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ABSTRACT: Accuracy of the time-dependent density func-
tional theory (Td-DFT) was examined for the ultraviolet (UV)
and circular dichroism (CD) spectra of deoxyguanosine (dG)
and uridine, using 11 different DFT functionals and two
different basis sets. The Td-DFT results of the UV and CD
spectra were strongly dependent on the functionals used. The
basis-set dependence was observed only for the CD spectral
calculations. For the UV spectra, the B3LYP and PBEO
functionals gave relatively good results. For the CD spectra,
the B3LYP and PBEO with 6-311G(d,p) basis gave relatively
permissible result only for dG. The results of other functionals
were difficult to be used for the studies of the UV and CD
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spectra, though the symmetry adapted cluster—configuration interaction (SAC—CI) method reproduced well the experimental
spectra of these molecules. To obtain valuable information from the theoretical calculations of the UV and CD spectra, the
theoretical tool must be able to reproduce correctly both of the intensities and peak positions of the UV and CD spectra. Then,
we can analyze the reasons of the changes of the intensity and/or the peak position to clarify the chemistry involved. It is difficult
to recommend Td-DFT as such tools of science, at least from the examinations using dG and uridine.

B INTRODUCTION

Ultraviolet (UV) and circular dichroism (CD) spectra give
valuable information on excited states of molecules. Their
electronic structures are largely different from those of the
ground state, and each excited state has a different character
from other excited states. Though excited states are central in
photochemistry, photobiology, and molecular design, it is
difficult to elucidate their properties by experimental means
alone. Therefore, an accurate and reliable excited-state theory is
necessary not only for the understanding of experiments but
also for the design of new photomaterials.

In 1978, the symmetry adapted cluster—configuration
interaction (SAC—CI) theory' ™" was proposed as a reliable
theory for studying excited and ionized states of molecules.
Since then, we have applied it to various phenomena of
photochemistry and photobiology and clarified their natures,
electronic origins and mechanisms.”"'> We have recently
applied it to chiral molecules to investigate the natures behind
the experimental CD spectra.'>~**

Around 1996, a treatment of electronic excitations within the
adiabatic approximation of time dependent density functional
theory, now referred to commonly as TD-DFT, was published
by Casida,”® Bauernschmitt, and Ahlrichs,** which is different
from the time-dependent version of the density-functional
theory developed originally by Gross et al.”> The Td-DFT was
implemented into Gaussian by Stratmann, Scuseria, and
Frisch.”® It is widely used for excited-state calculations and
for the spectroscopic studies of chiral molecules.””~** Laurent
and Jacquemin® reviewed Td-DFT benchmarks extensively.
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Among many functionals, the B3LYP,***” PBE0*® and M06°’
functionals could provide the peak positions within the
deviations of about 0.25 eV for the valence excited states.’
However, for charge transfer and Rydberg excitations for which
the errors much increase,*®*"" the CAM-B3LYP,"”* wB97XD*
and M06-2X™ functionals were considered to be the best
choices.” For oscillator strengths that are important for UV
spectral simulations, the CAM-B3LYP and LC-wPBE**~*
functionals were considered to provide more accurate results
than other functinals.*’” Furthermore, for the CD spectra, the
B3LYP and PBEO functionals were considered to give better
agreement with experiments than other functionals:***’
Goerigk and Grimme reported that B2PLYP can provide
more accurate results than B3LYP.*® Thus, many researchers’
attempted to improve the accuracy of the Td-DFT. However, it
is known that the Td-DFT results are strongly dependent on
the functionals used,**%*"*/=53 and therefore, the choice of
the functional is critical to get reliable results.

In this article, we examine the accuracy and the reliability of
the Td-DFT with 11 standard functionals by comparing the
calculated results with the experiments and the SAC—CI results
for the UV and CD spectra of deoxyguanosine (dG) and
uridine shown in Figure 1. The functionals were selected from
the hybrid and pure ones. Deoxyguanosine (dG) is an
important element of DNA (DNA) and composed of guanine
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Figure 1. Geometries and interactions of anti conformers of
deoxyguanosine (a) and uridine (b).

and deoxyribose (Figure 1a). Uridine is an important element
of RNA (ribonucleic acid) and composed of uridine and ribose
(Figure 1b). The single bonds between guanine and
deoxyribose and between uridine and ribose can easily rotate.
The geometries of both dG and uridine are known
experimentally to be in an anti conformation and their UV
and CD spectra were observed experimentally. Previously, we
studied the UV and CD spectra of dG" and uridine™ for
various conformations around these single bonds using the
SAC—CI method. We confirmed that the anticonformers are
most stable from their potential energy curves calculated for the
ground state. It was found that the UV spectra are little
dependent on the rotations around the single bonds between
guanine and deoxyribose and between uridine and ribose but
the CD spectra are strongly dependent on these rotations. Both
UV and CD spectra of dG and uridine in their anticonforma-
tions calculated by the SAC—CI theory were in good agreement
with the experimentally observed spectra, but the CD spectra of
other conformations were much different from the observed
ones, indicating that we can determine the conformational
geometry of these compounds by the SAC—CI calculations of
their CD spectra, likewise from the energy calculations and the
X-ray experiments.

B COMPUTATIONAL DETAILS

In this article, we calculate the UV and CD spectra of anti-dG
and antiuridine by the Td-DFT*° with seven hybrid functionals
of B3LYP,***” PBEO,*® CAM-B3LYP,** LC-wPBE,**** M06-
2X,* wB97XD,* and M06-HF***° and four pure functionals
of OLYP,*”*° PBE,*”*® SVWN,***° and TPSS,”" from widely
used functionals. The geometries of dG and uridine used in this
calculation are shown in parts a and b of Figure 1, which are the
anticonformers obtained in the previous studies.'>*’ The basis
sets employed were D95(d)** and 6—311G(d,p).63 For the
SAC—CI calculations, the basis sets employed were D95(d)
sets for the guanine and D95 sets for the deoxyribose for dG
and D95(d) sets for uridine. (See refs 15 and 20 for other
computational conditions of the SAC—CI calculations.) All
calculations were done using the Gaussian suite of programs.64
The Td-DFT results of the UV and CD spectra are compared
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with the SAC—CI and experimental spectra in Figures 2—35.
The full width at half-maximum (fwhm) of the spectra was set
to 0.6 eV that is the fwhm of the experimental UV and CD
spectra of both dG and uridine. The lowest 20 excited states of
the Td-DFT calculations using the D95(d) and 6-311G(d,p)
basis sets are summarized in Tables 1—8 with the comparisons
with the SAC—CI and experimental values. The peak positions
and intensities of both UV and CD spectra of dG and uridine
are shown for detailed examinations.

B UV SPECTRA OF DEOXYGUANOSINE

As seen from Figure 2, the experimental UV spectrum of dG
has the main peak at 4.96 eV (250 nm) with the shoulder peak
at 4.49 eV (276 nm). This shoulder peak is very important for
the identification of dG, because only dG has a shoulder peak
among the four components of DNA.%* The SAC—CI spectrum
reproduced well both main and shoulder peaks of the
experimental spectrum.

We note that the basis set dependence is very small for all the
UV spectra calculated by Td-DFT with D95(d) and 6-
311G(d,p) sets: two spectra are almost the same for all the
11 different functionals as shown in Figure 1 and Tables 1—4.
However, the dependence on the different DFT functionals is
very large as discussed below.

For the B3LYP calculations (Figure 2A,a), the main peak
agrees with the experimental value but the shoulder peak does
not appear in the TD-DFT spectrum, because the excitation
energy of the main peak is calculated close to that of the
shoulder peak. Though if we use the fwhm of 0.35, we can
obtain a shoulder peak, 0.35 is much smaller than the fwhm of
0.6 of the experimental spectra.

The PBEO spectra (Figure 2B,b) are very similar to those of
the B3LYP, but the excitation energy is slightly higher (lower in
wavelength) than those of the B3LYP: B3LYP gives slightly
better agreement with experiment.

For the CAM-B3LYP calculations (Figure 2C,c), the
excitation energies of the main and shoulder peaks lie higher
in energy than the experiments: the shoulder peak is hidden in
the spectrum, though the unsymmetrical intensity of the
calculated peak suggests the existence, as in the B3LYP case.

The LC-wPBE UV spectra (Figure 2D,d) have a shoulder
peak, but the excitation energies are much higher than the
experimental one and those of the B3LYP and CAM-B3LYP
calculations.

The M06-2X UV spectra (Figure 2E,e) have a main peak at
higher energy than the experimental one and also have no
shoulder peak.

The wB97XD UV spectra (Figure 2Ff) are similar to the
M06-2X UV spectra but different from the experimental
spectra.

The M06-HF UV spectra (Figure 2G,g) are calculated in a
higher energy but have a shoulder peak due to a large energy
gap between the main and shoulder peaks. Both are different
from the experimental spectrum.

With the OLYP functional (Figure 2Hh), the excitation
energies are lower than the experimental values: the main peak
was calculated at the region of the shoulder peak of the
experiment. Further, many excited states with small oscillator
strengths were calculated in the range of 200—340 nm as seen
from Table 2. This is much different from the calculated spectra
of the above seven functionals.

The PBE spectra are similar to the OLYP ones (Figure 2 i),
but a small peak was calculated at 230 nm. But, this peak
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Figure 2. Td-DFT UV spectra (red lines) of dG using B3LYP (A, a), PBEO (B, b), CAM-B3LYP (C, c), LC-wPBE (D, d), M06-2X (E, e), wB97XD
(F, f), MO6-HF (G, g), OLYP (H, h), PBE (I, i), SVWN (J, j), TPSS (K, k), and all (L, 1) functionals with 6-311G(d,p) (A—L) and D95(d) (a—I)
basis sets, compared with the experimental (black line) and SAC—CI (blue line) UV spectra."®

corresponds to the 200 nm shoulder peak of the 187 nm strong
peak of the experimental spectrum.”® Anyway, the calculated
PBE spectra are far different from the experimental spectrum.

With the SVWN functional (Figure 2 J,j), the shoulder peak
of the strong peak at about 187 nm is calculated to be at the

main peak at 250 nm: the intensities of the main and shoulder
peaks are opposite here.

With the TPSS functional (Figure 2 K)k), the main peak is
also calculated at lower energy than the experimental one. This
result is similar to the one obtained with PBE.
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Figure 3. Td-DFT CD spectra (red lines) of dG using B3LYP (4, a), PBEO (B, b), CAM-B3LYP (C, c), LC-wPBE (D, d), M06-2X (E, e), wB97XD
(F, f), MO6-HF (G, g), OLYP (H, h), PBE (I, i), SVWN (J, j), TPSS (K, k), and all (L, 1) functionals with 6-311G(d,p) (A—L) and D95(d) (a—1)
basis sets, compared with the experimental (black line) and SAC—CI (blue line) CD spectra."

In summary, we have shown all Td-DFT UV spectra in
comparison with the experiment and SAC—CI at the right-
hand-side bottom of Figure 2, Figure 2 L. It shows strong
functional dependences. The Td-DFT spectra spread over
almost all the region of the spectra and it is difficult to find
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some regularity from the figure. With the B3LYP and PBEO, the
position of the main peak agrees with the experimental one, but
since the interval between the main and shoulder peaks is too
narrow, the shoulder peak did not appear on the calculated
spectra, though the asymmetry of the peak indicates the
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existence of a small peak on the right-hand-side of the peak.
The shoulder peak appears in the LC-wPBE and M06-HF UV
spectra but the excitation energies are much higher than the
experimental values. For the CAM-B3LYP, M06-2X, and
wB97XD functionals, the main peak is higher than the
experimental value and the shoulder peak was not displayed.
For the OLYP, PBE, SVWN, and TPSS functionals, the main
peak was calculated in lower energy than the experiment.

The calculated UV spectra were almost the same between the
D95(d) (Tables 3 and 4) and 6-311G(d,p) calculations (Tables
1 and 2). The improvement in the basis set could not
necessarily improve the calculated Td-DFT spectra.

In short, the UV spectra of dG calculated with Td-DFT did
not reproduce both of the positions and the intensities of the
experimental UV spectrum. Therefore, it is difficult to further
investigate the nature and the chemistry of dG using Td-DFT.
On the contrary, as the SAC—CI theory reproduced well the
experimental spectra, we could study the chemistry of dG
analyzing the information provided by the SAC—CI calcu-
lations as reported previously."

B CD SPECTRA OF DEOXYGUANOSINE

It is well-known that the calculations of the chiral properties
like CD spectra are sensitive to the quality of the theory used:
coupled-cluster level of theory is usually necessary for reliable
investigation of the CD spectra.’®”” The SAC theory is
equivalent to the CCSD theory. Thus, the CD spectra give
more sensitive test on the reliability of the Td-DFT than the
UV spectra. The experimental CD spectrum has a very weak
peak (first band) at 4.49 eV (276 nm), a negative peak (second
band) at 4.96 eV (250 nm) and a positive peak (third band) at
5.79 €V (214 nm). The SAC—CI CD spectrum is in good
agreement with the experimental spectrum, though the positive
intensity of the first band at about 276 nm is stronger than that
observed. This first band is almost pure 7—7* excitation. The
second band is composed of the 7—z* (3A) and n-7* (2A)
excitations and both states have strong rotatory strength.
However, the negative rotatory strength of the n-7* excitation
exceeds the positive intensity of the z—z* excitation, and
therefore the negative second band results."”

Figure 3 shows the examination of TD-DFT with 11 different
functionals. First we note that the Td-DFT CD spectra are
largely dependent on the basis set used, in contrast to the case
of the UV spectra shown in Figure 2. The Td-DFT CD spectra
with the D95(d) basis is generally weak for both first and
second bands, compared with that of the third band (Figure
3a—1). However, with the 6-311G(d,p) basis (Figure 3A—L),
the intensities of the first and second bands become stronger:
the intensity is improved with the use of a larger basis set. This
larger basis set dependence, in contrast to the case of the UV
spectra, shows that the CD spectrum is a more sensitive
property than the UV spectrum on the quality of the wave
function used. Below we examine the result of each functional.

With the B3LYP functional (Figure 3A,a), since the
excitation energies are close to the experimental values, the
B3LYP CD spectrum with the 6-311G(d,p) basis is in good
agreement with the experimental spectrum for the second
negative and third strong positive bands. However, the intensity
of the first positive band is too strong. The result of the D95(d)
basis is poorer than the one with the 6-311G(d,p) basis, as
noted above.

The PBEO CD spectra (Figure 3B,b) are very similar to the
B3LYP spectra: this is like the UV case.
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For the CAM-B3LYP CD spectra (Figure 3C,c), the
excitation energies are calculated to be higher in energy than
the experimental values as already seen for its UV spectra.
Though the CAM-B3LYP CD spectra look opposite to the
experimental one, it is actually shifted to higher energy.

The LC-wPBE gives the CD spectra in a higher energy
region as the CAM-B3LYP functional (Figure 3D,d). So, the
calculated CD spectra look very different from the experimental
one.

Both M06-2X (Figure 3E,e) and wB97XD (Figure 3Ff)
functionals give the similar results to the CAM-B3LYP and LC-
wPBE ones. Their CD spectra are similar but different from the
experimental one.

From B3LYP to wB97XD except for PBEQ, the orders and
the natures of the excitations are the same as those of the
SAC—CI results. For the PBEOQ, the order of the 2 and 3 excited
states is opposite.

The MO06-HF CD spectra (Figure 3G,g) with 6-311G(d,p)
basis set has a similar shape to that of the M06-2X. However, as
shown in Table 2, the first strong peak is due to the 2A excited
state of the M06-HF functional instead of the 1A excited state
of the M06-2X functional. Since the excitation energies are
higher than those of the M06-2X, the M06-HF functional gave
worse results than the M06-2X functional.

The OLYP CD spectra (Figure 3H,h) with 6-311G(d,p) is
calculated to be lower in energy than the experimental values,
though their intensities are close to the B3LYP results.
However, the intensity with the D95(d) basis set is much
different from those with 6-311G(d,p) basis set. For the 6-
311G(d,p) result, the first positive peak is due to the 1A excited
state, the second negative peak is due to the 4 and SA excited
states, and the third positive peak is due to the 12A excited
state, as seen from Table 2. For the D95(d) result, the positive
peak at around 240 nm is calculated due to the 7A excited state
with a strong positive oscillator strength, but the first and
second peaks are not calculated because the oscillator strength
is very weak for the states less than the 7A excited state, as seen
from Table 4. Thus, the basis set dependence is very large.

With the PBE functionals (Figure 3Li), the CD spectra are
similar to the OLYP ones.

The shapes of the SVWN spectra (Figure 3],j) are also
similar to those of OLYP and PBE functionals, though the
excitation energy and intensity are slightly different.

The excitation energies of the TPSS functional (Figure 3K k)
are higher than those of the OLYP, PBE and SVWN
functionals. Then, the TPSS CD spectrum with the 6-
311G(d,p) looks close to the experimental one. However,
since its UV spectra are much different from the experimental
one, this similarity would be just accidental.

For the Td-DFT calculations with the 6-311G(d,p) basis, the
first band was the 1A excited state (the 2A excited state for only
the MO06-HF), which is the same as the SAC—CI result.
However, the second band is composed of three excited states
with B3LYP and PBEQ, two excited states with CAM-B3LYP,
wB97XD and MO06-HF, and one excited state with LC-wPBE
and M06-2X, 4—6 excited states with OLYP, PBE, SVWN and
TPSS. The 2A excited state is assigned to the second band for
the CAM-B3LYP and wB97XD but is calculated to be between
the first and second bands for the LC-wPBE and M06-2X.
Thus, the nature of the CD spectra is dependent on the
functional used. So, it is difficult to analyze the CD spectra and
to study the chemistry of chiral molecules by the Td-DFT.

DOI: 10.1021/acs jpca.7b09733
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Figure 4. Td-DFT UV spectra (red lines) of uridine using B3LYP (A, a), PBEO (B, b), CAM-B3LYP (C, c), LC-wPBE (D, d), M06-2X (E, e),
wB97XD (F, ), M06-HF (G, g), OLYP (H, h), PBE (I, i), SVWN (J, j), TPSS (K, k), and all (L, 1) functlonals with 6-311G(d,p) (A—L) and D95(d)
(a—1) basis sets, compared with the experimental (black line) and SAC—CI (blue line) UV spectra

Thus, the CD spectra of dG calculated with Td-DFT are
strongly dependent not only on the DFT functional, but also
on the basis set used. At the right-hand-side bottom of Figure 3,
Figure 3L)], we showed the behaviors of all 11 Td-DFT results.
They cover almost all the spectral regions and no regularity is
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seen. This is particularly so when we use the 6-311G(d,p) basis.
With the D95(d) basis, the calculated CD spectra were much
different from the experimental one, because the intensities of
the first and second bands were much weaker than that of their
third band. The B3LYP and PBEO CD spectra were the closest

DOI: 10.1021/acs jpca.7b09733
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to the experimental one when 6-311G(d,p) basis was used.

However, the intensity of the first band was too strong.
Therefore, we recommend SAC—CI more than Td-DFT as a
tool for analyzing the chemistry involved in the CD spectra.

Though it takes larger computational time, the reliability is

something more important for theoretical tools.

When the Td-DFT CD spectra of dG are shifted to the lower

energy (higher wavelength), they look closer to the
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experimental spectra, but the intensity is different. Though the
frequently shifting is often done in the Td-DFT studies, it may
cause contradictions in the assignment of the peaks.

Bl UV SPECTRA OF URIDINE

Next, we use uridine molecule shown in Figure 1b to examine
the TD-DFT calculations of the UV and CD spectra with the
same set of 11 DFT functionals combined with the same two
basis sets. The experimental UV spectrum of uridine has two
strong peaks between 200 and 350 nm as shown in Figure 4.
The first band is the peak at 4.77 eV (260 nm) and the second
band is the peak at 6.05 eV (205 nm).*® With the SAC—CI
calculations (see Figures 4 and S), the first and second bands
were assigned to the 7—7* of the 2 and 4A excited states,
respectively, as seen from Table 5. The 1A and 3A excited
states are n-7* states and weak. As reported previously, the
SAC—CI result is in good agreement with the experiments.”

Figure 4 shows the results of the Td-DFT calculations of the
UV spectra of uridine with the 11 DFT functionals and the two
basis sets. We notice immediately that the basis set dependence
between the 6-311G(d,p) and D95(d) sets is very small for the
UV spectra, as we have already seen for dG

The B3LYP UV spectra (Figure 4A,a) are higher by about
0.5 eV than the experimental one. Similarly, the PBEO peak is
higher by 0.6 eV (Figure 4B,b), CAM-B3LYP by 0.8 (Figure
4C,c), LC-wPBE by 1.0 (Figure 4D,d), M06-2X by 0.8 (Figure
4E,e), wB97XD by 0.8 (Figure 4Ff), and MO6-HF by 1.0
(Figure 4G,g). The nature of the excited states is the same, the
m—n* of the 2A excited state (see Tables S and 6). These
results are similar to the UV spectra of dG shown in Figure 2,
though there the excitation energy of the B3LYP result agreed
well with the experimental value.

The OLYP UV spectra (Figure 4Hh) are much different
from the experimental spectra and the above Td-DFT results.
There are many excited states in the range of 200 nm (6.2 eV)
to 300 nm (4.1 eV): the lowest 20 excited states are listed in
Tables 6 and 8. Furthermore, their oscillator strengths are
weaker by an order of magnitude than those of the above seven
hybrid functionals. Therefore, the OLYP spectra are calculated
not as two strong peaks but as one board peak, which are far
from the experimental spectrum.

Similar results were obtained with the PBE, SVWN and
TPSS functionals (Figure 41],Kijk).

For the second strong band at 205 nm, which is assigned to
the 4A excited state by SAC—CI, the five hybrid functionals
except for B3LYP and PBEOQ gave a strong peak as seen from
Tables S and 6. (Their peak positions were outside of Figure 4.)
However, for the B3LYP, PBEO, OLYP, PBE, SVWN, and
TPSS, the second strong band was composed of several excited
states with the oscillator strengths smaller by 1 order of
magnitude than those of the five hybrid functionals. The
summary of all the Td-DFT spectra shows a large dependence
of the Td-DFT UV spectra on the functionals used (Figure
4L)).

Thus, all Td-DFT spectra look different from the
experimental one. The excitation energies did not agree with
the experimental values even with the B3LYP and PBEO
functionals that provided good results for dG. Among the
theoretical spectra shown here, only the SAC—CI one
reproduces well the experimental features and are worthy of
further investigations of the experimental nature.

For the hybrid functionals, when the Td-DFT spectra are
shifted to the lower energy (larger wavelength), they look
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closer to the experimental spectra. Therefore, we may be able
to use them for the assignment of the experimental spectra.
However, with the pure functionals, their results are different
much in the intensity. Therefore, this author cannot
recommend the usage of pure functionals.

B CD SPECTRA OF URIDINE

Figure 5 shows the comparisons of Td-DFT, SAC—CI and
experiments. Tables 5—8 show the details. The experimental
CD spectrum of uridine are composed of the three bands: the
first band is a strong positive peak at 4.64 eV (267 nm), the
second and third bands are weak negative peaks at 5.28 eV (235
nm) and 5.71 eV (217 nm).” The SAC—CI CD spectrum
reproduced the signs and the intensities of these peaks, though
the intensity was weak for the third band.*’

We notice first that the basis set dependence is very small for
the CD spectra of uridine: the results of the 6-311G(d,p) and
D95(d) basis sets are quite similar. This is different from the
dG case where a large basis set dependence was observed for
the CD spectra. We have some speculation on this fact. The
anticonformer of uridine forms a hydrogen-bond between uracil
and ribose as shown in Figure 1b. On the other hand, the
anticonformer of dG may have a hydrogen-bond-like
interaction between guanine and deoxyribose as shown in
Figure la, but as expected from the O—H distance (2.52 A vs
1.99 A), it must be very small. Namely, the geometry is fixed
with uridine but flexible and distorted with dG. This is also seen
from the fact that the potential energy curve around the anti
conformer was sharp for uridine but flat for dG in the previous
studies.">”" In particular, the CD spectra are sensitive to the
geometrical changes. Therefore, the triple-{ level basis set may
be necessary to calculate the CD spectra of dG to describe the
distortion by the small interaction. But, the double-( level basis
set may be enough for the calculations of uridine. It would be
necessary to investigate this speculation using other molecules
and/or other basis sets.

The B3LYP CD spectra (Figure SA,a) are much different
from the experimental one. The positive peak at 4.918 eV (252
nm) may be assigned to the first band at 4.64 eV. However, the
2A excited state at 5249 eV (236 nm) is negative but its
intensity is very weak. The 3A excited state at 6.022 eV (205
nm) is positive. Therefore, The B3LYP spectra do not agree
with the experimental one.

The PBEO CD spectra (Figure SB,b) are very similar to those
of the B3LYP one: this is similar to the UV and dG cases.

The CAM-B3LYP functional (Figure SC,c) gives only one
positive peak at 5.297 eV (234 nm) at around the second band
of the experiment. Even when the CAM-B3LYP spectra are
shifted to the lower energy, two negative peaks are not found
with this functional because the intensity is very weak for the
2A excited state and is positive for the 4A excited state (Table
S).

With the CAM-B3LYP, M06-2X, and wB97XD functionals
(Figure SD,E,F,d,e,f), we obtained similar results.

With the M06-HF functional (Figure SG,g), the rotatory
strengths of the lowest four excited states are positive and the
intensity of the 1A excited state is weaker than those of 2A and
3A excited states (Table 6). Therefore, the CD spectra are
much different from the experiment.

With the OLYP spectra (Figure SH)h), there are many peaks
in the 200—350 nm as noted above. The first band is the 1A
excited state and positive, the second band is composed of the
2A, 3A, and 4A excited states and is negative, and the third
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band is composed of the SA and 7A excited states and is
positive. Even when the OLYP CD spectra are shifted to the
higher energy, the sign of the third band is opposite to that of
the experiment.

The PBE, SVWN and TPSS functionals (Figure SLJ,Kijk)
give similar CD spectra to OLYP above. The assignment of
each peak is given in Tables 5—8. Like the OLYP case, the
results are useless from the theoretical point of view.

The summary figure (Figure SL.1) shows that the Td-DFT
CD spectra are strongly dependent on the functionals used: this
is similar to the UV and dG cases.

The first positive band originates from the 1A excited state
with a positive sign. However, since the excitation energy is
higher for the hybrid functinals and lower for the pure
functionals than the experimental value, we have to shift the
Td-DFT spectra to assign to the experiment.

The 2A excited state is positive with the LC-wPBE, M06-2X
and MO06-HF, negative with the B3LYP and PBEO, and very
weak with the CAM-B3LYP and wB97XD. For the OLYP, PBE,
SVWN and TPSS, the negative band was calculated from the 2,
3 and 4A excited states but the positive band was calculated
from the SA and 7A excited states. Therefore, two negative
bands cannot be calculated by the Td-DFT.

Thus, the Td-DFT CD spectra of uridine are largely different
from the SAC—CI and experimental spectra in both the
excitation energy and the intensity. Even when the Td-DFT
CD spectra are shifted toward the experimental one, the sign of
the CD spectra does not agree with the experiment for either of
the second or third bands.

H CONCLUSION

In this article, we have examined the accuracy and the reliability
of Td-DFT by calculating the UV and CD spectra of dG and
uridine using 11 different functionals and two different basis
sets and by comparing them with the experiments and the
SAC—CI results."*° The Td-DFT results did not satisfactorily
reproduce the experimental UV and CD spectra of dG and
uridine: the excitation energies of the Td-DFT calculations
were higher or lower than the experimental values and the
intensities of UV and CD spectra were different from the
experimental observations: in particular, the signs of the CD
spectral peaks were different from those of the experiments. In
addition, the Td-DFT spectra were strongly dependent on the
functionals used. In actual calculations, we have no a priori
knowledge on the choice of the functionals to be used for a
special subject. To deduce valuable information from the UV
and CD spectra, we have to use reliable excited-state theory
that can reproduce correctly both of the intensities and peak
positions of the UV and CD spectra. Then, we can analyze,
from the theoretical point of view, why the intensity decreases
or increases or why the peak position is shifted in some way,
which leads us to clarify the nature and the origin of the
chemistry involved. It is difficult to recommend Td-DFT as
such tools of science, at least from the examinations using dG
and uridine.
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