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The free-complement (FC) method is a general method for solving the Schrödinger equation (SE):
The produced wave function has the potentially exact structure as the solution of the Schrödinger
equation. The variables included are determined either by using the variational principle (FC-VP)
or by imposing the local Schrödinger equations (FC-LSE) at the chosen set of the sampling points.
The latter method, referred to as the local Schrödinger equation (LSE) method, is integral-free and
therefore applicable to any atom and molecule. The purpose of this paper is to formulate the basic
theories of the LSE method and explain their basic features. First, we formulate three variants of
the LSE method, the AB, HS, and HTQ methods, and explain their properties. Then, the natures
of the LSE methods are clarified in some detail using the simple examples of the hydrogen atom
and the Hooke’s atom. Finally, the ideas obtained in this study are applied to solving the SE of the
helium atom highly accurately with the FC-LSE method. The results are very encouraging: we could
get the world’s most accurate energy of the helium atom within the sampling-type methodologies,
which is comparable to those obtained with the FC-VP method. Thus, the FC-LSE method is an easy
and yet a powerful integral-free method for solving the Schrödinger equation of general atoms and
molecules. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4909520]

I. INTRODUCTION

Chemistry and biology are governed by the quantum prin-
ciple described by the Schrödinger equation (SE), relativistic
Dirac equation (DE), and the Pauli principle.1 Therefore, if we
can establish a general method of solving these equations in a
chemical accuracy and in a reasonable speed, we should be able
to predict and even simulate various chemical phenomena. For
this reason, much effort has been devoted in quantum science
to solving the SE as accurately as possible and significant
advancements have been achieved particularly in the recent
decade.2–70 In examining these advancements, it is important
to distinguish different approaches based on the criterion of
whether the central methodology is guaranteed to give the
exact solutions of the SE, or not guaranteed although it is
believed to be highly accurate.

The full configuration interaction (CI) method2–7 is a guar-
anteed method and has often been considered as if it is an
alternative of the SE, partially because the SE was believed
not to be solvable. However, the full CI is exact only within the
basis set used, which is usually far from complete. To apply to
larger systems, many problems, particularly a huge dimension-
ality problem, must be overcome and several important meth-
odologies have been introduced recently: the density matrix
renormalization method,8–12 the full CI quantum Monte Carlo
method,13,14 and related methods15,16 have been developed and
applied even to the large systems with impressive successes.

a)E-mail: h.nakatsuji@qcri.or.jp

In his historical paper on the helium atom, Hylleraas17

introduced explicit r12 terms and obtained very accurate re-
sults. This study is the basis of the explicitly correlated method
that has been developed recently in the fields of the Hylleraas-
CI18–28 and the R12/F1229–36 methods. However, based on
the above criterion, these methods belong to the category of
the non-guaranteed method. Although the Hylleraas-CI has a
structure similar to the exact one55 for the very small atoms like
helium,59 this does not apply to general atoms and molecules.
Actually, it is difficult to assume the exact structure only
with the integrable functions, even for atoms. The R12/F12
methods have achieved dramatic improvements on the basis-
set convergence. In particular, the R12/F12 variants of the
MP2, CCSD, and CCSD(T) methods have provided fairly
accurate results.29–36 However, these methods use the Gaussian
basis sets that do not satisfy the cusp condition and limit to use
only the special two-electron terms such as the linear-r12 and
exp(βr12) terms. Further, the molecular orbital (MO) related
theories have a common difficulty in describing the potential
energy curves along homopolar dissociation reactions.37

The Monte Carlo method has a long history of use in
accurate quantum chemistry.38–48 It avoids integrations and
uses flexible functions that are suitable for describing electron
correlations. The variational Monte Carlo method uses a varia-
tional formula within the sampling methodology. The quantum
Monte Carlo method41–46 often introduces explicitly correlated
terms in the form of totally symmetric Jastrow functions to
avoid computational difficulties due to antisymmetrizations.
The diffusion Monte Carlo method suffers from the theoretical
nodal problem, although it is currently being improved by

0021-9606/2015/142(8)/084117/18/$30.00 142, 084117-1 © 2015 AIP Publishing LLC
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several new approaches such as the released-node Monte Carlo
method.47,48 In most calculations, the Monte Carlo methods do
not assume their basic functions to be guaranteed to converge
to the exact wave function.

In our laboratory, we are developing several different
routes for solving the SE’s of atoms and molecules,49–70 but
they belong to the guaranteed methods in the above criterion.
They have been applied to many small atoms and molecules
including the recent applications to some organic molecules
like ethylene and formaldehyde, which were summarized in
the review articles.67–70

The most representative general theory for solving the SE
is the free complement (FC) theory published in 2004.54 The
FC wave function is generated as follows, using the simplest
iterative complement (SIC) formula given by:

ψn = [1 + Cn−1g (H − En−1)]ψn−1. (1)

It was proven54,55 that this SIC formula leads to the exact wave
function at convergence. H is the Hamiltonian of the system
and g is the scaling function given by

g =

A, i

rA, i +

i, j

ri j (2)

for general molecules without external fields: A denotes nu-
cleus and i, j electrons. In Eq. (1), we start from some approx-
imate wave function ψ0, which we refer to the initial func-
tion. Any approximate wave function is all right as ψ0 if it
has an overlap with the exact wave function. For getting fast
convergence, we usually choose valence bond (VB) or MO
wave function composed of Slater orbitals. The subsequent
iteration is done following Eq. (1): apply gH and g operators
analytically, several times (orders). Then, from the results, we
pick up all independent analytical functions {φi} and express
the exact wave function as

ψ =

i

ciφi. (3)

The basis functions {φi} of our theory are referred to as
complement functions (cf’s), because φi is an element of the
complete functions that span the exact wave function ψ as Eq.
(3) and the above theory was referred to as the FC theory. If
we use a sufficient number of cf’s {φi}, this ψ is guaranteed
to become exact. Although ψ is guaranteed to be exact, the
coefficient ci is not determined yet. We called this situation
“potentially exact”: the FC wave function has a potentially
exact structure. In the FC theory, the Hamiltonian of the system
generates with the initial function ψ0 the analytical cf’s {φi}
that span its exact wave function. Thus, our theory produces
a unique guaranteed basis set for each atom or molecule;
this is very different from the basis set in the conventional
theories. The cf’s are composed of the products of not only
the one-electron terms but also the two-electron terms since the
Hamiltonian is composed of both one- and two-electron terms.
We refer to Figure 4 of our review68 for intuitive understanding.

When all the Hamiltonian and overlap integrals of the cf’s
{φi} are available, we can use the variational principle (VP)
to determine the variables {ci} in the FC wave function and
highly accurate energies are obtained almost automatically.
We call this method FC-variational principle (FC-VP) method.

Actually, this method was proved to give highly accurate ener-
gies as shown for the helium atom,54,59,60 hydrogen molecule
ion,63 hydrogen molecule,56,70 Hooke’s atoms,55,71,72 and the
hydrogen atom under magnetic fields.65 These numerical re-
sults indicate that if the FC-VP method were always possible
for any atom or molecule at a moderate speed, then the dream
of solving the SE and DE for general chemistry has already
been realized. Unfortunately, however, the analytical integrals
over the cf’s are not available for general atoms and molecules:
we called this situation “integration difficulty.” To overcome
this difficulty, we proposed an integral-free approach;58 since
our wave function is potentially exact, the undetermined coeffi-
cients {ci} can be calculated by using only some necessary but
exact conditions. As such conditions, we used the Schrödinger
equation itself locally at the sampled points and referred it as
the local Schrödinger equation (LSE) method. Because of the
simplicity of the method itself, it is applicable to any type of
the cf’s including even the complex ri j terms.

Thus, by combining the FC method with the LSE method,
we obtain a general route for solving the SE. This method
is referred to as the “FC-LSE method” and has the following
features: (i) the FC method is a guaranteed method that con-
verges to the exact wave function— its basis functions called
cf’s are uniquely defined by the Hamiltonian and the initial
function of the system, and (ii) the LSE method is integral-free
and therefore applicable to any atoms and molecules. The LSE
method itself is popular but becomes powerful, we believe,
when it is combined with the guaranteed FC theory. Otherwise,
the LSE method itself would not be so accurate. Thus, the FC-
LSE theory is a promising method that overcomes the principal
problems common to the accurate quantum chemistry theories.

The purpose of this paper is to explain the basic aspects
of the FC-LSE theory and particularly to clarify the nature of
the sampling-type LSE part of the theory. For this purpose,
complex systems were not appropriate and we chose physically
very clear small systems like H, He, etc. To apply this method
to larger systems, we have to understand clearly the basic
physics of our methodology. We note that the FC-LSE method
itself has been applied to many atoms and molecules, from
small atoms and molecules58,68 to small organic compounds
composed of 16 electrons (ethylene and formaldehyde).67–70

Further applications to larger molecules are in progress.70

In the next section, we will introduce the three variants
of the LSE method, the AB, HS, and HTQ methods. The AB
method follows the original concept of the LSE method.58

The HS and HTQ methods are derived from the AB method
(the reverse is not true) and mimics the variational principles,
the normal and inverse53 variation principles, respectively. In
Sec. III, we explain the nature of the LSE method with the
applications to the hydrogen atom and the Hooke’s atom.71,72

For these two systems, the exact solutions of the SE are analyti-
cally known. Therefore, the nature of the LSE method is clearly
explained without ambiguities.

Finally, in Sec. IV, we apply the ideas on the FC-LSE
method obtained here to the accurate calculations of the helium
atom. Some years ago, we have published the highly accurate
FC-VP calculations for the helium atom59,60 with analytical
integrations.73 We reported the energy correct up to 41 digits59

and even 43 digits60 using the logarithmic function and the Ei
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function, respectively. Here, by applying the FC-LSE method,
we will show that we can get highly accurate results compa-
rable to the earlier variational ones. It is important to show
that not only the VP method, but also the LSE method can give
accurate results when combined with the FC method. In the last
section, we briefly give the conclusion of the present study.

II. LOCAL SCHRÖDINGER EQUATION METHOD

The exact wave function must satisfy the SE

(H − E)ψ = 0. (4)

More explicitly, it must satisfy the LSE

Hψ(rµ) = Eψ(rµ) (5)

at any coordinate {rµ} of the system. Further, it must satisfy
the differential Schrödinger equation defined by

∂nHψ
∂qn

= E
∂nψ

∂qn
, (6)

where∂n/∂qn implies the n-th order differentiation with respect
to a parameter q, which is the coordinate rµ or some other
parameters on which the wave function depends explicitly.
From Eq. (5), we obtain

Eloc(rµ) ≡ Hψ(rµ)
ψ(rµ) = E, (7)

where Eloc(rµ) stands for the local energy. The SE requires the
constancy of the local energy over all the coordinates.

Probably, Frost was the first who tried to use the local-
energy constancy, as early as in 1942, to calculate the vari-
ables included in the wave function.74 Mohrenstein75 and Frost
et al.76 further applied this idea to the Hylleraas wave functions
of the helium atom and to the James-Coolidge wave function
of the hydrogen molecule. Now, we know that these choices
were very clever, because these wave functions are certainly
obtained by the FC formalism starting from the simple initial
functions.54,59 However, since then, this method was forgotten,
probably because there were no general methods of producing
the potentially exact wave functions of atoms and molecules.

Below, we formulate three variants of the LSE method,
AB, HS, and HTQ methods. Before that, we further want to note
that the AB method is related to the collocation method used
earlier for solving the SE’s for molecular rotation-vibration
problems.77–81 The HS and HTQ methods would also be similar
to the methods used in the sampling-type methodology38–48

for solving the SE, like the quantum Monte Carlo methods
etc.41–48 However, the point in this paper is that these methods
become powerful accurate methods of solving the SE when
combined with the FC method of generating the potentially
exact wave function. Especially, when we want to solve the
SE, we have to handle the functions for which Hamiltonian and
overlap integrals are difficult to evaluate and therefore, only the
integral-free sampling-type methodologies are useful in this
field. However, in this accurate field, we have another impor-
tant positive fact, that is, when the wave function is potentially
exact, its local energy should be nearly constant; this fact helps
us to improve the accuracy of our methodology even if it is
a sampling type methodology, which is otherwise less clear

and less reliable than the variational principle. The FC-LSE
method stands on this fact to get enough accuracy for doing
chemistry of general molecules. We will explain below the FC-
LSE method in comparison with the variational method and
will see an application example of this methodology that gives
the result of the accuracy comparable to the variational one.

A. AB method

The original idea of the LSE method started from the AB
method.58 Suppose there are Mc unknown coefficients {ci}
in the potentially exact wave function given by Eq. (3). (We
assume the case where the exact wave function is written with a
finite number of cf’s like in the Hooke’s atom case. Otherwise,
this exactness is within some accuracy, say, the chemical accu-
racy.) Then, because this expression is a sufficient expression
for the solution of the SE, we should be able to determine these
variables by using Mc necessary conditions for the solution of
the SE. These Mc necessary conditions must be independent
of each other. As such necessary conditions, we proposed to
use the local SE at the Mc sampling points,58 which is the LSE
method. So, the number of the sampling points Ns is equal to
the number of the variables, Ns = Mc. Inserting the FC wave
function, Eq. (3) into the LSE equation Eq. (5), we obtain

AC = BCE, (8)

where the matrix elements of the square matrices A and B are
given by

Aµi = Hφi(rµ) (9)

and

Bµi = φi(rµ), (10)

respectively. E is a diagonal matrix whose elements are E0,
E1, . . . and C = {c0,c1, · · ·} represents different sets of coeffi-
cients corresponding to different eigenvalues, E0,E1, . . . . The
suffixes 0,1, . . . on E and c denote the ground, first excited, . . .
states. The coefficient vector ck has the elements cki for the k-th
state. We refer to this expression of the LSE method as the “AB
method.”

We can utilize the local differential SE (LDSE) given by
Eq. (6) as well in addition to the LSE given by Eq. (5). When
the aimed property is related to the differentiation of the wave
function, mixed use of the LSE and the LDSE would be a
good idea. The formulations given below are also valid for such
cases. This is true not only for the AB method, but also for the
HS and HTQ methods given below.

The A and B matrices are highly non-symmetric, i repre-
senting a cf and µ a sampling point. They are square matrices.
When they are rectangular, Ns > Mc, we actually solve Eq.
(8) after transforming it into the HS or HTQ methods described
below. The singular value decomposition for rectangular
matrices82 is related to the HS and HTQ methods. Therefore,
we limit here our AB method to the case where the A and B
matrices are square matrices, namely, when Ns is “formally”
equal to Mc. We use “formally” because we may use a linear
combination of the sampling points as a “formal” sampling
point; such case will be explained in the subsequent paper of
this series.
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FIG. 1. (a) Local energy plots of the hydrogen atom calculated by the AB method for n = 4, 6, and 8. The calculated energy E and the H-square error with
integration σ2

int are shown in the figures. (b) Enlarged graphs of (a). The circles represent the local energies at the sampled points: rµ = 1, 2, 3, 4, 5 a.u. for n = 4
for instance. The dotted lines in (a) and (b) represent the exact energy −0.5 a.u. and the calculated energy, respectively.

When the AB method is solved, the local energies at the
sampled points are all equal to the calculated energy E (see
Fig. 1, for example). So, the AB method is equi-local-energy
principle. Since Eq. (5) is satisfied at all the sampling points,
the H-square error explained below becomes zero with the AB
method. Note that this holds only for the set of sampling points
that is used to solve Eq. (8). For different sets of sampling
points, the H-square error is usually non-zero. If the H-square
error is zero for any set of sampling points, then the wave
function is exact.

The AB equation, Eq. (8), is just a matrix representation of
the LSE; it reflects the physics and the mathematical structure
of the SE. As shown below, the HS method is closely related
to the variational method and the HTQ method to the inverse
variation method.53 The HS and HTQ methods are derived from
the AB method, but the converse is not true if Ns > Mc. This
implies that the AB method should have more information than
the other two methods.

B. HS method

We can transform the AB method into another useful
expression. Multiplying BT from the left of Eq. (8), we obtain

HC = SCE, (11)

where H = BTA and S = BTB, both being the square matrices
of the dimension Mc. The matrix elements of the H and S
matrices are given by

Hi j =

Ns
µ

φi(rµ) · Hφ j(rµ) (12)

and

Si j =
Ns
µ

φi(rµ)φ j(rµ), (13)

respectively. Note that here the number of the sampling points
Ns need not to be equal to the number of the cf’s Mc of the FC
wave function; the matrices A and B can be rectangular and
usually we take Ns to be much larger than Mc.

The S matrix is symmetric and positive semi-definite: the
element Si j is analogous to the overlap between the cf’s φi and
φ j. Similarly, the H matrix is analogous to the Hamiltonian
matrix, though it is not symmetric here. We refer to this method
as the HS method. It is solved by the general diagonalization
procedure.82 Different from the AB method, the HS method
has a similarity to the variational method; when the number of
the sampling points is infinity covering all the possible spaces,
the HS equation reduces to the variational equation applied to
the FC wave function. The relation between the local energy
and the energy E in Eq. (11) is given by

E =


µ

�
ψ(rµ)�2 · Eloc(rµ)
µ

�
ψ(rµ)�2

. (14)
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Thus, the energy of the HS method is the weighted average
of the local energies at the sampled points with the weight of
|ψ(rµ)|2 at each sampling point rµ.

In our FC calculations where analytical integrations are
difficult, we have mostly used the HS method with 106-107

sampling points. In the previous publications of the LSE
method,58,68–70 we calculated small atoms and molecules and
the results were fairly good. For Be and LiH, the results of the
FC-LSE calculations were much better than the state-of-the-art
full CI results.58

C. HTQ method

When we multiply AT from the left to Eq. (8), we obtain
QC = HTCE which is transformed to

HTC = QCE−1, (15)

where HT = ATB and Q = ATA. Q is symmetric but HT is not,
and both are square. More explicitly,

HT
i j =

µ

Hφi(rµ) · φ j(rµ) (16)

and

Qi j =

µ

Hφi(rµ) · Hφ j(rµ). (17)

We call this method HTQ method.
The physical meaning of Eq. (15) becomes clear when

it is compared with the inverse variational principle.53 The
variational principle for the energy of the inverse Hamiltonian,

E−1 =
⟨Ψ| H−1 |Ψ⟩

⟨Ψ|Ψ⟩ , (18)

is given by

⟨Ψ| H−1 − E−1 |δΨ⟩ = 0. (19)

Although the inverse Hamiltonian itself is difficult to be handled
analytically, we can eliminate it from the variation principle by
redefining our variational space by83

Ψ = Hψ, (20)

where Ψ is our formal space but our actual free variation is
done for the space of ψ. Then, Eq. (19) is rewritten as

⟨ψ | (H − H2E−1)T |δψ⟩ = 0, (21)

which has the form of Eq. (15). We can expect this method
to give better result than the HS method since Ψ is one rank
higher than ψ in a Kryrov series of space.52,53,83–86 This us-
age of the inverse Hamiltonian was first proposed by Hill
and Krauthauser83 in their study of the relativistic variational
principle. Note that, in the formulation of the inverse Hamil-
tonian,53 we have to shift the Hamiltonian into the positive
Hamiltonian by adding some constant energy εP. We assume
that such an energy shift has already been done for the Hamil-
tonian given by Eqs. (15) to (21). We note that the result
and the convergence speed are dependent on the positive shift
parameter εP.

The merits of introducing the inverse Hamiltonian were
discussed in our previous papers53 for the non-relativistic case,
for the relativistic calculations of solving the Dirac-Coulomb
equation,57 and for the full-CI calculations.52 We further note
that the usage of the variational space defined by Eq. (20) is
difficult in ordinary variational calculations because it requires
the difficult integrals of H2. However, in the sampling method,
this is easy; after Hφi(rµ) and φi(rµ) are evaluated, the calcu-
lations of the HT and Q matrices given by Eqs. (16) and (17)
are straightforward.

D. Importance sampling and the AB, HS, and HTQ
methods

In the HS and HTQ methods, the concept of importance
sampling is useful to obtain good results. This concept comes
from the similarity to the integral method, like the HS method
to the variational principle and the HTQ method to the inverse
variation method. We first choose some distribution function ρ
that mimics the exact distribution ψ ∗ ψ and produces the set
of the sampling points {rν} according to the weight (density)
function ρ by well-known methods.38,39,88 Then, we define the
sampling weight ω(rν) by

ω(rν) = 1
ρ(rν) . (22)

Then, the HS equation given by Eq. (10) becomes, in the
importance sampling case to


i

ci

ν

ω(rν)φ j(rν)Hφi(rν)

= E

i

ci

ν

ω(rν)φ j(rν)φi(rν) (23)

which is dependent on the sampling weightω(rν) because this
equation includes the sum over the sampling points ν produced
by the importance sampling procedure. The same is true for
the HTQ method. Thus, when we use the importance sampling
method, we have to modify the HS and HTQ equations like Eq.
(23) for the HS method. We note, however, that the AB method
does not depend on the weight ω(rν) because the AB method
is not related to the integration method but is related to the SE
itself.

E. Energy and H-square error in the LSE method

The H-square error is a significant quantity that defines the
exactness of the wave function and is given by

σ2
int = ⟨ψ | (H − Eint)2 |ψ⟩ (24)

in an integral form with the normalized wave function ψ,49,87

where the subscript “int” represents “integration” and Eint is
the energy expectation value given by, Eint = ⟨ψ | H |ψ⟩. σ2

int
is always positive and becomes zero only for the exact wave
function.
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In the sampling procedure, the H-square error σ2 over the
sampled points is defined by

σ2 =


ν
ω(rν) · |(H − E)ψ(rν)|2
ν
ω(rν) · |ψ(rν)|2

=

Mc
i=1

Mc
j=1

ci
�
Qi j − E(Hi j +HT

i j) + E2Si j

�
cj

Mc
i=1

Mc
j=1

ciSi jcj

(25)

with the energy given by

E =


ν
ω(rν) · ψ(rν) · Hψ(rν)
ν
ω(rν) · |ψ(rν)|2

=

Mc
i=1

Mc
j=1

ciHi jcj

Mc
i=1

Mc
j=1

ciSi jcj

. (26)

In the HS method, the eigenvalue E of Eq. (11) is equal to the
E of Eq. (26). In the HTQ method, however, the eigenvalue E of
Eq. (15) is slightly different from the E of Eq. (26), the values
shown in this paper are from Eq. (15).

For the exact wave function, σ2 must be zero with any set
of the sampling points. However, even if σ2 is zero with some
set of the sampling points, ψ is not necessarily exact. Whereas
the evaluation of σ2

int by the integration method is generally
difficult due to the existence of the H2 operator,σ2 can be easily
evaluated by the sampling method. So, we utilize this quantity
to see the accuracy of the wave function.

III. NATURE OF THE LSE METHOD

We investigate here, the nature of the FC-LSE method for
the potentially exact wave functions of the hydrogen atom and
the Hooke’s atom. Since the exact wave function is well known,
the nature of the LSE method is clearly demonstrated.

A. Hydrogen atom

A detailed explanation of the FC-VP method was given
before62 for the hydrogen atom. Here, we explain the nature of
the FC-LSE method. First, we create the cf’s using the Hamil-
tonian, g function, and the initial wave function, H = − 1

2
d2

dr2

− 1
r

d
dr
− 1

r
, g = r and ψ0 = exp(−αr) (α = 1.2), respectively.

We perform the iterative complement (IC) calculations to order
n and obtain the FC wave function as

ψn =

n+1
i=1

cir i−1 exp(−αr), (27)

where φi = r i−1 exp(−αr). The number of the cf’s is Mc

= n + 1. Now, we calculate the coefficients {ci} using the three
different LSE methods, AB, HS, and HTQ methods.

1. AB method

In the AB method, the number of the sampling points is
the same as the number of the cf’s. We chose the order of
the FC function to be n = 3 to 15 and the sampling points
to be equally distributed within r = 0-5 a.u. as rµ = 5µ/(n
+ 1) (µ = 1, 2, . . . , n + 1). Table I shows the calculated en-
ergy, energy difference ∆E from the exact value, −0.5 a.u.,
and the H-square error σ2 (total variance). We note that the
H-square error calculated from the AB method is always zero
by the definition since the local energies at the sampled points
are always the calculated energy due to the equi-local energy
principle. Therefore, we also show the H-square error σint

2

calculated by the integral method from the AB wave function
obtained here, which is meaningful as a measure of the exact-
ness of the wave function. The bold face in the energy indicates
the correct number.

Even with such arbitrarily selected sampling points, the
integral value of H-square error σint

2 smoothly approaches to

TABLE I. Energy convergence for the hydrogen atom calculated by the AB method. Equally distributed sampling
points between r = 0 and 5 a.u. were used, rµ = 5µ/(n+1)(µ = 1, 2, . . ., n+1). The H-square errors calculated
by the sampling method σ2 and by the integration method σ2

int are also given.

H-square error

na Mc
b Energy (a.u.) ∆E (a.u.)c σ2 σ2

int

3 4 −0.491 462 5d 8.54×10−3 0 1.06×10−3

4 5 −0.500 465 52 −4.66×10−4 0 5.29×10−6

5 6 −0.499 973 066 2.69×10−5 0 2.77×10−8

6 7 −0.500 001 306 7 −1.31×10−6 0 9.92×10−11

7 8 −0.499 999 942 511 5.75×10−8 0 2.81×10−13

8 9 −0.500 000 002 049 4 −2.05×10−9 0 1.28×10−15

9 10 −0.499 999 999 910 511 8.95×10−11 0 2.71×10−17

10 11 −0.500 000 000 000 743 41 −7.43×10−13 0 8.99×10−19

11 12 −0.499 999 999 999 747 07 2.53×10−13 0 3.00×10−20

12 13 −0.499 999 999 999 981 684 1.83×10−14 0 9.85×10−22

13 14 −0.499 999 999 999 997 771 6 2.23×10−15 0 3.19×10−23

14 15 −0.499 999 999 999 999 768 57 2.31×10−16 0 1.02×10−24

15 16 −0.499 999 999 999 999 975 482 2.45×10−17 0 3.21×10−26

Exact −0.5 0 0 0

aOrder of the FC method.
bNumber of the cf’s.
cDifference between the calculated energy and the exact energy, −0.5 a.u.
dThroughout this paper, the boldface figure shows the value that is definitely correct.
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zero as n increases. The energy also smoothly converges to the
exact value as the order n increases. The energy of the AB
method can be both higher and lower than the exact energy,
but as n increases, the energy is always higher than the exact
energy, like in the variational case.

Figure 1(a) shows the plots of the local energy defined by
Eq. (7) for n = 4, 6, and 8. The local energy at n = 4 (Mc = 5)
is lower than −0.5 a.u., at n = 6 (Mc = 7) it is much improved
and looks to lie on the exact energy line except for the region
close to the nucleus, and at n = 8 (Mc = 9) the local energy
lies on the exact line everywhere within 0–5 a.u., though we do
not impose any restriction on the wave function to satisfy the
electron-nucleus cusp condition. Thus, as the order increases,
the wave function certainly approaches the exact one. This
behavior is very similar to the one reported previously for the
helium atom.59 Note that this result was obtained with only a
few sampling points without doing any integral calculation.

Figure 1(b) is the enlarged graph of Figure 1(a) and shows
the confirmation of the equi-local-energy at the sampled points
in the AB method. The local energy curve crosses the hori-
zontal axis of the calculated energy (−0.500 465 52 a.u. for n
= 4,−0.500 001 306 7 a.u. for n = 6, and−0.500 000 002 049 4
a.u. for n = 8) exactly at the sampled points, five times for
n = 4, seven times for n = 6, and nine times for n = 8. Note
in Figure 1(b) the vertical axis is scaled up as n increases.

From Figure 1(b), one may imagine that the local energy
may diverge to minus infinity as r increases, but this is not the

case; the local energy curves converge to the value −0.72 at
r → ∞ for all the cases of Figure 1(b). When a single Slater
function is used as the initial function, the FC wave function
ψn given by Eq. (27) is produced. Using this ψn, we obtain the
asymptotic value of the local energy as

lim
r→∞

Hψn

ψn
=

dm

cm
= −α

2

2
, (28)

where m is the maximum order of r and cm and dm are the
coefficients of rm in ψn and Hψn, respectively. Thus, the
asymptotic value is finite and depends on the orbital exponent.
It is −0.72 when α = 1.2, the present case. Of course, it is
−0.5 a.u. when α = 1.0. In the case of the single Gaussian
function in the initial function, the maximum order of r in
Hψn increases to m + 2 due to the differentiation in the kinetic
operator, and we obtain

lim
r→∞

Hψn

ψn
= lim

r→∞

dm+2r2

cm
= lim

r→∞

�
−2α2r2� = −∞. (29)

Thus, in the case of the Gaussian function, the local energy
diverges at r → ∞.

We next show that the LSE calculation can reproduce the
variational result. Figure 2(a) is the plot of the local energy
calculated from the variational wave function at n = 4 against
r . Since the 5-term variational wave function is not exact,
its local energy is not flat. From this figure, we can identify
the coordinates ri that give the local energy that is equal to

FIG. 2. (a) Local energy plot for the variational wave function of the hydrogen atom for n = 4. (b) Local energy plots for the wave functions calculated with the
HS method at n = 4 by using three different sets of the sampling points shown by the red cross points. The dotted lines represent the exact energy −0.5 a.u. The
calculated energy E and the H-square error σ2

int calculated by the integration method are shown in the figures.
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TABLE II. Sampling points for the AB method that reproduce the variational results for the hydrogen atom at
n = 4 (Mc = 5).

Variational AB method

Sampling points: rµ a.u. ∞ 0.257, 0.880, 1.921, 3.499, 5.942

All five eigenvalues

−0.499 999 998 867 −0.499 999 998 867
−0.113 311 447 870 −0.113 311 447 870

0.158 457 476 265 0.158 457 476 265
1.064 741 960 618 1.064 741 960 618
6.590 112 009 854 6.590 112 009 854

the variational energy at rµ = 0.257, 0.880, 1.921, 3.499, and
5.942 a.u. Then, when we performed the AB calculation using
these 5 sampling points, we obtained the LSE energy ELSE

= −0.499 999 998 867 a.u. that is completely equal to the
variational energy, as shown in Table II. Moreover, the energies
of the excited states obtained at the same time all agreed
between the variational and this LSE calculations. Though
this calculation is possible only after we know the variational
results and therefore meaningless in practice, it is nice to know
that the LSE playground includes even the variational results.

2. HS method

Next, let us consider the case where the number of the
sampling points is larger than the number of the unknown
coefficients {ci}. In this case, we use the HS or HTQ methods
and here we explain the HS method. We prepared 50 sampl-
ing points distributed according to the weight function ρ
= |exp(−βr)|2 using the local sampling method.88 Three
different sets of the sampling points were tested using β
= 1.6, 1.2, and 0.8, which generate the sampling points in the
inner, middle (well-spread), and outer regions, respectively.
The sampling weight ω(rµ) of Eq. (22) is also used in the
calculations. Table III shows the convergence behavior of the

calculated energy to −0.5 and of the H-square errors (σ2 and
σ2

int) to zero as the order increases. The sampling points were
generated using β = 1.2. Both the energy and H-square errors
rapidly converge to the exact values as in the case of the AB
method. σ2 is not zero in the HS method since the number
of the sampling points (necessary conditions) is larger than
that of the unknowns. However, it is always smaller than σ2

int
and especially small in the higher orders since the number of
the sampling points (50 points) is still quite small to mimic
the integration. ∆E and σ2

int in the HS method are slightly
better than those in the AB method at small orders up to
n = 8, but those in the AB method become better than those
in the HS method at higher orders. Thus, the AB method
effectively works well and becomes powerful as the wave
function becomes close to the potential exactness.

Figure 2(b) represents the local energy plots of ψ4 at n = 4
(Mc = 5) calculated by using the three different sets of the
sampling points that lie in the inner, middle (well-spread),
and outer regions (β = 1.6, 1.2, and 0.8). Comparing these
three plots, one notices that the flatness of the local energy
is realized well in the region of the sampled points. With the
inner sampling, the local energy is well flat around the exact
energy in the inner region but it deviates from the flat line at
r > 3 a.u. With the middle- and outer-region samplings, the

TABLE III. Energy convergence for the hydrogen atom with the HS method. 50 sampling points distributed
according to a weight function ρ = |exp(−βr )|2 (β = 1.2) were used. The H-square errors calculated by the
sampling method σ2 and by the integration method σ2

int are also given.

H-square error

na Mc
b Energy (a.u.) ∆E (a.u.)c σ2 σ2

int

3 4 −0.499 932 436 6.76×10−5 9.35×10−9 2.88×10−7

4 5 −0.499 994 355 6 5.64×10−6 1.22×10−11 6.22×10−9

5 6 −0.499 999 096 0 9.04×10−7 9.18×10−15 2.19×10−10

6 7 −0.499 999 894 50 1.05×10−7 4.41×10−18 7.92×10−12

7 8 −0.499 999 987 188 1.28×10−8 1.44×10−21 2.79×10−13

8 9 −0.499 999 998 515 6 1.48×10−9 3.34×10−25 9.62×10−15

9 10 −0.499 999 999 831 06 1.69×10−10 5.71×10−29 3.25×10−16

10 11 −0.499 999 999 981 141 1.89×10−11 7.41×10−33 1.08×10−17

11 12 −0.499 999 999 997 927 1 2.07×10−12 7.46×10−37 3.53×10−19

12 13 −0.499 999 999 999 775 18 2.25×10−13 5.94×10−41 1.14×10−20

13 14 −0.499 999 999 999 975 896 2.41×10−14 3.79×10−45 3.66×10−22

14 15 −0.499 999 999 999 997 441 8 2.56×10−15 1.97×10−49 1.16×10−23

15 16 −0.499 999 999 999 999 730 90 2.69×10−16 8.39×10−54 3.65×10−25

Exact −0.5 0 0 0

aOrder of the FC method.
bNumber of the cf’s.
cDifference between the calculated energy and the exact energy, −0.5 a.u.
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flat regions get longer. One also notices that the local energy
at the sampled region is even better than that of the variational
case shown in Figure 2(a). Moreover, σ2

int with the inner- and
middle-region samplings are better than the variational one.
Thus, although the variational calculation can provide accurate
energy, the LSE method is able to give better quality wave
function than the variational one in the well-sampled region.

3. HTQ method

We also applied the HTQ method to the same FC wave
function of the hydrogen atom. The same set of the sampling
points was used as that of the HS method. Table IV shows
the results that are similar to those of Table I (AB method)
and Table III (HS method). The HTQ method, however, needs
an additional positive energy shift parameter εP, which we
chose εP = 0.6 and 1.0 a.u. There were almost no significant
differences in the energy and the H-square errors between the
HTQ and HS-methods, but for σ2, the HTQ method always
gave smaller values than the HS method; in the HTQ method
the H-square matrix is diagonalized, which is related to the σ2

minimization method. Therefore, the HTQ method provides a
better quality wave function than the HS method. When we
compare the results of the different energy shifts, εP = 0.6 and
1.0 a.u., their dependencies were small. In general, however,
the result slightly depends on the shifted energy, especially
when the order n of the wave function is small.

B. Hooke’s atom

The Hooke’s atom is a model system for which the exact
wave function is known in a closed form at some special condi-
tions.71,72 It is a two-electron system where the Coulomb poten-
tial function of the helium atom is replaced by the harmonic
potential. There are several variations: (i) only the nuclear-
electron potential is replaced by the harmonic potential, −Z/r1
− Z/r2 → k/2 ·

�
r2

1 + r2
2

�
and (ii) the electron-electron poten-

tial is also replaced by the harmonic potential, 1/r12 → k ′/2 ·
r2

12, where Z is a nuclear charge, and k and k ′ are the force
constants of the harmonic potentials. We here treat only the first
case, and its Hamiltonian is given by

H = −1
2
�
∇2

1 + ∇
2
2

�
+

k
2
�
r2

1 + r2
2

�
+

1
r12

. (30)

The exact wave function is known in a closed form for k = 1/4
and 1/100:71,72 they are given by

ψexact
k=1/4 =


1 +

1
2

r12


· exp


−1

4
�
r2

1 + r2
2

�
(31)

and

ψexact
k=1/100 =


1 +

1
2

r12 +
1

20
r2

12


· exp


− 1

20
�
r2

1 + r2
2

�
, (32)

respectively.
We took the initial function and g function by ψ0

= exp
�
−α

�
r2

1 + r2
2

��
and g = r12 because the singularity exists

only in the electron-electron potential. For k = 1/4 and 1/100,
α = 1/4 and 1/20 were employed, respectively, which are
the exact values of the exponents in the Gaussian functions.

When one performs the SIC calculation according to Eq. (1),
one notices that no more functions are generated when n > 1
and n > 2 for k = 1/4 and 1/100, respectively. This indicates
that the wave function has arrived the potentially exact one,
which is

ψexact
k=1/4 = [1 + c1r12] · exp


−1

4
�
r2

1 + r2
2

�
, (31a)

for k = 1/4 and

ψexact
k=1/100 =

�
1 + c1r12 + c2r2

12

�
· exp


− 1

20
�
r2

1 + r2
2

�
, (32a)

for k = 1/100. The potentially exact FC wave function has the
same functional form as Eqs. (31) or (32), but the coefficients
of the cf’s are unknown. In this situation, any sampling point
(necessary condition) should be able to give the exact wave
function. We performed the AB method using the sampling
points r1 = r2 = r12 = 1/2 · k (k = 1, 2, . . . , Mc) that form an
equilateral triangle and summarized in Table V the calculated
energies and coefficients {ci} of the cf’s of the FC wave func-
tions. In the case of k = 1/4, the exact energy and coefficients
were obtained at n ≥ 1 and Mc does not increase further. Simi-
larly, in the case of k = 1/100, the exact solution was obtained
at n ≥ 2. The exact coefficient 1/2 for the cf, r12e−α(r2

1+r
2
2), can

also be determined by the electron-electron cusp condition,84

which is another necessary condition. If the wave function is
potentially exact, one can combine different necessary condi-
tions, not only the LSE condition, but also the general cusp
condition,84–92 asymptotic condition at infinity, differentiated
SE of Eq. (6), etc.

It would be necessary to remark that the above examples
of the FC wave functions of Eqs. (31a) and (32a) are the special
cases of choosing the initial function ψ0 in the Gaussian form.
For example, when we choose the Slater function for ψ0, the
FC wave function will not terminate at some order and will be
composed of the infinite terms. This is similar to the case of the
hydrogen atom starting from the Gaussian initial function.62

IV. ACCURATE FC-LSE CALCULATION
OF THE HELIUM ATOM

For the helium atom, we already have published extremely
accurate solutions59,60 of the SE using the FC-VP method.
In this section, we want to show that by applying the results
obtained in this study, it is possible to calculate the highly
accurate wave function and energy of this atom even with
the sampling type LSE method applied to the same FC wave
function.

A. Free complement wave function

In the FC method of generating the cf’s, we employed the
initial function given by

ψ0 = [1 + log(s + u)] exp(−αs), (33)

where the Hylleraas coordinates, s = r1 + r2, t = r1 − r2, and
u = r12 are used as in our previous paper.59 The logarithm
function was employed for an efficient description of the
three-particle coalescence.93–95 We employed the g function
given by
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TABLE IV. Energy convergence of the hydrogen atom calculated by the HTQ method. The positive-energy shifts εp = 0.6 and 1.2 a.u. were employed. 50 sampling points distributed according to a weight function
ρ = |exp(−βr )|2 were used. The H-square errors calculated by the sampling method σ2 and by the integration method σ2

int are also given.

εp = 0.6 a.u. εp = 1.0 a.u.

H-square error H-square error

na Mc
b Energy (a.u.) ∆E (a.u.)c σ2 σ2

int Energy (a.u.) ∆E (a.u.)c σ2 σ2
int

3 4 −0.499 933 356 6.66×10−5 5.53×10−9 2.32×10−7 −0.499 933 928 6.61×10−5 5.58×10−9 4.33×10−7

4 5 −0.499 993 019 5 6.98×10−6 7.56×10−12 6.95×10−9 −0.499 993 140 5 6.86×10−6 7.60×10−12 1.65×10−8

5 6 −0.499 999 019 66 9.80×10−7 5.93×10−15 2.47×10−10 −0.499 999 026 72 9.73×10−7 5.95×10−15 5.96×10−10

6 7 −0.499 999 884 56 1.15×10−7 2.94×10−18 8.74×10−12 −0.499 999 885 22 1.15×10−7 2.95×10−18 2.09×10−11

7 8 −0.499 999 986 262 1.37×10−8 9.86×10−22 3.03×10−13 −0.499 999 986 314 1.37×10−8 9.87×10−22 7.17×10−13

8 9 −0.499 999 998 422 5 1.58×10−9 2.34×10−25 1.03×10−14 −0.499 999 998 427 0 1.57×10−9 2.34×10−25 2.41×10−14

9 10 −0.499 999 999 822 00 1.78×10−10 4.10×10−29 3.44×10−16 −0.499 999 999 822 38 1.78×10−10 4.10×10−29 7.95×10−16

10 11 −0.499 999 999 980 263 1.97×10−11 5.42×10−33 1.13×10−17 −0.499 999 999 980 296 1.97×10−11 5.42×10−33 2.59×10−17

11 12 −0.499 999 999 997 842 6 2.16×10−12 5.55×10−37 3.69×10−19 −0.499 999 999 997 845 4 2.15×10−12 5.55×10−37 8.35×10−19

12 13 −0.499 999 999 999 767 10 2.33×10−13 4.49×10−41 1.19×10−20 −0.499 999 999 999 767 35 2.33×10−13 4.49×10−41 2.66×10−20

13 14 −0.499 999 999 999 975 129 2.49×10−14 2.91×10−45 3.78×10−22 −0.499 999 999 999 975 150 2.48×10−14 2.91×10−45 8.43×10−22

14 15 −0.499 999 999 999 997 369 3 2.63×10−15 1.53×10−49 1.20×10−23 −0.499 999 999 999 997 371 1 2.63×10−15 1.53×10−49 2.65×10−23

15 16 −0.499 999 999 999 999 724 08 2.76×10−16 6.62×10−54 3.75×10−25 −0.499 999 999 999 999 724 24 2.76×10−16 6.62×10−54 8.26×10−25

Exact −0.5 0 0 0 −0.5 0 0 0

aOrder of the FC method.
bNumber of the complement functions.
cDifference between the calculated energy and the exact energy, −0.5 a.u.
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TABLE V. Energy and the coefficients of the cf’s of the FC wave functions of the Hooke’s atom for the Hamilto-
nian of Eq. (30). The AB method was employed with the sampling points r1= r2= r12= 1/2 ·k (k = 1,2, . . ., Mc)
forming an equilateral triangle.

{ci}c

na Mc
b Energy (a.u.) e−α(r2

1+r
2
2)d r12e

−α(r2
1+r

2
2)d r2

12e
−α(r2

1+r
2
2)d

K = 1/4
0 1 3.5 1
1 2 2.0 1 1/2
2 2 2.0 1 1/2

Exact 2.0

K = 1/100
0 1 2.3 1
1 2 0.640 249 1 0.531 950
2 3 0.5 1 1/2 1/20
3 3 0.5 1 1/2 1/20

Exact 0.5

aOrder of the FC method.
bNumber of the cf’s.
cThe coefficient ofψ0= e

−α
(
r2

1+r
2
2
)

is set to unity.
dcf’s.

g = − 1
VNe
+

1
Vee
=

s2 − t2

4sz
+ u, (34)

where VNe represents the nucleus-electron attraction potential
and Vee is the electron-electron repulsive potential. The resul-
tant FC wave function at order n has the form

ψn =

Mc
i=(a,b,c,d)

cisatbuc[ln(s + u)]d exp(−αs), (35)

where both a and c are integers including negative ones. This
FC wave function is the same as that used in the FC-VP
calculation and gave the energy correct to 42 digits.59 For
the present case, however, since the functions using negative
integers of c were not very significant, their functions were
neglected. b runs over only the positive even integer and d
takes zero or unity. The index (a,b,c,d) is related to the order
n. Its range is specified as satisfying the following equalities
and inequalities: (i)−2n ≤ a < −n, 0 ≤ c ≤ 2n + a, 0 ≤ a + b
+ c ≤ 2n + a − c, d = 0,1 (In case c = n, b = 0, and d = 0),
(ii) −n ≤ a ≤ −1, 0 ≤ c ≤ n, 0 ≤ a + b + c ≤ min(n,2n + a
− c), d = 0,1 (In case c = n, b = 0, and d = 0), (iii) 0 ≤ a ≤ n,
0 ≤ a + b + c ≤ n, d = 0,1, and (iv) In case n = 1, (a,b,c,d)

= (−2,2,0,1) is eliminated. α is an exponent of the Slater func-
tion and we used the optimal values59 for different orders n.

Each cf is given by φi = φ(a,b,c,d) = satbuc[ln(s + u)]d
exp(−αs). We note that the cf with the logarithm term and/or
negative powers of a has large amplitudes close to the nucleus.
On the other hand, the functions having large positive powers
a, b, and c are quite diffuse. As increasing the order n, a large
number of such functions are generated. Thus, the present cf’s
cover quite a wide region from the nucleus to the outer region.

B. Sampling points

As seen from Fig. 2 for the hydrogen atom, a clever choice
of the set of the sampling points is important in the practical
calculations. Generally speaking, the distribution of the sampl-
ing points is recommended to be similar to the amplitude of the
wave function to be calculated.38

We employed the local sampling method,88 where the
sampling points were generated according to the several dif-
ferent sets of ρ = |exp(−βr)|2. The exponents β used in the
generation of the sampling points are summarized in Ta-
ble VI. To investigate the dependence on the sampling-points

TABLE VI. Definition of the five different sampling sets: their exponents β and the numbers of the sampling points.

Sampling set
Number of the total sampling

points Exponents β (the number of the points)

(i) 1×106 1.6875a (1×106)
(ii) 2×106 (i) +5.0, 10.0, 20.0, 30.0, 50.0 (each 2×105)
(iii) 2×106 (i) +1.2, 0.8, 0.4, 0.2, 0.1 (each 2×105)
(iv) 5×106 (i) +3.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 80.0, 100.0, 120.0, 140.0,

1.2, 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01 (each 2×105)
(v) 6×106 (iv) +[1.6875,10],b [1.6875,30], [1.6875,60], [1.6875,100], [1.6875,0.8],

[1.6875,0.4], [1.6875,0.2], [1.6875,0.1],
[30,0,4], [60,0.2] (each 105)

aSame β values are used for electrons 1 and 2.
bDifferent β values in the square bracket are used for electrons 1 and 2.
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distribution, we examined five different sets of the sampling
points. Sampling set (i) is the simplest case composed of the
106 points according to the single β = 27/16 = 1.6875, which
is energetically optimal for the single Slater wave function of
the ground-state helium atom.59 Set (ii) is composed of the
five different sets of 2 × 105 points generated by β = 5.0, 10.0,
20.0, 30.0, 50.0 in addition to set (i), and the total number of the
points is 2 × 106. Thus, set (ii) covers the region close to the nu-
cleus. Similarly, set (iii) covers the outside area: β = 1.2, 0.8,
0.4, 0.2, 0.1 (each 2 × 105) in addition to set (i). It is composed
of 2 × 106 points. Set (iv) includes wider inside and outside
regions by β = 3.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 80.0,
100.0, 120.0, 140.0, 1.2, 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01 (each
2 × 105) in addition to set (i). It is composed of 5 × 106 points.
Finally, set (v) includes the different orbital effects for electrons
1 and 2 by [β1, β2] = [1.6875,10], [1.6875,30], [1.6875,60],
[1.6875,100], [1.6875,0.8], [1.6875,0.4], [1.6875,0.2],
[1.6875,0.1], [30,0,4], [60,0.2] (each 105) in addition to set (v)
and total 6 × 106 points. Thus, set (i) is an ordinary one and set
(v) is the widest one that covers both regions of nuclear and
outside regions.

C. FC-LSE calculations

The FC-LSE calculations of the helium atom were per-
formed using the different sets of sampling points given above.
To guarantee the numerical accuracy beyond double preci-
sion, all the calculations were performed in the 160 digits
precision using the GMP library.96 We employed the FC wave
functions given by Eq. (35), which are the same as those in
our previous study,59 where we had performed the FC-VP
calculations and obtained the extremely accurate energy, local
energy, and H-square error σint

2. Their variational energies,
the plots of the local energy, and the H-square error,σint

2 were
summarized,59,61 which are used as the references to examine
the accuracy of the LSE calculations shown below.

We first performed the FC-LSE calculation using the HS
method with the sampling set (i). Table VII summaries the

energy E, the energy difference ∆E from the exact energy (∆E
= E − Eexact), and the H-square error σ2 calculated by the
sampling method. As increasing the order n, the energy con-
verges to the exact one and σ2 also rapidly converges to
zero. At n = 11 (Mc = 1861), ∆E was 4.38 × 10−9 a.u. and
thus, the accurate absolute energy correct to nano hartree
was obtained without doing any integral evaluation. However,
when we compare the results at n = 9 and n = 11, almost no
improvement could be obtained. Therefore, we stopped the
calculations at n = 11 with this sampling set (i).

To investigate the reason why further improvements could
not be obtained at n = 11 above, we examined the other sets of
the sampling points. Table VIII summarizes the results calcu-
lated with the sampling sets (i) to (v) at n = 5 (Mc = 247) and
n = 11 (Mc = 1861) with the HS method. At n = 5, with set
(ii), the result was much improved than the case of set (i); the
sampling points close to the nucleus were important because
the cf’s include the logarithm and negative powers of a (see Eq.
(35)). On the other hand, set (iii), i.e., diffuse sampling points,
did not bring any significant improvement since the diffuse
cf’s were not much included in the cf’s generated at n = 5. No
further dramatic improvements could be obtained with set (iv)
and (v) even though the sampling space was enlarged. Thus, set
(i) was not optimal but set (ii) was suitable for the cf’s at n = 5.
On the other hand, at n = 11, we could not obtain an improve-
ment with set (ii) but a moderate improvement was obtained
with set (iii). This implies that the diffuse sampling points are
energetically more important than the sampling points close
to the nucleus for the cf’s at n = 11. Further improvement
was obtained with set (iv). This indicates that it is important
to include the sampling points for both regions; close to the
nucleus and diffuse area. Set (v) brought a slight improvement
over set (iv) through the effect of the different densities for the
different electrons: ∆E = −5.45 × 10−16 a.u., i.e., more than
15 digits (femto hartree) accuracy was accomplished with set
(v). We note that the improvement in the calculated energy in
Table VI from above to below may partially reflect the increase
in the number of the sampling points.

TABLE VII. Energy, energy difference ∆E , and H-square error σ2 of the FC-LSE wave functions of the Hamiltonian calculated by the HS method with
sampling set (i) (106 points) and (v) (6×106 points).

Sampling set (i) Sampling set (v)

na Mc
b Energy (a.u.) ∆E (a.u.)c

H-square error
σ2 Energy (a.u.) ∆E (a.u.)c

H-square error
σ2

3 77 −2.903 725 106 7 −7.30×10−7 1.20×10−6 −2.903 724 253 89 1.23×10−7 4.36×10−5

5 247 −2.903 724 626 99 −2.50×10−7 1.49×10−11 −2.903 724 379 666 9 −2.63×10−9 1.96×10−9

7 569 −2.903 724 361 814 1.52×10−8 7.01×10−16 −2.903 724 377 033 867 1 2.52×10−13 1.13×10−12

9 1091 −2.903 724 371 678 3 5.36×10−9 2.16×10−19 −2.903 724 377 034 102 002 1.76×10−14 9.77×10−17

11 1861 −2.903 724 372 649 2 4.38×10−9 7.08×10−23 −2.903 724 377 034 120 143 −5.45×10−16 2.71×10−20

13 2927 −2.903 724 377 034 119 851 25 −2.53×10−16 1.67×10−23

15 4337 −2.903 724 377 034 119 594 481 6 3.83×10−18 3.74×10−26

17 6139 −2.903 724 377 034 119 598 320 846 −9.69×10−21 2.59×10−28

Exact
energyd

−2.903 724 377 034 119 −2.903 724 377 034 119 598 311 159

aOrder of the FC method.
bNumber of the cf’s.
cEnergy difference ∆E = E −Eexact between the calculated energy E and the exact energy Eexact.
dThe variationally best energy was used for Eexact in Refs. 59 and 60.
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TABLE VIII. Examinations of the appropriate sampling points for the helium wave functions of n = 5 and n = 11
using five different sampling sets defined in Table VI. Energy, energy difference ∆E , and H-square errorσ2 of the
FC-LSE wave functions calculated by the HS method are given for n = 5 (Mc = 247) and n = 11 (Mc = 1861).

Sampling seta Energy (a.u.) ∆E (a.u.)b H-square errorσ2

n = 5 (Mc = 247)c

(i) −2.903 724 626 99 −2.50×10−7 1.49×10−11

(ii) −2.903 724 374 324 5 2.71×10−9 1.22×10−9

(iii) −2.903 724 502 81 −1.26×10−7 2.55×10−11

(iv) −2.903 724 379 099 5 −2.07×10−9 1.94×10−9

(v) −2.903 724 379 666 9 −2.63×10−9 1.96×10−9

n = 11 (Mc = 1861)c

(i) −2.903 724 372 649 2 4.38×10−9 7.08×10−23

(ii) −2.903 724 372 525 8 4.51×10−9 1.59×10−21

(iii) −2.903 724 377 085 544 −5.14×10−11 1.22×10−22

(iv) −2.903 724 377 034 038 45 8.11×10−14 2.68×10−20

(v) −2.903 724 377 034 120 143 −5.45×10−16 2.71×10−20

Exact energyd −2.903 724 377 034 119 598

aSampling sets defined in Table VI.
bEnergy difference ∆E = E −Eexact between the calculated energy E and the exact energy reference Eexact.
cOrder of the FC method: n and number of the cf’s: Mc.
dThe variationally best energy was used for Eexact from Refs. 59 and 60.

Thus, it was confirmed that set (v) was appropriate for
the higher order FC wave functions. We continued to perform
the calculations with set (v) by the HS method up to n = 17
(Mc = 6139) and summarized the results on the right-hand side
of Table VII. The energy with set (v) converges more rapidly to
the exact one than the case with set (i). At n = 17 (Mc = 6139),
the calculated energy was−2.903 724 377 034 119 598 320 846
a.u. and ∆E = −9.69 × 10−21 a.u., i.e., more than 20 digits
(zepto hartree) accuracy, was accomplished only with the
sampling methodology. Note that the potential exactness of
the FC wave function was the strong reason of this success:
near constancy of the local energy at any sampling point
is a preferable feature. To the best of our knowledge, the
present result should be most accurate among the sampling-
type quantum mechanical calculations of atoms and molecules.

D. Local energy analysis

We also performed the local energy analysis of the calcu-
lated wave functions. Similar analysis was made before for
the FC-VP wave function.61 Instead of directly plotting the
local energy Eloc(r), one may plot the local energy difference
∆Eloc(r) with logarithm scale, defined by

∆Eloc(r) = log10 |Eloc(r) − E | . (36)

∆Eloc(r) clearly shows the bad region where Eloc(r) largely
deviates from the energy constant E calculated from the cor-
responding wave function. For the helium atom, r is the two-
electron coordinates (six variables) but, for the ground state,
the wave function is represented by three independent coordi-
nates; {r1, r2, r12} or {r1, r2, θ12}, or the Hylleraas coordinates
{s, t, u}. θ12 is defined as the angle between r1 and r2 vectors.
We plotted∆Eloc(r) as the two-dimensional surface of r1 and r2
with fixed θ12 = 0, which means that both electrons locate on
a same straight line. We took the three plotted ranges of r1 and
r2: (a) [0.0, 0.1] with 1/5000 a.u. interval, (b) [0.0, 1.0] with

1/500 a.u. interval, and (c) [0.0, 10.0] with 1/50 a.u. interval.
They show from the nuclear position to (a) the region close to
the nucleus (up to 0.1 a.u.), (b) up to the middle (1.0 a.u.) area,
and (c) up to the outside (10 a.u.) area, respectively.

Figure 3 shows the plots of ∆Eloc(r) for the FC-LSE wave
functions obtained with the sampling sets (i) and (v) and, as a
reference, for the FC-VP wave function at n = 5 (Mc = 247).
The red color describes the bad region where Eloc(r) largely
deviates from the energy constant and the green and blue colors
represent the region where the constancy of Eloc(r) from E
is improved. The indicator defining the colors is given at the
right-hand side of the figure. For example, if ∆Eloc(r) ≈ −10,
then it means that the difference between Eloc(r) and E is
less than 10−10 a.u. Although we examined several different
θ12, we could not see any essential difference from that for
θ12 = 0. Therefore, we only show the result for θ12 = 0. In this
case, the diagonal lines in Fig. 3 correspond to the electron-
electron coalescence position; this position is always bad since
no constraint concerning the cusp condition was imposed to
our wave functions.61 The position of r1 = 0 and r2 = 0 is the
three-particle coalescence point. In all the cases of the FC-LSE
with sets (i) and (v) and FC-VP, the bad regions concentrate
on the area close to the nucleus; r1, r2 = 1 and the diffuse
area; r1, r2 > 5. The bad regions in the FC-LSE with set (i)
are wider than that of the FC-VP. This indicates that taking
more sampling points for these bad regions would improve
the FC-LSE result. In fact, the plot with set (v) shows a large
improvement: the result of set (v) is quite similar to the result
from the FC-VP calculation.

Figure 4 shows similar plots of ∆Eloc(r) with the wave
functions at n = 11 (Mc = 1861). For the FC-LSE with set (i),
∆Eloc(r) of the middle region, r1, r2 ≈ 1 was much improved
than the former n = 5 case. However, the inner r1, r2 = 1 and
outer r1, r2 > 5 regions were not improved and even worse than
the former case of n = 5. In contrast, ∆Eloc(r) of the FC-VP
was considerably improved also for r1, r2 = 1 and r1, r2 > 5.
Thus, we understand that set (i) should be in a lack of the
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FIG. 3. Plots of ∆Eloc(r) as a two-dimensional surface of the coordinates r1 and r2 a.u. with fixed θ12= 0 for the FC-LSE wave functions with sampling sets
(i) and (v) and the FC-VP wave function at n = 5 (Mc = 247). In the graphs, r1 and r2 within (a) [0.0, 0.1] with 1/5000 a.u. interval, (b) [0.0, 1.0] with 1/500
a.u. interval, and (c) [0.0, 10.0] with 1/50 a.u. interval were taken, respectively. The plots are described by color-coded maps and the red color represents worst
region and the blue color excellent region of ∆Eloc(r) in logarithm scale from the right-side indicator.

sampling points for these regions since the distribution of set
(i) was generated by a single β = 1.6875 which does not cover
well the regions r1, r2 = 1 and r1, r2 > 5. While the cf’s at
n = 11 include the functions having large amplitudes close
to the nucleus (logarithm and negative powers of a) and also
very diffuse functions such as s11, t10, and u11, there were not
enough sampling points to correctly determine the coefficients
of these cf’s. Therefore, it is necessary to prepare the sampling
points which cover these regions to correctly determine the
coefficients of such cf’s. The improvement, however, cannot
be expected by simply increasing the number of the sampling
points using a single β = 1.6875 of set (i) because the Slater-
type density function decays exponentially. In contrast, with
set (v), a drastic improvement was obtained even for these
regions. The plots with set (v) were almost identical to those of
the FC-VP for all three regions (0 < r1, r2 < 10). This implies
that the variational wave function is almost-totally reproduced
by the LSE method by preparing the appropriate sampling
points. This is an important observation revealed from the local
energy analysis shown in these figures.

Figure 5 shows the plots of ∆Eloc(r) further at n = 17(Mc

= 6139). Set (i) could not give the correct solution for the
regions of r1, r2 = 1 and r1, r2 > 5, though this FC wave func-
tion at n = 17 is potentially much better than seen from the
results of the set (i) sampling. Only the middle region, where
enough sampling points exist, was improved. In contrast, with
set (v), the plots of ∆Eloc(r) for the FC-LSE wave function at

n = 17 were much improved than those for n = 11. Surpris-
ingly, again, the plots from the LSE calculation were almost
identical to those of the VP calculation for all three regions.
The present analysis shows that the correct wave function is
obtained with the LSE method even for the higher order FC
wave functions that have more complex cf’s than the lower
ones by taking the appropriate sampling points that cover all
the functional spaces. The present local energy analysis also
indicates that the FC wave function at n = 17 is nearly exact
from the viewpoint of the local energy,61 i.e., blue color for all
the regions within 0 < r1, r2 < 10, which is wide enough for
the helium atom.

E. Exactness of the FC-LSE wave functions

We now analyze the energy and the H-square error quan-
tities, using both sampling and integration methods. We
examine the exactness of the FC-LSE wave functions calcu-
lated by the HS and HTQ (εP = 3.0) methods at the orders n
= 11 (Mc = 1861) and n = 17 (Mc = 6139) with sampling set
(v). Table IX summarized the energy E, the energy difference
∆E from the exact energy, and the H-square errorσ2 calculated
by the sampling method, together with the energy expectation
value Eint, the energy difference ∆Eint, and the H-square error
expectation value σ2

int calculated by the integration method.
They are also compared with these quantities calculated from
the FC-VP wave functions of the orders n = 11 and 17.
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FIG. 4. Plots of ∆Eloc(r) as a two-dimensional surface of the coordinates r1 and r2 a.u. with fixed θ12= 0 for the FC-LSE wave functions with sampling sets (i)
and (v) and the FC-VP wave function at n = 11 (Mc = 1861). Plotting condition is described in Figure 3.

FIG. 5. Plots of ∆Eloc(r) as a two-dimensional surface of the coordinates r1 and r2 a.u. with fixed θ12= 0 for the FC-LSE wave functions with sampling sets (i)
and (v) and the FC-VP wave function at n = 17 (Mc = 6139). Plotting condition is described in Figure 3.
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TABLE IX. Energy E , energy difference ∆E , and H-square error σ2 of the helium FC-LSE wave functions obtained by the HS and HTQ methods (εP = 3.0)
with sampling set (v) (total 6×106 points) at n = 11 (Mc = 1861) and n = 17 (Mc = 6139). By integration, the energy expectation value E , energy difference
∆E from the exact energy reference, and H-square error σ2

int of the FC-LSE wave functions are also calculated and compared with those of the FC-VP results.

Wave function Energy (E or Eint) (a.u.)a ∆E or ∆Eint (a.u.)b H-square errorc

n = 11 (Mc = 1861)
LSE (HS method) Sampling −2.903 724 377 034 120 143 −5.45×10−16 2.71×10−20

Integration −2.903 724 377 034 119 598 311 158 733 69 5.11×10−25 8.10×10−18

LSE (HTQ method) Sampling −2.903 724 377 034 129 206 −9.61×10−15 9.98×10−23

Integration −2.903 724 377 034 119 598 311 157 120 8 2.12×10−24 1.24×10−21

VP −2.903 724 377 034 119 598 311 158 761 80 4.83×10−25 3.66×10−19

n = 17 (Mc = 6139)
LSE (HS method) Sampling −2.903 724 377 034 119 598 320 846 −9.69×10−21 2.59×10−28

Integration −2.903 724 377 034 119 598 311 159 245 194 399 344 5 5.10×10−33 1.79×10−24

LSE (HTQ method) Sampling −2.903 724 377 034 119 598 867 49 −5.56×10−19 1.38×10−30

Integration −2.903 724 377 034 119 598 311 159 245 194 332 75 7.17×10−32 3.24×10−26

VP −2.903 724 377 034 119 598 311 159 245 194 403 526 60 9.19×10−34 3.31×10−26

Exact energyd −2.903 724 377 034 119 598 311 159 245 194 404 446

aEnergy E by sampling or energy expectation value Eint by integration.
bEnergy difference ∆E = E −Eexact between the calculated energy E or Eint and the exact energy reference Eexact.
cH-square error σ2 by sampling or σ2

int by integration.
dThe variationally best energy was used for Eexact from Refs. 59 and 60.

At n = 11 (Mc = 1861), although ∆E by sampling were
−5.45 × 10−16 and −9.61 × 10−15 a.u., ∆Eint were as small
as 5.11 × 10−25 and 2.12 × 10−24 a.u. with the HS and HTQ
methods, respectively, and that of the FC-VP wave function
was 4.83 × 10−25 a.u. Thus, when we use the integration
method, very accurate energy expectation values, which are
almost identical with the FC-VP ones, were obtained from
the wave function determined by the LSE method. Since
the sampling (LSE) method is different from the variational
method, the energy E calculated by the sampling method has
the error to the same order as that of the wave function. On
the other hand, the energy expectation value Eint calculated
by the integration method is generally correct to the second
order of the wave-function error and so more accurate than
E of the sampling method. On the other hand, the H-square
errorσ2 calculated by the sampling method was always smaller
than σ2

int. Since σ2
int = 0 means that the wave function is exact

and satisfies the SE, we can use σ2
int as a definite value for

the judgment of the exactness of the wave function. We see
from Table IX that σ2

int by the HS, HTQ, and VP methods were
8.10 × 10−18, 1.24 × 10−21, and 3.66 × 10−19, respectively. It
is quite remarkable that σ2

int by the HTQ method was smaller
than that of the VP method, showing that the FC wave function
calculated by the LSE-HTQ method is more exact than the FC-
VP wave function from the judgment of the H-square error.
This is reasonable since the HTQ method is related to the
inverse variational principle.53

At n = 17 (Mc = 6139), ∆E was −9.69 × 10−21 a.u. with
the HS method and −5.56 × 10−19 a.u. with the HTQ methods;
the energies were correct about 20 digits with only the sampl-
ing method. Furthermore, the integral expectation value ∆Eint
with the HS and HTQ methods were as small as 5.10 × 10−33

and 7.17 × 10−32 a.u., respectively. Their absolute energies
were almost 33 digits correct. The accuracy is almost equiv-
alent to that of the VP method; 9.19 × 10−34 a.u. On the other
hand,σ2

int by the HS, HTQ, and VP methods were 1.79 × 10−24,

3.24 × 10−26, and 3.31 × 10−26, respectively. Again, the LSE-
HTQ sampling method gave more accurate wave function than
the variational method in the viewpoint of the H-square error.
Thus, for the approximately potentially exact FC wave func-
tion, the LSE sampling method can give the result comparable
to the variational method.

F. Sampling points that reproduce the variational
energy

Finally, let us consider whether the set of the sampling
points that reproduces the variational energy and wave function
can exist in the case of the helium atom. For the hydrogen
atom, we already confirmed that there is such a set of the
sampling points that reproduces the variational results (see
Fig. 2(a)). We investigated this possibility for the FC wave
function at the order n = 3 (Mc = 77). The variational energy
of this wave function was −2.903 724 375 094 1 a.u.59 in
comparison with the present LSE energy −2.903 725 106 7
a.u. with sampling set (i). We found that there are essentially
infinite number of sampling points that give the local energy
that is equal to the variational energy. Since the variational
energy is considered as the averaged energy over the infinite
number of sampling points, the local energy of the variational
wave function must cross the constant variational energy sur-
face. Generally, when two d-dimensional surfaces cross each
other, their intersection is represented by a (d − 1)-dimensional
surface for d > 2, by a line for d = 2, or by a point for d = 1.
Since the ground-state helium wave function is written by the
three independent radial coordinates (d = 3), the intersection
with the variational energy surface is represented by a two-
dimensional surface and therefore essentially infinite number
of points should exist where the local energy is equal to the
variational energy. When arbitrary 77 sets of sampling points
were selected from them, the AB method would reproduce the
variational energy. Although we do not yet give a complete

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

125.174.90.109 On: Fri, 27 Feb 2015 03:36:21



084117-17 H. Nakatsuji and H. Nakashima J. Chem. Phys. 142, 084117 (2015)

proof, we feel that this is generally correct. This implies that the
LSE method can give the wave function (not energy) compa-
rable to the variational method in accuracy. To confirm this
from the energy, the analytical integrations over the cf’s are
necessary, which can be done for the helium atom. This was
certainly confirmed by the present study in Table IX.

V. CONCLUSION

We studied in this paper the LSE method combined with
the FC method that produces the potentially exact wave func-
tion of the SE. First, the three variants of the LSE method, the
AB, HS, and HTQ methods were explained. The LSE method
is the equi-local energy condition at the sampled points. The
AB method is a direct expression of the local Schrödinger
equation. It reflects the original idea of the LSE method.58

In the AB methods, the unknown coefficients are determined
using the same number of conditions (sampling points). This
is possible when it is applied to the potentially exact FC wave
function. The underlying concept is completely different from
the variational one. On the other hand, the numbers of the
sampling points used in the HS and HTQ methods are usually
much larger than the number of the variables. The H, S, and Q
matrices correspond to the Hamiltonian, overlap, and H-square
matrices, respectively, and therefore, the HS and HTQ methods
mimic the ordinary variational principle and the inverse vari-
ational principle,53 respectively. For all of the three types of
LSE method, we can easily calculate the H-square error which
is a good indicator of the exactness of the wave function.
This quantity has not been used in the variational calculations,
because the integrals over the square of the Hamiltonian are
difficult to evaluate. Generally speaking, the results of the HTQ
method are often slightly better than those of the HS method.
Since the HTQ method is related to the inverse variational
principle, this is reasonable from the Krylov sense.52,53 The
HTQ method can be applied as easily as the HS method.

We investigated the natures of the LSE method through
the applications to the hydrogen atom and the Hooke’s atom
for which the potentially exact wave functions are available.
In the application to the hydrogen atom, all three AB, HS, and
HTQ methods could provide very accurate solutions even with
a few sampling points. The calculated local energies and the H-
square errors showed that the wave functions calculated with
the LSE method were even more accurate than those obtained
by the variational method. In the application to the Hooke’s
atom, it was confirmed that the SIC process of Eq. (1) produces
the exact wave function at some order and thereafter, no more
cf’s are produced. At this stage, any set of the sampling points,
whose number is equal to the number of the variables, can
give the exact solution. Note that, even when the wave function
becomes exact, its cf’s do not form a complete space. Thus, the
cf’s and the complete set of functions are different.

The ideas from the present study were applied to solving
the SE of the helium atom with the FC-LSE method. We have
shown that we can obtain highly accurate results even with
the sampling-type LSE method, when the wave function is
produced with the FC method. This was achieved by preparing
the sampling points that are appropriate for the cf’s under
study. We could get the energy accurate to more than 20 digits

even with the sampling-type procedure. The energy expecta-
tion value Eint calculated by the integration method from the
LSE wave function was quite accurate, to almost 33 digits
accuracy, which was almost the same accuracy as the FC-VP
energy obtained before.59 The integral value of the H-square
error σ2

int obtained from the wave function calculated with the
LSE-HTQ method was even better than that of the VP method
in accordance with the fact that the HTQ method is related to the
inverse variational principle. The local error analyses for the
LSE wave functions calculated with the differently distributed
sampling points have revealed the important clue in generating
the sampling points used in the LSE method. It was also shown
that the set of the sampling points that reproduces the result
of the variational calculation exists: this would be true for any
atoms and molecules.

The referee asked the authors to address about the scaling
of the method and guessed the bottleneck to be the generation
of the cf’s. As explained in many occasions (for example,
see Ref. 70 pp. 25), the cf. generation step is a fast step.
The most time-consuming step is the LSE step70 which in-
volves the handling of about 106 sampling points and their
antisymmetrizations. Therefore, to make the LSE step efficient
is very important and so is the subject of this paper. For the
antisymmetrization, we have invented two useful theories: one
is the determinant based Nk method,66 and the other is the inter-
exchange (iExg) theory97 that breaks the Pauli dogma most
people believe. They contribute much to reduce the compu-
tational time. Anyway, the computational time scales in a
polynomial time and to reduce the scaling, it is important to
understand the physical nature of the sampling-type method-
ology, which is a topic in this paper. There is no established
efficient way of sampling38–40 and therefore we have to seek
for that.

The FC-LSE method would become a main stream in the
calculations of highly accurate solutions of the Schrödinger
equations of atoms and molecules, because the Hamiltonian
and overlap integrals are not available for many functions that
are necessary to describe highly accurate wave functions. In
comparison with the variational method, the LSE method is
simple, easy, and general. We have shown in this paper that
the LSE method can give the wave functions as accurate as
the variational method, if the sampling points are prepared
carefully. It is very important to advance the LSE methodology
to be always accurate, efficient, and usable for any FC wave
functions of atoms and molecules. This is necessary to pave
the way towards the accurately predictive quantum chemistry.
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