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Solving the Schrödinger equation of atoms and molecules
with the free-complement chemical-formula theory: First-row
atoms and small molecules
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Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawaramachi,
Sakyo-ku, Kyoto 606-8305, Japan

(Received 16 May 2018; accepted 28 August 2018; published online 20 September 2018)

The free-complement chemical-formula theory (FC-CFT) for solving the Schrödinger equation (SE)
was applied to the first-row atoms and several small molecules, limiting only to the ground state
of a spin symmetry. Highly accurate results, satisfying chemical accuracy (kcal/mol accuracy for
the absolute total energy), were obtained for all the cases. The local Schrödinger equation (LSE)
method was applied for obtaining the solutions accurately and stably. For adapting the sampling
method to quantum mechanical calculations, we developed a combined method of local sampling
and Metropolis sampling. We also reported the method that leads the calculations to the accurate
energies and wave functions as definite converged results with minimum ambiguities. We have also
examined the possibility of the stationarity principle in the sampling method: it certainly works,
though more extensive applications are necessary. From the high accuracy and the constant stability
of the results, the present methodology seems to provide a useful tool for solving the SE of atoms and
molecules. Published by AIP Publishing. https://doi.org/10.1063/1.5040377

I. INTRODUCTION

For developing a predictive theory in chemistry, it is
important to develop a general practical theory for solving the
Schrödinger equation (SE) since it is a governing principle of
chemistry.1 The free-complement (FC) theory initiated in our
laboratory2–8 is growing and becoming a candidate of such a
theory.9–13 In Paper I,13 we have proposed an electronic struc-
ture theory for atoms and molecules, called chemical formula
theory (CFT), which describes the essence of the chemical
formula in a simple variational formalism. Here, the chemi-
cal formula stands for both a molecular structural formula and
chemical reaction formula that are used widely by chemists
as working theories for performing their chemistries. What is
central to the chemical formula is the locality of the electronic
structure, as represented by atoms, and their transferability
among chemistry. In CFT, we describe with the variational
principle the electronic structures of atoms and molecules
based on the chemical formula through the interactions of the
ground and excited electronic states of the constituent atoms
using their free valences. Then, we apply the FC theory to the
CFT wave functions to obtain the exact wave functions that
have the local structures of the chemical formula. This theory
was referred to as FC-CFT. Between the approximate CFT and
the exact FC-CFT, there exists a useful and yet accurate vari-
ational theory, called FC-CFT-V. The FC-CFT-V is a flexible
variational theory with which the basic chemistry of interest is
extensively studied with reasonable accuracy. Then, if further

a)Author to whom correspondence should be addressed: h.nakatsuji@
qcri.or.jp

exact solutions of the SE are necessary, we perform the FC-
CFT using the sampling type local Schrödinger equation (LSE)
method.7,11 We believe that this way of utilization of the exact
wave function theory is not only efficient but also useful for
chemists.

In this paper, we apply the FC-CFT to solve the SE
of the first-row atoms and small molecules. Different from
the general theory given in Paper I,13 the calculations here
were limited only to the ground state of a given spin symme-
try. Therefore, the calculations here do not use the merits of
the FC-CFT due to the interactions between the ground and
excited states in the course of the calculations, but other central
concepts of the chemical formula like locality, transferabil-
ity, and from-atoms-to-molecule are common. The purpose is
to show the accuracy and the reliability of the basic meth-
ods. At the same time, we want to show how the elementary
theories are used and what are their basic physics. As we
wrote before,2–13 the FC theory is an exact theory for solv-
ing the SE. The FC wave function has an exact structure,
which implies that the FC wave function includes the exact
wave function within its variational space. Therefore, when
we optimize the linear parameters included in the FC wave
function, we can get the exact wave function. However, since
the FC theory produces the wave function in order, if we ter-
minate at some order, the accuracy of the result stops at that
order. This example was shown with the He atom: we could
calculate the energy of the He atom to over 40 digits accu-
racy by determining the linear parameters with the variational
principle. The method used there is like below, which is gen-
eral. Starting from some initial function and applying the FC
theory to it, we can write the exact wave function ψ in the
form
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ψ =
∑

I

cIφI , (1)

where the functions {φI} are referred to as the complement
functions (cf’s), because as this equation shows, they are the
elements of the complete set of functions that describes exactly
the solution of the SE. In general, the number of cf’s is infinite
for obtaining the exact wave function, but if only the chemical
accuracy (kcal/mol accuracy for the absolute total energy) is
sufficient, about order 2 is necessary.

For general atoms and molecules, the variational principle
cannot be applied because in the cf’s above, there are many
terms that include inter-electron functions rij for which the
analytical integrals are difficult to be evaluated. Therefore, we
have to use some other conditions that are equivalent to the
SE and yet that does not include the integration method. As
such a method, we used the SE itself at some given set of
points {rµ} in the space of the atoms and molecules under
consideration,

Hψ(rµ) = Eψ(rµ). (2)

This is the local Schrödinger equation (LSE) method reported
in 2007.7,11 We refer to the set of points {rµ} as sampling
points. Inserting Eq. (1) into Eq. (2), the above equation is
rewritten as

AC = BCE, (3)

where the matrix elements of the A and B matrices are given
by

Aµi = Hφi(rµ) (4)

and
Bµi = φi(rµ), (5)

respectively, and C and E are the matrices of the coefficients
and energies, respectively, where E is diagonal. We referred to
this expression, which is just the same as the original local SE,
as the AB method. The matrices A and B are large rectangular
matrices, when the number of sampling points, Ns, is large
(like 2 × 106 in our case). To save the memory for such large
matrices, let us multiply BT from the left of Eq. (3), and then
we obtain

HC = SCE, (6)

where H = BTA and S = BTB. More explicitly, their elements
are written as

Hij =
∑Ns

µ
φi(rµ) · Hφj(rµ) (7)

and
Sij =

∑Ns

µ
φi(rµ)φj(rµ), (8)

respectively. We called this method the HS method. Equa-
tion (6) has a form like an eigenvalue equation, but though
the matrix S is symmetric, H is not. So, we solve this equa-
tion using the non-symmetric form of the secular equation.
Thus, the LSE method has been developed to determine the
parameters {cI} included in the potentially exact wave func-
tion given by the FC theory as Eq. (1). We used the SE
itself as the condition since our wave function is potentially
exact.

We noticed that this equation is very similar to the equation
used in the variational Monte Carlo (VMC) method, in partic-
ular, to the non-symmetric method reported, for example, by

Toulouse and Umrigar.14,15 They reported that with the non-
symmetric method, the statistical fluctuations are reduced by
one or two orders of magnitude in comparison with those with
the symmetric method, though the optimal energy does not
correspond to the minimum value as the variational method
implies. In the VMC calculations, the wave functions used,
which are usually the product of the Jastrow function and
the multideterminantal wave function, should be highly accu-
rate but probably do not have the exact structure in the above
sense. The VMC and quantum Monte Carlo (QMC) calcula-
tions14–25 reported accurate results for small molecules. Braida
et al.23,24 reported QMC calculations with Jastrow-valence-
bond (JVB) wave functions, giving impressive results using
the VB functions.

Within our program calculating the A and B matrices as
given above, it is easy to calculate the H-square error or the
variance defined by

σ2 = 〈ψ |(H − E)2 |ψ〉/〈ψ |ψ〉. (9)

This quantity becomes zero for the exact wave function but
is usually positive. We calculated this quantity in our code
to investigate its possibility in the variational and stationarity
calculations of the sampling-type methodology.

Thus, the LSE method is a simple, straightforward, and
integral-free theory. It is the method for the potentially exact
theory like the FC theory. As the wave function under study
becomes closer to exact, the sampling-point dependences
should become smaller and disappear at the exact limit. For
example, e−αr is a potentially exact wave function of the hydro-
gen atom. The LSE method using only two sampling points
can determine the exact wave function, e−r , together with the
normalization factor. There are no sampling dependences: any
two sampling points can determine the exact wave function
unambiguously. In the practical applications at low orders of
the FC theory, however, the sampling methodologies have
some ambiguities originating from the statistical errors that
are difficult to be rationalized but must be overcome. The SE
is a quantum mechanical deterministic principle, while the
sampling method involves some ambiguous aspects character-
istic to the stochastic and random nature. To overcome these
aspects, we have combined, in this paper, our local sampling
method, which is a quantum-mechanical regular systematic
method, with the Metropolis sampling method that is classi-
cal, but useful in sampling type methods. Using these methods,
we want to develop a general theory that leads to the exact
energy and the exact wave function as the definite converged
results.

A purpose of this paper is to propose some practical meth-
ods for solving the SE’s of atoms and molecules with the LSE
method applied to the FC-CFT that has local structure. The
accuracy of the solutions we aim is chemical accuracy for the
absolute total energy. Then, any chemical phenomena can be
described in chemical accuracy. The present applications to
the first-row atoms and several small molecules are encour-
aging. They satisfy chemical accuracy and the computational
processes were stable, which is probably due to the poten-
tially exact structure of the FC theory combined with the local
structure of the FC-CFT.
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II. ADAPTING SAMPLING METHOD
TO QUANTUM-MECHANICAL CALCULATIONS

The FC-LSE method is a sampling-type method for cal-
culating the exact solution of the SE. We define the density
of the N-electron sampling points by γ(1 · · ·N) and the exact
N-electron density Γ(1 · · ·N) associated with the atomic and
molecular wave function by

Γ(1 · · ·N) = ψ∗exact(1 · · ·N)ψexact(1 · · ·N). (10)

It is well known that when the density of the N-electron sam-
pling points γ(1 · · ·N) is proportional to the exact N-electron
density Γ(1 · · ·N), namely,

γ(1 · · ·N) ∝ Γ(1 · · ·N), (11)

then we can expect an accurate result from the sampling
methodology.18 Since we do not know the exact N-electron
density Γ(1 · · ·N), we can imagine a necessity of the self-
consistent iterative method between the assumed γ(n)(1 · · ·N)
that gives the wave function ψ(n)(1 · · ·N), from which we
estimate γ(n+1)(1 · · ·N) of the next step, . . .. For adapt-
ing the classical sampling points to the potentially exact
quantum-mechanical wave function, we considered the com-
bination of the local sampling method developed in our
laboratory4,8,11 followed by the Metropolis sampling method
developed by Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller (MRRTT).26 Since we are dealing with quantum
mechanics, not the statistical theory, the distribution of the
sampling points must be regular, in some sense, and cover
all regions of the atoms and molecules under study to satisfy
Eq. (11) as much as possible. This method is referred to as
the LMn method where L means the local sampling method
that gives an initial set of sampling points and Mn means the
Metropolis method with n being the number of the walker’s
steps, usually set to unity, within one cycle. The iteration actu-
ally proceeds as LMnMn. . ., until convergence. With the use
of the LMn iteration processes, we will examine the possi-
bility of the stationarity principle, the averaging method, and
the accumulation method to obtain the definite results with
minimum statistical ambiguities. Let us explain them in detail
below.

A. Local sampling method

The local sampling method is a trial of using the quantum-
mechanical principle directly in the sampling method because
what we want to solve with the sampling method is the solution
of the SE using the FC theory. With the local sampling method,
the sampled points must cover all local regions of atoms and
molecules in a regular manner, from the cusp regions to the
high-density regions and to the tail regions. Since the FC-CFT
is based on the local atomic concept, let us consider first the
atomic sampling.

In atoms, the system is spherically symmetric, and the
origin of the stability is the Coulombic force due to the pos-
itive charge of the nucleus centered at the origin. For the
hydrogenic atom, the Coulombic nuclear potential is −Z/r,
the exact wave function of the ground state is ψ = exp(−Zr),
and the exact density is given by the radial distribution func-
tion, ρ(r) = r2 exp(−2Zr). Then, the best sampling is produced

so that the density of the sampling points along r is propor-
tional to the exact density. While, for the angular θ and ϕ
distribution, no physical requirement exists: purely random
distribution is ideal. This is the exact sampling for the hydrogen
atom.

For the exponential orbital, an interesting formula exists.
For the 1s Slater orbital, for example, the density is written in
the form

d(ri) = exp(−ari). (12)

Then, the sequence ηi on the r coordinate according to the
weight distribution of Eq. (12) is given by

ηi = − log(ari), (13)

which is an inverse function of d(ri): a plane random number
sequence on the r coordinate {ri} is mapped to the probability
distribution {ηi} of d(ri). This formula is simple, but we cannot
use it directly because our density is the radial distribution
function given by 4πr2

i d(ri).
By using the atomic Hartree-Fock (HF) orbital with the

Slater basis function, for example, the one-electron radial dis-
tribution function ρ(ri) for the s orbital is written in general
as

ρ(ri) =
∑

k

bkrnk+2
i exp(−akri), (14)

where nk ≥ 0 and k runs over the Slater basis functions used
to describe the orbital to which the electron i belongs. bk and
ak are some coefficient and exponent of the given orbital.
A uniform distribution {ξi} in the interval [0,1] is mapped
to the probability distribution {ηi} according to ρ(ri) by the
relation

ξi =

∫ ηi

0
ρ(ri)dri. (15)

From {ξi}, one obtains the corresponding ηi by solving
Eq. (15). Since ηi is guaranteed to be a monotonically increas-
ing function of ξi, Eq. (15) can be solved easily by the numeri-
cal method and ηi is obtained with one-to-one correspondence
to ξi. Thus, we obtain the weighted radial distributions {ηi} (i
= 1, . . ., Ns) that are regularly and densely arranged along the
radial coordinates of the atomic orbitals.

The electronic structure of the many electron atoms may
be described well by the atomic Hartree-Fock theory. With the
latter theory, we have in the literature the minimal Slater basis
of Clementi27 and the multi-exponent Slater functions reported
by McLean and Yoshimine.28 For the sp3 state (5S) of the car-
bon atom, for example, the electronic structure is produced
using the Aufbau principle as (1s)2(2s)1(2px)1(2py)1(2pz)1.
Therefore, we construct first the sampling points for the 1s
electrons, and then for the 2s electrons, . . ., and afterward, we
approximate the local sampling points for C(sp3) by a set of
products of the sampling points of the six electrons in a set
of orbitals, each sampling point being produced according to
the radial density ρ(r) of each orbital. For the 2s orbital, we
take its node into account. For the 2p orbitals, we distributed
spherically, ignoring the x, y, z angle, just like for the 2s orbital.
This is because, when we later consider chemical reactions, for
example, the spherical sampling points are easier to use since
they are not dependent on the molecular geometry. Then, the
angular distributions may be calculated as being due to the ran-
domness origin as in the hydrogen atom. We then shuffled the
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ordering of the sampling points and made a set of 6-electron
sampling points by taking products of the shuffled sampling
points of 6 electrons, like the Hartree products, arranged in
the orbital sequence of 1s, 1s, 2s, 2px, 2py, 2pz. We made Ns
(∼106) sets of sampling points, instead of Ns6. The effects
of the Pauli principle and the inter-electron repulsions will be
taken into account in the Metropolis step done later.

Next, we consider the local sampling method for
molecules. When we calculate molecules, usually we already
have the best atomic sampling points associated with the best
FC calculations for the atom. So, the method for the local
sampling for molecules may have some selections. The first
selection is to use the results of the quantum-chemical calcu-
lations for the molecule under consideration, like we did for
atoms in the above paragraphs. Second is to use the result of the
best atomic sampling calculations with the similar sampling
method. Third is like the second one and is to use the result of
the best calculations for the fragments of the molecule.

For the first method selected, a note may be necessary.
When we use the results of the Hartree-Fock calculations, a
problem arises from the multi-center nature of the MO’s. For
example, for the MO, a + b, where a and b are the atomic
orbitals on centers A and B, respectively, its density becomes
ρ(r) = (a + b)2 = a2 + 2ab + b2. For the first and last terms,
we can use the method given above for atoms, but for the sec-
ond term, such a method is not applicable because this is the
two-center function. For the Gaussian functions, however, the
second term can be transformed to the one-center Gaussian
function, for which the above method is applicable. When
the coefficient of b is negative, we have to delete the corre-
sponding near-by sampling points of a2 + b2, which would be
possible.

The second method is popular. We put the best atomic
samplings to the coordinates of the atoms in the chemi-
cal formula. From them, we form the initial local sampling
for the molecule. In the succeeding LMn steps, the reorga-
nization from atomic distribution to molecular distribution
occurs.

The third method is similar to the second one. We utilize
the sampling points already calculated for the fragment of the
molecule under study. We used this method in the calculations
of acetylene: we used the best sampling of C2 and the sampling
of two H’s.

B. Local sampling plus iterative Metropolis
cycles: LMn method

The local sampling method explained above utilizes the
quantum-chemical method for producing the sampling points,
but it neglects many other conditions, like antisymmetry effect,
inter-electron repulsions, accumulation of density in bond-
ing regions, and other interactions within molecules. These
points are improved by using the Metropolis method26 which
is done iteratively for satisfying the important relation given
by Eq. (11).

The Metropolis method is designed to form Monte
Carlo distributions of a state composed of interacting par-
ticles: it assumes classical statistics, only two-body forces,
and homogenous fields. These assumptions do not hold for

the electrons in atoms and molecules that follow quantum
mechanics, but this method is still a useful working method
for adjusting the sampling distribution to satisfy Eq. (11).

The calculations are performed in an iterative way:
(i) we first prepare the local sampling points as an initial
distribution and perform the LSE calculations to get the wave
function and energy, and (ii) a set of sampling points given
by the local sampling method is updated to adapt to a given
(previous cycle’s) wave function and perform the LSE calcu-
lations again to get the solution. We continue this iteration
process (ii) until we get the convergence. We refer to this
iterative calculation process of (ii) as the LMn method: the
Local (L) and Metropolis n-step (Mn) method, where n means
the number of walks of the random walkers allowed in one
Metropolis cycle. The calculations proceed in the form of
LMnMn. . .. Since the local sampling points were prepared
based on some quantum-chemical bases, while the Metropolis
method does not stand on the quantum-mechanical principle,
it is not recommended to choose the step size d and the num-
ber of walks n too large. We used n usually unity and d to
be reasonably small. However, these parameters are the sub-
jects of the experiences: the best choice will be obtained after
accumulating the experiences of calculating many atoms and
molecules.

We determined the step size d in the following manner.
When the random walker iA (i denotes the electron and A
denotes the atom it belongs, but A is omitted below) moves
in the atomic region of A, the step size should be chosen,
depending on the nature of the orbital to which the electron i
belongs. When the electron i belongs to the hydrogenic orbital
χi with the principal quantum number ni and the orbital expo-
nent αi, namely, χi = rni−1 exp(−αir), then the step size di of
the walker may be defined by

di = η
ni

αi
, (16)

where η is an input parameter: when η = 1, di = ni/αi is
the distance from the nucleus to the maximum of the radial
distribution 4πr2 χ2. Therefore, the proportionality param-
eter η adjusts the walker’s step size and normally should
be much smaller than unity. In the CFT, each electron has
its own orbital and center A for the local atomic concept.
Therefore, the explanation here is common to both atoms and
molecules.

Next is about the random walker’s pass. As atoms are
spherical, the pass along the r, θ, ϕ coordinate is a natural
choice. In the pre-step of the local sampling, the regular and
dense distributions of the sampling points were produced along
the r coordinate based on the quantum mechanical origin,
while for the angular θ and ϕ coordinates, the distribution was
chosen purely randomly or with the reference to the HF single
determinant or some other method. In the Metropolis method
of atoms, we may keep the radial sampling fixed to those
of the initial local sampling and consider the many-electron
effects only with the θ, ϕ coordinates. Since the Metropo-
lis method is suitable to adjust something of the randomness
origin, this usage matches with the nature of the Metropolis
method. We may refer to this method as the θ, ϕmethod since
the r-coordinates are fixed to the initial local sampling without
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any modification. For this purpose, the quantum mechanical
method that provides the local r-sampling must be of good
quality. Actually, as shown below, this θ, ϕ method seems to
work well. However, if the θ, ϕ method is restrictive, we can
modify the radial distribution by relaxing the r coordinate at
the same time. Actually, the atomic radial distribution used in
the local sampling method is an approximate one, not including
the correlation effects, if the Hartree-Fock orbitals were used
for obtaining the initial local sampling points. Therefore, after
some iterations of the θ, ϕmethod, it should be changed to the
r, θ, ϕ method, considering the modification of the sampling
points on the r coordinate.

Even for molecules, we may start from the best atomic
sampling and use only the θ, ϕ coordinates to adjust them for
molecules, at least in the initial stage. After several cycles, it
may be changed to the r, θ, ϕ pass or even to the local x, y,
z pass near the atom to which the electron belongs. We note
one thing. For atoms, each electronic state is uniquely related
to the electronic configuration. For example, the valence 5S
state is uniquely related to the sp3 configuration. However, in
molecules, the ground state of the C2 molecule at the equi-
librium state, for example, is a mixture of the sp3 and s2p2

configurations of the carbon atom. Therefore, for the sampling
of the C2 molecule, for example, the radial distribution of the
atomic sampling must also be an appropriate mixture of the
two atomic states, if we keep the atomic radial distributions
even in molecules. However, if we optimize them in molecules
with the r, θ, ϕ coordinate, then this problem disappears.

In molecules, the above process may be done using the
local x, y, z coordinate near the atoms or the local r, θ, ϕ coor-
dinate of the atom to which the electron belongs. In molecules,
the original spherical symmetry for atoms disappears, but
from the local atomic concept, the local r, θ, ϕ coordinate
may still be meaningful: inner-shell electrons are still well
approximated to be in the spherical orbitals.

It is true that the convergence may be obtained whatever
pass coordinate one may use. In the sampling calculations,
there are the cases in our experiences where the theory and
the actual practice look differently or even contradictory. A
reason may lie in the number of the sampling points, Ns: if Ns
is too small than necessary, the theory may not work. In most
calculations of this report, Ns was 2 × 106.

C. Possibility of the stationarity principle
in the LSE calculations

Here, we consider a possibility of introducing a variational
principle and a stationarity principle based on the inherent
randomness of the sampling method. In the sampling method-
ology, a measure of the exactness of the calculated result may
be given by the variance or the H-square error given by Eq. (9).
Since it is always positive and becomes zero when the result
is exact, the variance minimization may be a useful princi-
ple in the optimization process. However, in our experiences,
the variance itself is not a good measure of the accuracy of
the wave function, though it certainly becomes zero when the
wave function becomes truly exact. On the other hand, when
we know the exact energy Eexact for the system under study, the
absolute value of the difference |E(n) − Eexact | is positive and

becomes zero at the exact situation. Therefore, we may use the
following quantity as a variational principle in the sampling
method:

V (n) = a · σ2(n) + b · |E(n) − Eexact |, (17)

where n is the iteration number and a and b are the positive
parameters. V (n) should be minimum for the result obtained
at the best iteration n. Since the variance is not a good mea-
sure, the above variational principle is essentially due to the
second term. So, this is useful when we know the exact energy
like in the calculations of the first-row atoms whose exact
energies are estimated from the accurate spectroscopic data,29

but in general cases, we do not know the exact energy. We
note that the combination of variance and energy minimiza-
tion method used in the VMC method18–20 is close to the above
method.

Thus, in most cases, the above variational method is use-
less. However, when the results change due to the inherent ran-
domness of the calculational method, like by the randomness in
the LMn process explained above, we propose a “stationarity”
principle as expressed by the minimization of the quantity
defined by

S(n) = a · σ2(n) + b · σ2(n) + c · ���σ
2(n) − σ2(n − 1)���

+ d · E(n) + e · |E(n) − E(n − 1)|, (18)

where S(n), which is always positive or zero when we get the
exact result, represents the stationarity measure at the iteration
cycle n. This equation is based on the fact that both variance
and energy become stationary at the optimal position. At the
minimum, the first derivative against the variation must also be
zero. Then, S(n) should be minimum for the result obtained at
the best iteration n. For the first variance term, the reasoning is
the same as above. The quantity with the bar above is the stan-
dard deviation that is positive by definition. The second term
is zero when the variance is constant at the last five sampling
steps of the nth iteration. The third term is zero when the vari-
ance is again constant at the (n − 1)th and nth iterations. These
two terms represent the stationarity principle of the variance
at the optimal position. The last two terms represent the sim-
ilar behavior of the energy. At the variational minimum, the
energy change caused by the small random fluctuations should
be zero. This stationarity of the energy is complementary to the
stationarity of the variance. It is true that if the wave function
is exact, the SE must be satisfied at any sampling points so that
all the terms of Eqs. (17) and (18) should be zero. We examined
this idea using the limited number of molecular calculations
reported in this paper. It should be examined for larger number
of molecules.

D. Possibility of the averaging method
and the accumulation method

Actual calculations of the FC-LSE calculations proceed
as follows. We first produce Ns sampling points by the local
sampling method, referring to the electron density distribu-
tions in atoms and molecules obtained by quantum chemical
calculations. The first iteration is done using the local sampling
points. The succeeding steps are to adjust the sampling points
to fit the many-electron distribution Γ given by Eq. (10) using
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the Metropolis method: each sampling point is examined with
the Metropolis algorithm, and if necessary, it is replaced with
a new sampling point. In each cycle of the iteration, we use
the sampling points produced by the last step and calculate the
energy and the wave function at each increment of the Ns/10
sampling points. One cycle of the iteration step finishes when
we reach the Ns sampling points. When the self-consistent
cycles get some stability after several Metropolis steps, there
occurs a choice: one is to continue the same process, but we
start averaging the calculated energy or other quantities of
interest. This method may be called averaging method. The
other is to start accumulations of the H and S matrices to
get some continuity, which is referred to as the accumulation
method.

First, we explain the averaging method, which is used pop-
ularly in the sampling-type methodologies. If the fluctuations
of the sampling method come from the inherent randomness,
the behavior would be the oscillation about the definite value.
If this is the case, we would be able to get the definite value
simply by taking the average. This averaging must be done
when the self-consistent cycles get some stability after several
Metropolis steps. Though this method is simple, we can get
fairly good results. We note that with this averaging method,
we cannot get the unique wave function: though we can make
an average of the calculated energy values, it is difficult to take
an average of the calculated wave functions. This is a demerit
of this method, though we may use the wave function close to
the average value.

Next, we explain the accumulation method. At the begin-
ning of the iterations, both wave functions and sampling points
may not be good. So, their information must be thrown out.
But from some steps after reaching a stability, we may accu-
mulate the H and S matrices. There are two reasons. One
is the similarity of this method to increase the number of
the sampling points, which merits the accuracy of the cal-
culations. Second is that by accumulating them, the result
of each diagonalization becomes more continuous than oth-
erwise. With the accumulation method, we can reach the
convergence by continuing the calculations: we can get both
the exact energy and wave function from the converged
results. However, we note that the accumulation method must
be started only after the iteration process reaches a steady
state.

III. SOLVING THE SCHRÖDINGER EQUATIONS
OF THE FIRST-ROW ATOMS

We now apply the methods explained above to solving
the SE’s of the first-row atoms. We limited our calculations
here only to the ground state of the symmetry. We did not
calculate the excited states of the same symmetry. Therefore,
we used only one initial function for the ground state for all the
first-row atoms. We employed the LM1 method and Ns was
2 × 106. At each Ns/10 sampling points, we calculated the H
and S matrices, diagonalized, and recorded the calculated wave
function, energy, and H-square error. For the energy and the
H-square error, the average value and the standard deviation
from the average value were recorded for the results of the last
five diagonalizations.

A. Results of the LM1 method applied to all
first-row atoms

The electronic structure of the first-row atom may be
written as

(1s)2(2s)1−2(2px)0−2
(
2py

)0−2
(2pz)

0−2. (19)

We studied here the ground state of each atom. We calcu-
lated the 2P(s2p) and 4P(sp2) states of the boron atom and the
3P(s2p2) and 5S(sp3) states of carbon atom for their special
importance in their chemistries. The initial function is written
correspondingly to the electronic configuration given above.
For example, for the nitrogen atom, it is written as

φ0 = A[(1s)2(2s)22px2py2pz]αβαβααα. (20)

It is easy to write the initial function for each state of
the first-row atom, referring to the electronic configuration
given by Eq. (19). We used Slater orbitals of the single-
zeta level as 1s = exp(−α1sr), 2s = r exp(−α2sr), and
2p(x,y,z) = (x, y, z) exp(−α1sr). For the 2s orbital, an additional
orbital, exp(−α2sr), was used with the same exponent, but the
cf’s generated therefrom were limited to only order 1. For the
inner cores and the doubly occupied orbitals, we considered
the in-out correlations,13 and for this reason, we optimized the
orbital exponents of all the orbitals for the initial functions. For
the N, O, and F atoms, the in-out correlations are considered
for the 1s, 2s, and closed-2p orbitals. The optimized values are
summarized in Table I.

Now, we apply the FC theory to the initial functions of the
first-row atoms like the φ0 given by Eq. (20) for the nitrogen
atom and generate the cf’s which are generally written as

{φI } = φ0, riφ0, rijφ0, rjriφ0, rkrijφ0, rklrijφ0, . . . , (21)

to the second order. For the N, O, and F atoms, in addition
to the in-out correlations for all doubly occupied orbitals, all
possible rij terms between 2s-2s, 2s-2p, and 2p-2p electrons
were included. Therefore, the number of their cf’s became
large compared to the other smaller atoms since the number of
electrons belonging to these orbitals is large for these atoms. In
addition, some additional higher-order functions with respect
to ri and rij were added.

With the use of these cf’s, the FC wave function is written
as Eq. (1). In the LM1 calculations, we used a simple x, y,
z method. For the first-row atoms, the estimated exact ener-
gies are known from the literatures30–33 and the spectroscopic
experiments.29 Therefore, after the stabilization, the best theo-
retical energy was selected by the variational method given by
Eq. (17) with a = 0. Table II shows the summary of the results:
these results are partially the same as those reported already
for the IMS Computer Center Reports.34

Table II shows that the energies calculated by the present
FC theory differ from the estimated exact energies29–33 by
less than one kcal/mol for all the first low atoms: the chemical
accuracy was achieved. Here and below, the boldface value
shows such a case. This is a necessary condition that the present
method is useful as an accurate theory for chemistry: with
these data, we can predict the dissociation energies and the
heats of formations of molecules, for example, in chemical
accuracy. Table II shows also the standard deviations of the
calculated energies: they were calculated from the energies
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TABLE I. Optimized exponents of the single Slater orbitals in the initial functions of the first-row atoms with
including the in-out correlations for the doubly occupied orbitals.

Atom, No. of
Orbital exponents

state electronsa α
(in)
1s α

(out)
1s α

(in)
2s α

(out)
2s α2s α

(in)
2p α

(out)
2p α2p

Li, 2S(s) 3 3.2990 2.0674 0.6390
Be, 1S(s2) 4 4.3981 2.9531 1.1058 0.8057
B, 2P(s2p) 5 5.4816 3.8554 1.4703 1.1021 1.2189
B, 4P(sp2)b 5 4.6760 4.6754 1.3276 1.2385
C, 3P(s2p2) 6 6.5581 4.7627 1.8278 1.3826 1.5747
C, 5S(sp3) 6 6.5585 4.7685 1.6626 1.5847
N, 4S(s2p3) 7 7.6292 5.6744 2.1815 1.6572 1.9230
O, 3P(s2p4) 8 8.6952 6.5862 2.5424 1.9515 2.8803 1.4376 2.2910
F, 2P(s2p5) 9 9.7597 7.4989 2.9004 2.2369 3.3423 1.6988 2.6447

aNumber of electrons.
bOptimized values for the 1s in and out orbitals were almost identical.

of the last five diagonalizations of the final LM1 step using
16-20 × 105 sampling points. The standard deviations are all
far below kcal/mol, showing the reliability of the calculated
results.

Some reference calculations are cited on the right-hand
side of Table II: the values shown are the differences in
kcal/mol from the reference estimated exact energies. The first
column shows the Diffusion Monte Carlo (DMC) results due
to Buendia et al.:35 they do not reach the chemical accuracy,
while the DMC calculations due to Brown et al.36 are more
accurate, though again the results for N to F do not reach
the chemical accuracy. In the last column, we refer to the
R12/F12 calculations due to Noga et al.37 who used quite
extensive bases like 19s14p8d6f4g3h and obtained the results

of the chemical accuracy. The present results give stably the
chemical accuracy for all the first-row atoms with less than
1100 complement functions at most.

B. Averaging and accumulation methods applied
to C(sp3) and O(s2p4)

We show here the results of the averaging and accumu-
lation methods applied to the carbon 5S(sp3) state and the
oxygen 3P(s2p4) state. The initial functions and the cf’s are
the same as described above. The number of cf’s was 187 for
C 5S(sp3) and 662 for O 3P(s2p4). For the local sampling, the
radial distributions were generated according to the densities of
the Hartree-Fock orbitals with the McLean-Yoshimine Slater
basis set,28 while the angular distributions were produced in

TABLE II. FC-CFT with LSE-LM1 method applied to the first-row atoms.

FC-CFT with LSE-LM1b,c Reference energy ∆E (kcal/mol)

Atom, No. of H-square
Energy (a.u.)

∆E Estimated exact Buendia Brown Noga

state electronsa Dimensiond error (a.u.) Std. dev. (kcal/mol)e energy (a.u.) DMCf DMCg R12/F12h

Li, 2S(s) 3 25 0.039 975 �7.477 772 ±0.000 023 0.181 �7.478 060i 0.013 0.001
Be, 1S(s2) 4 105 0.118 825 �14.666 436 ±0.000 069 0.577 �14.667 356j 6.373 0.023
B, 2P(s2p) 5 203 0.347 766 �24.653 734 ±0.000 103 0.083 �24.653 866k 8.827 0.186
B, 4P(sp2)a 5 109 0.493 243 �24.522 622 ±0.000 050 0.014 �24.522 6l

C, 3P(s2p2) 6 236 0.924 209 �37.845 004 ±0.000 282 �0.002 �37.845 0m 9.726 0.722 0.418
C, 5S(sp3) 6 187 0.972 810 �37.690 998 ±0.000 099 0.001 �37.691n

N, 4S(s2p3) 7 396 2.005 442 �54.588 954 ±0.000 103 0.154 �54.589 2m 8.471 1.192 0.357
O, 3P(s2p4) 8 662 3.332 498 �75.067 207 ±0.000 087 0.058 �75.067 3m 9.287 3.514 0.390
F, 2P(s2p5) 9 1069 4.445 421 �99.733 637 ±0.000 476 0.102 �99.733 8m 10.668 4.016 0.217

aNumber of electrons.
bOptimal results selected by the variational method (V).
cAveraged values of the five results at the sampling: 16 × 105 to 20 × 105 and their standard deviations (Std. dev.).
dDimension (number of cf’s).
eEnergy difference between the energies of the FC-CFT with LSE-LM1 method and estimated exact value. When it is smaller than 1 kcal/mol, it is written by boldface.
fReference 35.
gReference 36.
hReference 37.
iReference 31.
jReference 32.
kReference 33.
lEstimated exact energy of 2B(s2p)33 + experimental excitation energy of 4B(sp2) from the atomic spectra database.29

mReference 30.
nEstimated exact energy of 3C(s2p2)30 + experimental excitation energy of 5C(sp3) from the atomic spectra database.29



114106-8 Nakatsuji, Nakashima, and Kurokawa J. Chem. Phys. 149, 114106 (2018)

TABLE III. Converging process of the FC-CFT calculations with LSE-LM5 method for the 5S(sp3) state of
the carbon atom. The results of the averaging and accumulation methods are shown. We adjusted only the θ, ϕ
coordinates of the sampling points fixing the r coordinates to the initial radial local sampling points obtained from
the Hartree-Fock orbital densities of the McLean-Yoshimine basis set.

LM5 process Accumulation process

∆E
Energy (a.u.)b ∆E (kcal/mol)c Energy (a.u.)b (kcal/mol)c

Iterationa Std. dev. Averagingd Std. dev.

Local �37.300 595 ±0.536 840 244.983

Metropolis
1 �37.648 647 ±0.000 539 26.577

2 �37.636 722 ±0.000 278 34.060

3 �37.673 314 ±0.000 348 11.098

4 �37.680 145 ±0.000 329 6.812

5 �37.685 102 ±0.000 156 3.701

6 �37.688 870 ±0.000 213 1.337

7 �37.688 802 ±0.000 129 1.379

8 �37.688 994 ±0.000 204 1.259

9 �37.691 028 ±0.000 023 �0.018

10 �37.692 601 ±0.000 426 �1.005 �1.005 �37.690 917 ±0.000 027 0.052

11 �37.690 656 ±0.000 214 0.216 �0.394 �37.689 876 ±0.000 030 0.705

12 �37.691 715 ±0.000 076 �0.448 �0.412 �37.691 437 ±0.000 114 �0.274

13 �37.691 619 ±0.000 291 �0.388 �0.406 �37.692 849 ±0.000 076 �1.160

14 �37.690 287 ±0.000 086 0.448 �0.236 �37.691 060 ±0.000 127 �0.038

15 �37.691 460 ±0.000 247 �0.289 �0.244 �37.691 213 ±0.000 049 �0.133

16 �37.691 567 ±0.000 345 �0.356 �0.260 �37.691 059 ±0.000 112 �0.037

17 �37.690 729 ±0.000 170 0.170 �0.207 �37.691 137 ±0.000 268 �0.086

18 �37.689 843 ±0.000 158 0.726 �0.103 �37.691 615 ±0.000 021 �0.386

19 �37.689 890 ±0.000 197 0.696 �0.023 �37.692 022 ±0.000 058 �0.641

20 �37.690 824 ±0.000 192 0.111 �0.011 �37.691 387 ±0.000 038 �0.243

21 �37.691 823 ±0.000 220 �0.516 �0.053 �37.691 671 ±0.000 030 �0.421

22 �37.689 184 ±0.000 325 1.140 0.039 �37.691 449 ±0.000 050 �0.282

23 �37.692 296 ±0.000 185 �0.813 �0.022 �37.691 515 ±0.000 059 �0.323

24 �37.690 269 ±0.000 293 0.459 0.010 �37.691 577 ±0.000 085 �0.362

25 �37.688 371 ±0.000 277 1.650 0.112 �37.691 327 ±0.000 017 �0.205

26 �37.690 228 ±0.000 125 0.484 0.134 �37.691 045 ±0.000 043 �0.028

27 �37.690 876 ±0.000 052 0.078 0.131 �37.691 607 ±0.000 079 �0.381

28 �37.692 145 ±0.000 427 �0.718 0.086 �37.691 638 ±0.000 024 �0.400

29 �37.691 446 ±0.000 207 �0.280 0.068 �37.691 463 ±0.000 061 �0.291

30 �37.690 048 ±0.000 109 0.597 0.093 �37.691 060 ±0.000 025 �0.038

31 �37.690 648 ±0.000 304 0.221 0.099 �37.691 027 ±0.000 007 �0.017

32 �37.691 061 ±0.000 260 �0.038 0.093 �37.690 899 ±0.000 031 0.064

33 �37.691 241 ±0.000 135 �0.151 0.083 �37.691 063 ±0.000 050 �0.040

34 �37.691 256 ±0.000 125 �0.161 0.073 �37.691 241 ±0.000 024 �0.151

35 �37.692 007 ±0.000 151 �0.632 0.046 �37.691 219 ±0.000 023 �0.137

36 �37.690 537 ±0.000 094 0.291 0.055 �37.691 077 ±0.000 030 �0.048

37 �37.689 374 ±0.000 074 1.020 0.090 �37.690 779 ±0.000 045 0.138

38 �37.689 142 ±0.000 219 1.166 0.127 �37.690 957 ±0.000 039 0.027

39 �37.691 597 ±0.000 334 �0.375 0.110 �37.691 146 ±0.000 023 �0.091

40 �37.691 006 ±0.000 250 �0.004 0.106 �37.691 136 ±0.000 028 �0.086

41 �37.690 781 ±0.000 194 0.137 0.107 �37.691 130 ±0.000 019 �0.082

42 �37.690 186 ±0.000 437 0.510 0.120 �37.690 963 ±0.000 028 0.023

43 �37.692 599 ±0.000 166 �1.004 0.087 �37.690 869 ±0.000 027 0.082

44 �37.691 899 ±0.000 178 �0.564 0.068 �37.690 988 ±0.000 030 0.008

45 �37.692 362 ±0.000 191 �0.854 0.042 �37.690 991 ±0.000 031 0.006

46 �37.691 054 ±0.000 164 �0.034 0.040 �37.690 965 ±0.000 016 0.022

47 �37.689 024 ±0.000 287 1.240 0.072 �37.691 329 ±0.000 023 �0.206
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TABLE III. (Continued.)

LM5 process Accumulation process

∆E
Energy (a.u.)b ∆E (kcal/mol)c Energy (a.u.)b (kcal/mol)c

Iterationa Std. dev. Averagingd Std. dev.

48 �37.691 860 ±0.000 276 �0.539 0.056 �37.691 077 ±0.000 035 �0.048
49 �37.693 337 ±0.000 244 �1.467 0.018 �37.691 083 ±0.000 039 �0.052
50 �37.691 177 ±0.000 359 �0.111 0.015 �37.690 899 ±0.000 031 0.063

Est. exact energye
�37.691 �37.691

aAveraging and accumulation methods start from iteration = 10. The step size parameters for θ and ϕ coordinates were 10◦ and
20◦, respectively, and M5 calculations were done for each iteration cycle.
bAveraged values of the five results at the sampling: 16 × 105 to 20 × 105 and their standard deviations (Std. dev.).
cEnergy difference between the energies of the FC-CFT with the LSE-LM5 method and estimated exact value. When it is smaller
than 1 kcal/mol, it is written by boldface.
dAverage from iteration 10 to iteration n.
eEstimated exact energy of 3C(s2p2)30 + experimental excitation energy of 5C(sp3) from the atomic spectra database.29

a purely random manner. Since these radial distribution func-
tions were believed to be accurate, we fixed them to the initial
distributions: in the Metropolis step, the walker moved only
on the θ, ϕ coordinates. The step size parameters for θ and
ϕ coordinates were 10◦ and 20◦, respectively, and here M5
calculations were done for each iteration cycle. Ns was again
2 × 106.

Table III shows the converging processes of the LM5 and
accumulation methods in the FC-LSE calculations applied
to the 5S(sp3) state of the carbon atom. The first row indi-
cated by “Local” shows the result of the initial local sam-
pling points. At this stage, the sampling points do not include
the many-electron effects like the antisymmetry principle
and the inter-electron correlations. They are incorporated
from the next Metropolis step by adjusting only the angu-
lar coordinates, θ and ϕ. We continued the initial stabiliza-
tion process to iteration = 9, and from the next step, we
initiated the averaging and accumulation methods since we
could observe the stationarity from the steady decrease of the
energy standard deviation and the small changes in the energy
values.

From iteration = 10, we examined the averaging and accu-
mulation methods for comparison. Details of the changes in
the energy and in its standard deviation are shown in Table III
and they are depicted in Fig. 1. The behavior of the LMn
process is a random oscillation within about one kcal/mol
changes. This deviation range is dependent on the magnitudes

of the applied perturbation: θ = 10◦, ϕ = 20◦, and M5. When
we decrease these parameters, the range of deviations should
become smaller, but we did not change these parameters in the
present calculations.

We can get a remarkable result when we take an average of
the energy of the iteration process, i.e., the averaging method.
We start this averaging after the 10th cycle of the Metropolis
steps, which is the same iteration cycle that the accumulation
method starts, and the averaged results for ∆E were shown
at the column under “Averaging.” The average energy value
differs from the exact energy by less than 1 kcal/mol through-
out, and at the 50th cycle, it becomes 0.015 kcal/mol which
is very accurate. However, with this method, we cannot get
the wave function corresponding to this energy, though we
may choose the one whose energy is close to the averaged
value.

On the other hand, when the accumulation method is
switched on, the behavior changed. The changes in the energy
values and in their standard deviation values both become
much smaller than those of the iteration process, and the
energy converges to the value of −37.690 899 a.u. at the 50th
cycle: the energy difference from the known exact energy is
only 0.063 kcal/mol. Even with the sampling methodology
based on the randomness origin, we could get the convergence
of the energy within 1 kcal/mol accuracy for the absolute
value as large as −37.691 a.u. = 2.363 × 107 kcal/mol. At
the same time, we could get the wave function corresponding

FIG. 1. Converging process of ∆E
(kcal/mol) for the 5S(sp3) state of the
carbon atom by the FC-CFT with the
LSE-LM5 method: the averaging (left
with red line) and accumulation (right)
methods with adjusting only θ, ϕ coor-
dinates without changing the initial
radial distributions. The averaging and
accumulation start from iteration 10.
See Table III for more details.
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FIG. 2. Converging process of ∆E
(kcal/mol) for the ground state of the
oxygen atom by the FC-CFT with the
LSE-LM5 method: the averaging (left
with red line) and accumulation (right)
methods are shown. (a) Results by
adjusting only θ, ϕ coordinates with-
out changing the initial radial distribu-
tions. The averaging and accumulation
start from iteration 92. (b) Results by
adjusting r, θ, ϕ coordinates with η =
0.000 01 for changing radial distribu-
tions. The averaging and accumulation
start from iteration 72.

to the converged energy. We can calculate many properties
from this wave function. It is noteworthy that the present
convergence to the exact value was realized with the random
walks within only the angular coordinates θ and ϕ and with-
out any reoptimization of the initial radial distribution due to
the Hartree-Fock orbitals with the McLean-Yoshimine Slater
basis set.28

The accumulation method was invented to get the con-
tinuity in the sampling-type methodology, though we must
switch on it after some convergence behavior is observed in
the iteration process. Otherwise, the convergence may be slow.
The merit is that we can obtain both the energy and the wave
function at the convergence.

We also performed the similar calculations for the
3P(s2p4) ground state of the oxygen atom. Figure 2(a) shows
the converging processes of the averaging and accumulation
method applied to the LM5 iteration process moving only
the θ, ϕ coordinate without changing the initial radial dis-
tributions. We continued the initial stabilization process up
to iteration = 91, and from the next step, we initiated the
averaging and accumulation methods since we could observe
the stationarity from the steady decrease of the energy stan-
dard deviation and the small changes in the energy values.
With the accumulation method, we could get the energy
−75.066 850 a.u., which was 0.285 kcal/mol higher than the
estimated exact energy, −75.0673 a.u.29,30 On the other hand,
from the averaging method, we get the energy of −75.066 943
± 0.000 673 a.u. with the ∆E value of 0.224 kcal/mol, which
is satisfactory also.

For oxygen, we also examined the r, θ, ϕ method with a
slight reoptimization of the radial distributions with the param-
eters of η = 0.000 01 in Eq. (16): other parameters are the

same as above, θ = 10◦, ϕ = 20◦, and M5. Figure 2(b)
shows the results: the initial stabilization process was done
up to iteration = 71 and, after that, the averaging and the accu-
mulation methods were started. From the averaging method,
we obtained the energy −75.067 038 ± 0.000 615 a.u. with
∆E = 0.165 kcal/mol higher than the estimated exact
energy,29,30 and with the accumulation method, we obtained
the energy −75.067 196 a.u. with ∆E = 0.065 kcal/mol. Thus,
by slightly reoptimizing the radial distributions, both the
energy results and the stability were slightly improved. How-
ever, large changes of the radial distributions by the Metropo-
lis method would cause a problem when exactly solving the
SE because the distributions may get away from their initial
quantum-mechanical distributions that regularly cover from
the cusp regions to the dissociation regions. Therefore, we
need more experiences about the optimal sets of appropriate
parameters for the Metropolis walks.

IV. FC-CFT APPLIED TO SMALL MOLECULES

Next, we apply the FC theory to small molecules. Ear-
lier applications of the FC theory to small molecules were
reported in the review paper8 and the reports to the computer
centers whose computers were used for the calculations.34,38,39

In the earlier stage of the calculations, we could not overcome
the fluctuations due to the inherent randomness of the sam-
pling points produced. In this paper, we have reported some
progresses in overcoming these problems.

In the present calculation, we focus only on the ground
state of the molecules and therefore, we did not fully follow
the CFT proposed in Paper I.13 We considered the locality and
transferability concept of the chemical formula but did not
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consider well the effects of the ground and excited states of
atoms on the electronic structure of molecules. For example,
for the carbon atom, the initial functions were constructed
using the conventional knowledge of atomic configurations
and hybrid orbitals. We considered only the s2p2 configuration
for the carbon of the CH molecule and only the sp3 configu-
ration for the carbons of CH3, C2, HCCH, and H2CO. This is
OK with the FC theory since the purpose is the ground state of
these molecules. The FC theory is a very flexible theory and
its initial wave function is permissible if it has an overlap with
the exact wave function. In this sense, the present calculations
are standard as the ground-state calculations.

The initial local sampling points for molecules were con-
structed using the results of the FC calculations of the cor-
responding atoms based on the transferability concept. For
example, if we calculate a hydrocarbon molecule CnHm, we
have n carbons and m hydrogens. When we have Ns sampling
points for each atom, we prepare n and m different shuffled
sets of carbon and hydrogen sampling points, respectively, put
them on the center of each atom, and produce Ns sets (instead
of Nn+m

s ) of sampling points by taking the products of the sam-
pling points of each atom. Other choice is to use the fragment
sampling method. For example, for acetylene, the fragments
may be two CH molecules or C2 plus two hydrogen atoms:
the latter choice was used in the calculations shown below,
together with the products of the atomic samplings.

A. FC-CFT study of small molecules using
the variational and stationarity principles

We have performed the FC-CFT LM1 calculations for the
ground state of nine small molecules. The molecules are LiH
(4), BH (6), CH (7), CH3 (9), OH (9), OH2 (10), C2 (12),
HCCH (14), and H2CO (16), where the number of the elec-
trons is given in the parentheses. In Table IV, we summarize the
initial functions used in the present calculations. For LiH, both
2Li(2s)-H(1s) and 2Li(2px)-H(1s) configurations were consid-
ered. For BH, CH, and OH, 2B(s2p)-H(1s), 3C(s2p2)-H(1s),
and 3O(s2p4)-H(1s) were employed as ψ0. For other carbons,
we used only the 5C(sp3) state. This is because we know that

the 5C(sp3) state is most important for the bonding of car-
bon at their equilibrium geometries. For the CH molecule,
however, the 5C(sp3) state does not contribute for the symme-
try and therefore the 3C(s2p2) state was used. These choices
are permissible when we consider the flexible nature of the FC
theory, but the use of both configurations of carbons would
be a better choice for the initial functions. For the 5C(sp3)
state, we used the popular hybrid orbitals appropriate for each
molecule. For C2, the nature of the C–C bond is an interesting
topic.40–44 However, since we used only the sp3 configuration
in the present study, we do not focus on this subject.

Now, we apply the FC theory to the initial functions given
in Table IV. We generate the cf’s of the FC theory to essen-
tially order 2 as explained in Paper I.13 The dimensions of
the molecules including the O atom are large in comparison
with our current calculations because here we have included
rather carefully the rij terms of the valence electrons as already
explained in the atomic section. In Table V, we summarize the
results. The calculations were done with the method similar
to the one used for the first-row atoms shown in Table II. In
the LM1 calculations, the random walks were done using the
local x, y, z coordinate around each atom. We have applied
both the variational method and the stationarity principle for
the sampling method explained in Sec. II C. For the variational
method, we set the parameter a in Eq. (17) to be zero because
the exact energies of the molecules shown in this table are all
available in the literature: after the calculations become sta-
ble, we chose the result whose energy is closest to the known
exact energy. We have also applied the stationarity principle
to examine its potentiality. The optimal values of the fitting
parameters of Eq. (18) were a = 1, b = 10, c = 10, d = 1000, and
e = 100. The results due to the stationarity principle were dif-
ferent from the variational results only for the three molecules,
LiH, CH3, and HCCH, and in Table V, we gave both results
of the variational method (denoted as V) and the stationarity
principle (denoted as S) for these three molecules. All the
results of the variational method and the stationarity princi-
ple agreed with the exact energies in the literature to within
the chemical accuracy (the differences are less than kcal/mol).
The estimated exact energies shown in these tables are from

TABLE IV. Initial functions of the FC-CFT for small molecules.

Molecule No. of electronsa Initial function ψ0
b,c Atomic statesd

LiHe 4 A
[
(1s1s′)(σ(2s(Li)h))

2
]

+ A
[
(1s1s′)(σ(2px

(Li)h))
2

]
Li, 2S(s)

BH 6 A
[
(1s1s′) · (2s2s′) · (σ(2px h))2

]
B, 2P(s2p)

CH 7 A
[
(1s1s′) · (2s2s′) · (σ(2pxh))2(2py)

]
C, 3P(s2p2)

CH3 9 A
[
(1s1s′)(σ(Cha))2(σ(Chb))2(σ(Chc))2(2pz)

]
C, 5S(sp3)

OH 9 A
[
(1s1s′)(2s2s′)(σ(2pxh))2(2py2p ′y )(2pz)

]
O, 3P(s2p4)

H2O 10 A
[
(1s1s′)(2s2s′)(σ(Oha))2(σ(Ohb))2(2pz2p ′z )

]
O, 3P(s2p4)

C2 12 A
[
(1sa1s ′a )(1sb1s ′b )(σ(CaCb))2(σ′(CaCb))2(π(CaCb))2(π′(CaCb))2

]
C, 5S(sp3)

HCCH 14 A
[
(1sa1s ′a )(1sb1s ′b )(σ(haCa))2(σ(CaCb))2(π(CaCb))2(π′(CaCb))2(σ(Cbhb))2

]
C, 5S(sp3)

H2CO 16 A
[
(1sC1s ′C )(1sO1s ′O )(2sO2s ′O )(σ(haC))2(σ(hbC))2(σ(CO))2(π(CO))2(2pyO2p ′yO)

]
C, 5S(sp3), O, 3P(s2p4)

aNumber of electrons.
bFor diatomic molecule, the molecular axis is x and the CH3, H2O, and H2CO plane is x, y. One CH of CH3 and CO of H2CO is on x. For H2O, two OH bonds are equivalently dealt
with.
cInner core and lone pair were described with the in-out correlation model and spin functions are omitted in the representation.
dAtomic states used for constructing molecular initial functions.
eTwo initial functions were used and the cf’s were generated only up to order 1.
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TABLE V. FC-CFT with the LSE-LM1 method applied to small molecules. Both the variational (V) method and stationarity (S) principle were examined, and
when two methods gave different results, two results were shown.

FC-CFT with LSE-LM1b

No. of Std. dev. of ∆E
Molecules electronsa Dim.c V, Sd H-square error Energy (a.u.) energy (a.u.) (kcal/mol)e Estimated exact Timing (hour)f

LiH 4 78 V 0.253 474 �8.070 440 ±0.000 128 0.067 �8.070 547 3g 0.07 (1.1)h

S 0.227 638 �8.069 904 ±0.000 110 0.404
BH 6 346 V, S 0.989 326 �25.283 728 ±0.000 149 0.146 �25.283961i 0.3 (7.0)
CH 7 424 V, S 1.923 754 �38.478 607 ±0.000 261 0.247 �38.479j 0.8 (6.4)h

CH3 9 352 V 5.631 570 �39.833 344 ±0.000 321 �0.011 �39.834 6j 0.4 (2.0)
S 5.657 196 �39.833 246 ±0.000 507 0.849

H2O 10 965 V, S 6.225 278 �76.437 295 ±0.000 151 0.066 �76.437 4j 1.8 (21.3)
C2 12 695 V,S 21.697 311 �75.925 958 ±0.000 603 0.340 �75.926 5k 1.4 (14.0)
HCCH (atomic sampling) 14 821 V, S 12.541 928 �77.336 747 ±0.000 702 �0.908 �77.335 3j 2.1 (18.9)
HCCH (C2 sampling) 14 821 V 11.631 268 �77.334 915 ±0.000 596 0.242 �77.335 3j 2.2 (24.2)

S 12.300 341 �77.336 358 ±0.000 994 �0.664
H2CO 16 1098 V, S 28.508 543 �114.507 471 ±0.001 054 �0.044 �114.507 4j 3.3 (62.7)

aNumber of electrons.
bAveraged values of the five results at the sampling: 16 × 105 to 20 × 105 and their standard deviations (Std. dev.).
cDimension (number of cf’s).
dOptimal results with the variational method (V) or the stationarity principle (S).
eEnergy difference between the energies of the FC-CFT with the LSE-LM1 method and estimated exact value. When it is smaller than 1 kcal/mol, it is written by boldface.
fTime for one cycle of LM1 calculations and values in the parentheses are the time for total calculations. With 1036 core computers at IMS, Okazaki.
gReference 45.
hWith 112 core computers at IMS, Okazaki.
iEstimated with the atomization energy (0 K) from Ref. 47 and the zero-point vibrational energy from NIST Chemistry WebBook.46

jEstimated by the atomization energy (0 K) and the zero-point vibrational energy, both obtained from NIST Chemistry WebBook.46

kReference 48.

the explicitly correlated Gaussian calculations for LiH by
Tung et al.,45 from those estimated from the experimental val-
ues of the atomization energies at 0 K and of the zero-point
vibrational energies, both from NIST Chemistry WebBook46

for all the molecules except for BH by Curtiss et al.46,47 and
C2 by Bytautas and Ruedenberg.48 In the last column of the
tables, we have shown the computer times used for the calcu-
lations in hour. The values in the parentheses are the total time
in hour used.

The results of Table V for all the molecules calculated
here show that the FC-CFT gave the highly accurate results:
the SE’s of all the molecules are solved stably in the chemical
accuracy with the FC-CFT using the LM1 sampling method.
This result may be thought to be good news since until recently
the SE was thought not to be soluble for ordinary molecules
in chemistry.

Let us examine Table V more closely. ∆E is the differ-
ence between the calculated FC energy and the known exact
energy, and all the results are smaller than 1 kcal/mol, satisfy-
ing chemical accuracy. The standard deviation of the calculated
total energy of each molecule is smaller than a milli-hartree
(0.56 kcal/mol). These facts show the stability of the present
theory and calculations. For acetylene, we used two different
sampling points, one from the best atomic sampling points and
the other from the best C2 fragment sampling and two H’s: the
latter gave a better result. In the last column, the computer
times used for the calculations are shown: the value is for the
one LM1 cycle and the value in the parentheses is total with the
1036-core super-parallel computers at the IMS computer cen-
ter, Okazaki: the computers were updated recently and the ones
we used are the older ones. The FC-CFT-LSE calculations are

suitable to the super-parallel computers since almost 100%
parallelism could be realized for the most time-consuming
steps. Even for the largest molecule, formaldehyde H2CO, the
time for one LM1 cycle was 3.3 h, which is now shorter with
the better computers now available at IMS. In comparison with
the calculations of organic molecules of similar size done about
three years ago with the TSUBAME computer system at the
Tokyo Institute of Technology,38 our present theoretical level
seems to be much improved.

We have applied the stationarity principle given by
Eq. (18) to all the molecules calculated here, and the results
were different only for the three molecules as shown in Table V.
Though the variational principle given by Eq. (17) is straight-
forward, it is meaningless to assume the knowledge of the
exact energy, particularly when we study unknown molecules
and the courses of chemical reactions. We want to know the
method that does not assume the knowledge of the exact
energy. Then, we can imagine that when the result corresponds
to the extremum, then the first derivative of the quantity against
the variation must also be zero. Equation (18) is a mathemati-
cal expression of this principle, together with the fact that the
variance should be minimum at the best solution. This prin-
ciple has led to the results of chemical accuracy, as shown
in Table V. Since the present test of this method is insuffi-
cient, we must examine this principle for a large number of
examples.

B. Averaging and accumulation methods applied
to CH3 and acetylene

Finally, we apply the averaging and accumulation meth-
ods to the FC-CFT LM1 calculations of CH3 and HCCH
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TABLE VI. Converging process of the FC-CFT calculations with the LSE-LM1 method applied to CH3. The
results of the averaging and accumulation methods are shown.

LM1 process Accumulation process

Energy (a.u.)b ∆E (kcal/mol)c Energyb (a.u.)

Iterationa Std. dev. Averagingd Std. dev. ∆E (kcal/mol)c

Local �39.853 931 ±0.032 051 �12.130

Metropolis
1 �39.866 495 ±0.001 894 �20.014
2 �39.833 196 ±0.000 989 0.881
3 �39.833 775 ±0.000 765 0.517
4 �39.837 521 ±0.000 294 �1.833
5 �39.836 069 ±0.000 690 �0.922

6 �39.837 023 ±0.000 597 �1.520 �1.520 �39.837 160 ±0.000 594 �1.607
7 �39.836 136 ±0.000 343 �0.964 �1.242 �39.836 400 ±0.000 209 �1.130
8 �39.836 853 ±0.001 271 �1.414 �1.299 �39.836 724 ±0.000 412 �1.333
9 �39.834 533 ±0.000 717 0.042 �0.964 �39.835 777 ±0.000 161 �0.739
10 �39.834 741 ±0.001 034 �0.089 �0.789 �39.835 475 ±0.000 187 �0.549
11 �39.835 899 ±0.000 405 �0.815 �0.793 �39.835 613 ±0.000 096 �0.636
12 �39.834 391 ±0.001 205 0.131 �0.661 �39.835 306 ±0.000 122 �0.443
13 �39.833 344 ±0.000 564 0.788 �0.480 �39.835 027 ±0.000 058 �0.268
14 �39.834 617 ±0.000 321 �0.011 �0.428 �39.834 926 ±0.000 040 �0.205
15 �39.833 246 ±0.000 507 0.849 �0.300 �39.834 835 ±0.000 035 �0.147
16 �39.832 484 ±0.000 513 1.328 �0.152 �39.834 724 ±0.000 037 �0.078
17 �39.834 621 ±0.000 377 �0.013 �0.141 �39.834 862 ±0.000 025 �0.164
18 �39.835 178 ±0.000 477 �0.363 �0.158 �39.834 981 ±0.000 046 �0.239
19 �39.831 462 ±0.001 856 1.969 �0.006 �39.834 904 ±0.000 100 �0.191
20 �39.834 303 ±0.000 693 0.186 0.007 �39.834 984 ±0.000 070 �0.241

Est. exact energye
�39.834 6 �39.834 6

aM1 calculations were done for each iteration cycle with η = 0.1 up to iteration 5 and the averaging and accumulation methods
start from iteration = 6 with η = 0.01.
bThe averaged values of the five results at the sampling from 16 × 105 to 20 × 105 and their standard deviations.
cEnergy difference between the energies of the FC-CFT with the LSE-LM1 method and the estimated exact value. When it is
smaller than 1 kcal/mol, it is written by boldface.
dAverage from iteration 6 to iteration n.
eEstimated from the atomization energy (0 K) and the zero-point vibrational energy, both obtained from NIST Chemistry
WebBook.46

molecules. The initial functions and the cf’s of the FC theory
are the same as those shown in Tables IV and V, respectively.
Other backgrounds are also the same as explained above.

In Table VI, the results of CH3 were summarized. After
the initial local sampling, 6 steps of the LM1 calculations were
made for getting a stability, and from 7th step, both averag-
ing and accumulation calculations were made up to the 20th
iteration. Figure 3 illustrates the converging behaviors of both

calculations. For the averaging calculations, we showed the
average for the energy difference ∆E from the 6th cycle of the
Metropolis steps. The average value of ∆E became less than
1 kcal/mol after the 9th cycle, and at the 20th cycle, it became
0.007 kcal/mol, smaller than 1 kcal/mol. With the accumula-
tion method, the calculated energy itself became steadily close
to the known exact energy. After the 9th cycle, the value of
∆E became smaller than 1 kcal/mol, and at the 20th iteration,

FIG. 3. Converging process of the ∆E
value in kcal/mol for CH3 by the FC-
CFT with the LSE-LM1 method: the
averaging (left with red line) and accu-
mulation (right) methods starting from
iteration 6 are shown. See Table VI for
more details.
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TABLE VII. Converging process of the FC-CFT calculations with the LSE-LM1 method applied to HCCH. The
results of the averaging and accumulation methods are shown.

LM1 process Accumulation process

Energy (a.u.)b ∆E (kcal/mol)c Energyb (a.u.)

Iterationa Std. dev. Averagingd Std. dev. ∆E (kcal/mol)c

Locale �77.277 704 ±0.056 252 36.142

Metropolis
1 �77.357 056 ±0.032 755 �13.652
2 �77.597 986 ±0.006 781 �164.838
3 �77.474 833 ±0.002 548 �87.558
4 �77.452 884 ±0.000 871 �73.785
5 �77.435 482 ±0.000 503 �62.865
6 �77.411 443 ±0.001 429 �47.781
7 �77.371 175 ±0.001 561 �22.512
8 �77.361 442 ±0.001 142 �16.405
9 �77.357 688 ±0.001 408 �14.049
10 �77.336 123 ±0.001 750 �0.516

11 �77.325 970 ±0.000 720 5.855 5.855 �77.331 632 ±0.000 349 2.302
12 �77.334 272 ±0.000 559 0.645 3.250 �77.332 923 ±0.000 212 1.492
13 �77.339 045 ±0.000 857 �2.350 1.383 �77.333 449 ±0.000 153 1.162
14 �77.340 124 ±0.001 663 �3.027 0.281 �77.333 657 ±0.000 260 1.031
15 �77.338 819 ±0.000 941 �2.208 �0.217 �77.334 655 ±0.000 141 0.405
16 �77.336 966 ±0.001 247 �1.045 �0.355 �77.335 020 ±0.000 202 0.176
17 �77.334 758 ±0.001 698 0.340 �0.256 �77.335 399 ±0.000 113 �0.062
18 �77.335 914 ±0.001 177 �0.385 �0.272 �77.335 331 ±0.000 121 �0.019
19 �77.335 028 ±0.001 483 0.171 �0.223 �77.335 267 ±0.000 091 0.021
20 �77.336 759 ±0.001 201 �0.916 �0.292 �77.335 092 ±0.000 090 0.131

Est. exact energyf
�77.335 3 �77.335 3

aM1 calculations were done for each iteration cycle with η = 0.1 up to iteration 10 and the averaging and accumulation methods
start from iteration = 11 with η = 0.01.
bAveraged values of the five results at the sampling from 16 × 105 to 20 × 105 and their standard deviations.
cEnergy difference between the energies of the FC-CFT with the LSE-LM1 method and the estimated exact value. When it is
smaller than 1 kcal/mol, it is written by boldface.
dAverage from iteration 11 to iteration n.
eSynthesized from the best molecular sampling points of the C2 molecule and the local sampling points of H atom.
fEstimated from the atomization energy (0 K) and the zero-point vibrational energy, both obtained from NIST Chemistry
WebBook.46

it was −0.241 kcal/mol. Examining the iteration results, we
conclude that we should have continued the initial stabiliza-
tion cycle more around 9 and 10 cycles. Even so, the present
result is satisfactory, obtaining the energy and the wave func-
tion of the chemical accuracy as a converging result of the
sampling methodology.

Table VII and Fig. 4 show again the behaviors of
the averaging and accumulation methods for the acetylene
molecule, HCCH. After the local sampling method, the initial
stabilization cycles were done to 10 cycles, and then the aver-
aging and accumulation calculations were done till the 20th
cycle. With the averaging method, the average ∆E value was

FIG. 4. Converging process of the ∆E
value in kcal/mol for HCCH by the FC-
CFT with the LSE-LM1 method: the
averaging (left with red line) and accu-
mulation (right) methods starting from
iteration 11 are shown. See Table VII for
more details.
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−0.292 kcal/mol, and with the accumulation method, the ∆E
value was 0.131 kcal/mol, both at the 20th cycle. Both results
were obtained as the converged result without ambiguities.
Thus, we could solve the SE of acetylene and get the wave
function and energy of chemical accuracy with the FC-CF
theory. Referring to Fig. 4, the convergence is smooth for both
methods.

V. CONCLUDING REMARKS

In this paper, we have described the practical methods
for calculating the accurate solutions of the Schrödinger equa-
tion based on the general method of solving the SE of atoms
and molecules reported in 2004.4 The basic formalisms based
on the local concept of the chemical formulas were given in
Paper I.13 Here, our purpose was to solve the FC-CFT for
the ground states of the first-row atoms and small molecules.
Since our wave functions include non-integratable functions,
we used the LSE method that utilizes the local SE’s as the
conditions to optimize the parameters involved in the FC wave
functions. We developed the practical methods for actual appli-
cations of the LSE method: we combined the local sampling
method and the Metropolis method in order to adapt the sam-
pling method to the quantum mechanical calculations. The
present results of our methodology with super-parallel com-
puters were encouraging. We could obtain the solutions of the
Schrödinger equations consistently within chemical accuracy
for the first-row atoms and small molecules with reasonable
labors.

The sampling methodology has inherent fluctuation
behaviors originating from the random statistical natures of
sampling processes. However, when the wave function has
the exact structure, like the FC ones, and if the number of
the parameters included are finite, then the LSE method with
the appropriate number of sampling points will definitely give
the exact wave function. The hydrogen atom and the two-
electron Hooke’s atom are such examples.11 So, with the FC
theory, the sampling dependences must decrease as we raise
the order of the theory, but the computational labor increases
rapidly.

Therefore, with the sampling-type methodology, it is
favorable if we can have the method that gives the result as
the definitely converging result. The averaging method and the
accumulation method may be a candidate for such a method.
For solving the SE, we think that it is very important to use
the theory that has the exact structure to reduce the sampling
ambiguity.

We have attempted in this paper to give some different
trials to solve the SE for the first-row atoms and several small
molecules. At least for these small systems, the calculations
could give consistently the results of chemical accuracy in a
rather stable manner. This is good news for future studies of
solving the SE.
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