy. Schwartz also obtained a

highly accurate energy assuming some functional form by

intuition.27 We could calculate the lower-bound energy

correct to 32 digits.28 Therefore, the value shown in Table 1

is absolutely exact up to 32 digits. Thus, in principle, using

FIGURE 4. Flowchart of the FC method for solving the SE.
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the FC-VP method, one can calculate the energy as accu-

rately as desired, as illustrated in Figure 5.

The calculations of the excited states are also interesting.

Drake andYan reportedhighly accurate energies of the excited

states using a double basis set method.29 Table 2 shows the 1s

tons excitationenergyof aheliumatomcalculatedusing the FC

methodat thenonrelativistic limit of the SE in amovingnucleus

(non-BO) treatment.30 These results were obtained using a ψ0

that was equally good for the calculation of both the ground

and excited states. The bold numbers in the second column in

Table 2 are the confidently correct numbers. The third column

gives the experimental excitation energy, and the final column

shows the difference between theory and experiment. Our

results reproduce the experimental values to five digits. This

degree of accuracy is similar to the exact case of the hydrogen

atom explained earlier. Therefore, what do the values in the

final column in Table 2 mean? Are they theoretical errors? No,

they are not. As seen in the first column, our results are reliable

to about 18 digits, giving a nonrelativistic limit. Therefore, the

differences from the experimental values are mainly from

relativistic effects, which are not included in our calculations.

We can further point out the errors in the experimental values.

In the 1s to ns series of excitations, the dependence on nmust

be monotonic, but in the seventh digit, the change is not

monotonic, which means that the experimental error begins

at the seventh digit. Therefore, we conclude that numbers

higher than the eighth digit in the experimental values are

unreliable. Since the theory is accurate to 18 digits as the

solution of the SE, we can use it to predict outcomes. This is a

small example of the role of “accurately predictive quantum

chemistry”.

Figure 6 shows a comparison of the ground and first

excited states of a helium atom calculated using a non-

relativistic SE and a relativistic DE for a fixed nucleus to a

moving nucleus treatment. The SE results are the same as

those given in Table 1. In the nonrelativistic SE case, the

theoretical value approaches the exact value from above,

but in the relativistic case, the theoretical value ap-

proaches the exact value from below. The relativistic

results always give better agreement with the experimen-

tal values. There are still small differences between the full

relativistic DE results and the experimental values, which

are attributed toQED effects. Solving the SE andDE exactly

is important, as this gives a well-defined starting point for

further studies of QED and related effects.

TABLE 1. Ground-State Energy of the Helium Atom Calculated Using the FC-VP Method

order n Mn
a R-optb energyc (au)

0 2 1.827 �2.86537081902671
1 10 1.475 �2.90353681228153
2 34 1.627 �2.90372400732145
3 77 1.679 �2.90372437509416
4 146 1.683 �2.90372437702234

26 20386 (2.17) �2.90372437703411959831115924519440444669684021
27 22709 (2.20) �2.90372437703411959831115924519440444669690537

Schwartz 10259 �2.9037243770341195983111592451944044400495
aNumber of complement functions at order n. bOptimal exponent. cCorrect figures are shown in bold face.

FIGURE 5. Energy of the helium atom calculated with the FC-VP
method.

TABLE 2. Singlet 1s to ns Excitation Energies (au) of HeliumAtom at the
Nonrelativistic SE Level Compared with the Experimental Values

state FC-VP theorya exptl. Δb

2 0.757625970148997 0.7576157626 0.0000102075
3 0.842315475380549 0.8423061388 0.0000093366
4 0.869996740248283 0.8699881582 0.0000085821
5 0.882404831556033 0.8823963512 0.0000084803
6 0.889017646545153 0.8890092212 0.0000084253
7 0.892954413277796 0.8929460170 0.0000083963
8 0.895486211526316 0.8954778303 0.0000083812
9 0.897210038952971 0.89720155 0.0000084869
10 0.898436428853742 0.89842807 0.0000083569
11 0.899339879169496 0.89933146 0.0000084226
12 0.900024574123712 0.90001600 0.0000085738
13 0.900555835611209 0.90054772 0.0000081109
14 0.900976305419445 0.90096823 0.0000080766
15 0.901314778505870 0.90130667 0.0000081051
¥ 0.903578706856692 0.903569891 0.0000088158

aCorrect figures are shown in bold face. bΔ = [theory] � [exptl].
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H2
þ andH2.H2

þ is a uniquemolecule, for which the exact

solution of the SE is known.23Weapplied the FCmethod and

compared it with the exact method and found that the FC

method converges more rapidly than the exact method.23

H2 is a landmark molecule with which Heitler and

London31 initiated quantum chemistry in 1927. There is much

history on the study of this molecule, and it was also the first

molecule to which the FC method was applied.32 We found

that the FC wave function that was generated automatically

with the Hamiltonian was different from the existing wave

functions, and this difference was shown to be physically

important. The calculated result was the best variationally

calculated result at that time, though later on, a better wave

function was obtained by Sims and Hagstrom.33

Integration-Free Solution: Local SE Method
When the VP method is applicable, we can obtain very

accurate results almost automatically, as shown above.

However, this is not always possible, because in general,

analytical integrations over the complement functions given

by eq 19 are difficult and time-consuming. The FC method

does not care about the integratability of the complement

functions produced. This difficulty is referred to as the

integration difficulty.10

However, the potential exactness of our FCwave function

provided a hint on how to overcome this difficulty. Since the

FC wave function of eq 17 has an exact structure, the

coefficients involved should be determined using only the

necessary conditions of the SE. We use a local SE (LSE),

Hψ(rμ) ¼ Eψ(rμ) (20)

at different coordinates rμ as such a necessary condition.

When we introduce the local energy εL(rμ) = Hψ(rμ)/ψ(rμ),

the SE requires the local energy to be flat everywhere at E.

This flatness was clearly depicted using the FC wave

function of the He atom.28 For the FC wave function

given by eq 17, we can rewrite eq 20 as

Ac ¼ EBc (21)

FIGURE 6. Ground and first excited states of the helium atom solved using the SE and DE.

TABLE 3. Results of the FC-LSE Calculations of Small Atoms and Molecules (au)

system no. of electrons n M FC-LSE energy (au) best ref energy (au) ΔEa (kcal/mol)

He 2 6 100 �2.90372452 �2.90372437 �0.000094
Liþ 2 6 100 �7.27991433 �7.27991341 �0.00058
H2 2 5 388 �1.17447477 �1.17447593 0.00075
HeHþ 2 5 388 �2.978718 �2.978706 �0.0075
Li 3 6 1496 �7.478043 �7.478060 0.011
Beþ 3 6 1496 �14.324753 �14.324763 0.006
He2

þ 3 6 2632 �4.994646 �4.994644 �0.0012
Be 4 4 1770 �14.667300 �14.667355 0.034
Bþ 4 4 1770 �24.348847 �24.348883 0.022
LiH 4 4 2645 �8.070516 �8.070553 0.023
B 5 4 15038 �24. 653872 �24.65393 0.036
aΔE = E(FC-LSE) � E(best ref).
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where {Aμi} = {Hφi(rμ)}, {Bμi} = {φi(rμ)}, and c is a column

vector of {ci}. The matrices A and B are highly nonsym-

metric. This method assumes the flatness of the local

energy evenly in the set of sampled points, rμ. The ground

state is the lowest solution, and the excited states are the

higher solutions. The LSEmethod is similar in spirit to the

least-squares local-energy method considered by Frost

many years ago.34

When we multiply BT from the left, we obtain

Hc ¼ ESc (22)

where Sij = ∑Σμφi(rμ)φj(rμ) and S is symmetric and positive

definite. At the integral limit, it becomes the overlap

integral between the complement functions φi and φj.

Similarly, Hij = ∑Σμφi(rμ)Hφj(rμ), which is close to the Hamil-

tonian matrix element but is nonsymmetric. On increas-

ing the number of sampling points, the results should

become closer to the variational results. TheMonte Carlo

method is one choice for sampling, but to prevent its

random behavior, we proposed the local transferable

sampling method.35 This gives continuous results that

are favorable for drawing potential curves and for calcu-

lating potential energy derivatives, such as vibrational

frequencies.
As far as we use the LSE method, any complement

function is acceptable, since we do not calculate their

integrals. Therefore, it is interesting to try many different

analytical functions for ψ0 that produce complement func-

tions by applying the Hamiltonian.

FC-LSE Calculations of Atoms and Molecules
Table 3 shows the results of LSE calculations for small atoms

and molecules.10 We used a 107 Monte Carlo sampling.

Though these systems are small, the calculated energies are

highly accurate. The deviations from the known exact en-

ergies are less than 0.04 kcal/mol. In Table 4, we compare

TABLE 4. Comparison of Full-CI and FC-LSE Calculations for Be and LiHa

full CI free ICI LSE

exact energy (au) basis set M energy (au) ΔEb (kcal/mol) n M energy (au) ΔE,b (kcal/mol)

Be �14.667355 9s9p5d3f2g 3.1 � 106 �14.656767 6.6 4 1770 �14.667300 0.034
LiH �8.070553 11s8p6d1f/9s8p6d1f 4.45 � 107 �8.069336 0.76 4 2645 �8.070516 0.023
aReference 10. bΔE = E(FC-LSE) � E(best ref).

TABLE 5. FC-LSE Calculations of 5�12 Electron Atoms

state no. of electrons Mn FC-LSE energy (au) best ref energy (au)a ΔEa (kcal/mol)
2Cþ(s2p) 5 619 �37.431433 �37.4311 �0.2
4Cþ(sp2) 5 657 �37.234858 (�37.2352)b (0.2)
3C(s2p2) 6 2380 �37.845492 �37.8450 �0.3
5C(sp3) 6 2280 �37.691190 (�37.6914)b (0.1)
4N 7 4332 �54.589932 �54.5892 0.4
3O 8 4885 �75.066821 �75.0673 0.3
2F 9 5508 �99.735340 �99.7338 �0.9
1Ne 10 1021 �128.935032 �128.9376 1.6
2Na 11 3816 �162.252549 �162.2546 �1.3
1Mg 12 2080 �200.061292 �200.053 �5
aΔE = E(FC-LSE) � E(best ref) where the best reference is from ref 37. bEstimated value.

FIGURE 7. Lowest three 1,3Σþ potential energy curves of LiH calculated
by the FC-LSEmethod (green) and the full-CI/ccp-V5Zmethod (magenta)
for interatomic distances between 1.7 and 40.0 au.

TABLE 6. FC-LSE Structural and Vibrational Properties of LiH Compared
with Experimental Values

re, au G0, cm
�1 ΔG0, cm

�1 ΔG1, cm
�1 De, eV Te, eV

X State
FC-LSE 3.013 695.41 1356.87 1312.79 2.521
exptl 3.015 697.94 1359.71 1314.89 2.515

A State
FC-LSE 5.130 136.05 298.42 301.57 1.075 3.296
exptl 4.906 131.30 280.84 312.97 1.076 3.272
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the FC-LSE results for Be and LiH with the full-CI results.10

Though these full-CI results used a highly accurate basis set,

the error still amounted to a fewkcal/mol, but in ourmethod,

the error was about 0.03 kcal/mol. Table 5 shows the results

for atoms with 5�12 electrons. Because carbon is especially

important, we calculated different electronic states for it. Up

to fluorine, we could obtain chemical accuracy, where the

error was less than a kcal/mol. For Ne to Mg, the errors were

larger, though it was not difficult to obtain higher accuracies.

Thus, without carrying out any integration, we could calcu-

late highly accurate energies and wave functions in an

analytical expansion form.

Potential Energy Curves
Potential energy curves and surfaces are of fundamental

importance in chemical studies. Here, we show an example

of the potential curves of the LiH molecule36 in Figure 7.

The lowest two singlet and triplet Σþ potential curves were

calculated using the FC-LSEmethod (green curves), and these

can be compared with those obtained from full-CI calcula-

tions using the cc-pV5Z basis set (magenta). The FC-LSE

curves and the full-CI curves are parallel in all the regions,

although the FC-LSE curves are always lower in energy than

the full-CI curves. The potential properties are summarized

in Table 6 and compared with the experimental values. The

equilibrium distance, re, zero-point vibrational energy, G0,

vibrational level spacing, ΔG0ΔG1, the dissociation energy,

De, and the adiabatic excitation energy between two mini-

ma, Te, show good accordance between theory and experi-

ment. The accordance is lower in the excited state, but the

very shallow nature of the potential curve leads to a fluctua-

tion in the fitted values. These results show the utility of the

FC-LSEmethod for study of chemical reactions in ground and

excited states.

Petaflops Superparallel Computing
In recent developments in computer technology, superpar-

allel computers with petaflops to exaflops speeds are being

produced. Formost conventional quantum chemistry codes,

the adaptation to superparallel computation is not an easy

task. However, for the FC-LSE method, the most time-

consuming step is the sampling step (calculation of the

values of Hφi(rμ) and φi(rμ) in eq 21 for each sampling point

rμ). Because we usually take 105�107 sampling points in our

calculations, and each sampling point has exactly the same

computational task, superparallel computers are suitable for

FC-LSE calculations. In test calculations on N2 molecules, we

used 1152 cores in parallel and obtained an acceleration of

1150 times (99.8% parallel efficiency). We are looking

forward to the open usage of the petaflops computers at

Kobe.

Present and Future
After the discovery of the general theory of solving the SE,

we have investigated and developed different methods and

algorithms inorder to apply this general theory to atomsand

molecules of different sizes and in different situations. The

LSE method is one example that forced us to develop a

sampling-type methodology. The methods described here

are general, and are therefore, in principle, applicable to any

system.However, the algorithmswehave reviewedhere are

the straightforward ones derived from the original theories.

They are still time-consuming to apply to molecules familiar

in everyday chemistry, and it is therefore important to invent

more efficient methods. We are now developing several

ideas in parallel. Further, with the active research of many

scientists who are interested in this subject, we hope this

field is much cultivated and will offer innovative methodol-

ogies that make confident quantitative predictions possible

in the field of chemical science.

I acknowledge Dr. Hiroyuki Nakashima of QCRI for active
collaborations.
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