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complement–local Schrödinger equation method: Potential energy
curves of the ground and singly excited singlet and triplet
states, Σ, Π, ∆, and Φ
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The free-complement (FC) theory for solving the Schrödinger equation (SE) was applied to cal-
culate the potential energy curves of the ground and excited states of the hydrogen molecule (H2)
with the 1Σg

+, 1Σu
+, 3Σg

+, 3Σu
+, 1Πg, 1Πu, 3Πg, 3Πu, 1∆g, 1∆u, 3∆g, 3∆u, 1Φg, 1Φu, 3Φg, and 3Φu

symmetries (in total, 54 states). The initial functions of the FC theory were formulated based on the
atomic states of the hydrogen atom and its positive and negative ions at the dissociation limits. The
local Schrödinger equation (LSE) method, which is a simple sampling-type integral-free method-
ology, was employed instead of the ordinary variational method and highly accurate results were
obtained stably and smoothly along the potential energy curves. Thus, with the FC-LSE method,
we succeeded to perform the comprehensive studies of the H2 molecule from the ground to excited
states belonging up to higher angular momentum symmetries and from equilibriums to dissocia-
tion limits with almost satisfying spectroscopic accuracy, i.e., 10−6 hartree order around 1 cm−1,
as absolute solutions of the SE by moderately small calculations. Published by AIP Publishing.
https://doi.org/10.1063/1.5060659

I. INTRODUCTION

The hydrogen molecule (H2) is the simplest molecule but
has fundamental importance in molecular physics and chem-
istry. In 1927, Heitler and London1 first applied quantum
mechanics to this molecule. Their calculations were success-
ful in describing chemical bonding of the H2 molecule and
became the origin of the valence bond theory. Since this
pioneering work, the H2 molecule had been a benchmark
for many quantum chemistry theories.2–21 In 1933, James
and Coolidge2,3 reported accurate calculations on the ellip-
tic coordinates including the explicitly correlated r12 terms,
whose importance was first shown by Hylleraas for the helium
atom.22 In 1960, Kolos and Roothaan4,5 computed the accu-
rate potential energy curves for the ground and a few low-lying
excited states with the extended James-Coolidge method. In
1961, Davidson4 also computed these states and obtained the
improved results. Since 1964, Kolos, Wolniewicz, and co-
workers5–12 performed systematic studies on the ground and
low-lying excited states even with Π and ∆ symmetries. Liu,
Hagstrom, and Sims13–15 employed the modified Kolos and
Wolniewicz wave functions and provided accurate wave func-
tions of the ground state and several excited states. Rychlewski,
Cencek, Komasa et al.16–18 employed the explicitly corre-
lated Gaussian or Slater functions and reported further accu-
rate solutions for the ground state. Clementi and Corongiu19

reported the potential energy curves of the ground and 14

a)Electronic addresses: h.nakashima@qcri.or.jp and h.nakatsuji@qcri.or.jp

excited states belonging to the 1Σg
+ state up to very long inter-

nuclear distances near the dissociation limits. They employed
ordinary Slater- and Gauss-type orbital expansion methods.
However, due to the absence of the r12 terms, the absolute
energies were less accurate than those using r12 terms explic-
itly. Recently, Pachucki20,21 developed integration schemes
for the James-Coolidge functions and reported as benchmark
calculations the current best variational energies for the lim-
ited number of inter-nuclear distances belonging to the 1Σg

+

symmetry.
On another front, we have proposed the free-complement

(FC) theory for exactly solving the Schrödinger equa-
tion (SE)23–30 with applications to several atoms and
molecules.31–37 The FC wave function ψ is written in the
form24

ψ =
∑

I

cIφI , (1)

where {φI }, referred to as complement functions (cf’s), are
generated by applying the system’s Hamiltonian and g func-
tion (necessary to avoid Coulomb singularities) several times
to some initial function ψ0. This FC ψ is guaranteed to be
converging to the exact solution with increasing iteration or
order of the FC theory.24 In this paper, we apply the FC theory
to the calculations of the potential energy curves of ground
and excited states of H2. We studied them with two alterna-
tive ways by using the variational method or local Schrödinger
equation (LSE) method26,29 to determine the variables {cI } in
Eq. (1). In the former case,36,37 the matrix elements were eval-
uated using analytical integrations and the results were stable
with satisfying Ritz-variational property. In this case, however,
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because of their easy integration scheme, the James-Coolidge
type functions were employed as ψ0 on the elliptic coordinates
λi = (riA + riB)/R, µi = (riA− riB)/R, where riA and riB denote
the inter-nuclear distances between electron i and HA and HB

atoms, respectively, and R is the inter-nuclear distance. λi and
µi are two-center coordinates and cannot be directly mapped
to the atomic local coordinates at dissociation. These often
cause numerical instabilities at long-distant R and/or for highly
excited states. Alternatively, in the present paper, we employed
the LSE method,26,29 which is a sampling-type integral-free
methodology, instead of the ordinary variational method. In
this case, although some information about sampling points
is necessary, any functions and coordinates are available in
principle appropriately to represent physical natures of the
system. Therefore, we employ the local atomic coordinates
riA and riB and construct ψ0 considering the atomic states
at the dissociations of target electronic states from the neu-
tral hydrogen atom and its positive (H+) and negative ions
(H−). The LSE method can also avoid huge computational
effort for evaluating analytical integrations and can be easily
parallelized.26,29

The present system is a good candidate to examine the
potentiality of the FC theory and the utility of the LSE method
as one of the simplest examples. The present purpose is not to
perform a landmark calculation that pursues highly accurate
digits only targeting the ground and/or a few excited states but
to study the H2 molecule comprehensively for the ground and
many excited states from bonding regions to dissociation limits
with satisfying spectroscopic accuracy, i.e., 10−6 hartree order

around 1 cm−1, as absolute solutions of the SE by moderately
small calculations. We report totally 54 states belonging to the
1Σg

+, 1Σu
+, 3Σg

+, 3Σu
+, 1Πg, 1Πu, 3Πg, 3Πu, 1∆g, 1∆u, 3∆g,

3∆u, 1Φg, 1Φu, 3Φg, and 3Φu symmetries and their potential
energy curves.

II. FC-LSE CALCULATIONS AND COMPUTATIONAL
DETAILS
A. Initial functions

Constructing appropriate initial functions in the FC the-
ory is practically important for efficiently calculating the
exact solutions. As an objective of the present paper, we
describe the accurate potential energy curves for the ground
and various excited states with guaranteed dissociation limits.
The wave functions constructed on the local Heitler-London-
Slater-Pauling (HLSP) structures should match this purpose
rather than Hartree-Fock (molecular orbitals) wave functions
or the two-center James-Coolidge type functions, which can-
not describe correct dissociations. Since the solutions of the
one-electron hydrogen atom are exactly known, the covalent
dissociations are correctly guaranteed. For the ionic structures
(H−H+), although the exact solutions of H− are not known,
accurate descriptions are possible with higher FC order. In
the present study, we calculate the states corresponding to the
covalent dissociations of principal quantum number n = 1, 2,
3, and 4 with s, p, d, and f symmetries and also the lowest
ionic state. The employed spatial initial functions are denoted
by

Σ : ψΣ0 = SA



ϕ(HA)
1s ϕ(HB)

1s + ϕ(HA)
1s ϕ(HA)

1s

+
4∑

n=2

ϕ(HA)
1s ϕ(HB)

ns +
4∑

n=2

ϕ(HA)
1s ϕ(HB)

npz
+

4∑
n=3

ϕ(HA)
1s ϕ(HB)

ndz2
+ ϕ(HA)

1s ϕ(HB)
4fz3



,

Π : ψΠ0 = SA


4∑
n=2

ϕ(HA)
1s ϕ(HB)

npx
+

4∑
n=3

ϕ(HA)
1s ϕ(HB)

ndxz
+ ϕ(HA)

1s ϕ(HB)
4fxz2


,

∆ : ψ∆0 = SA


4∑
n=3

ϕ(HA)
1s ϕ(HB)

ndxy
+ ϕ(HA)

1s ϕ(HB)
4fxyz


,

Φ : ψΦ0 = SA
[
ϕ(HA)

1s ϕ(HB)
4fx2y

]

(2)

for Σ, Π, ∆, and Φ symmetries, respectively, and each
term in the parentheses consists of (function of elec-
tron 1) × (function of electron 2). ϕq represents the
exact hydrogen-atom wave functions, where q is 1s, 2s,
2p, 3s, 3p, 3d, 4s, 4p, 4d, and 4f orbitals and the
molecular axis is set to the z axis. S is the spatial-
symmetry operator and A is the spin-symmetry (singlet
or triplet) and antisymmety operator. These are listed as
follows:

1
Σg

+, 1
Πu, 1

∆g, 1
Φu : S = 1 + PAB, A = 1 + P12,

1
Σu

+, 1
Πg, 1

∆u, 1
Φg : S = 1 − PAB, A = 1 + P12,

3
Σg

+, 3
Πu, 3

∆g, 3
Φu : S = 1 − PAB, A = 1 − P12,

3
Σu

+, 3
Πg, 3

∆u, 3
Φg : S = 1 + PAB, A = 1 − P12.

(3)

For 1Σg
+ symmetry, ϕ(HA)

1s (1)ϕ(HB)
1s (2) represents the most

important covalent form for the ground state of H2, where
electron 1 belongs to the 1s orbital of hydrogen atom HA
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and electron 2 also belongs to the 1s orbital of hydrogen
atom HB. ϕ(HA)

1s ϕ(HB)
2s to ϕ(HA)

1s ϕ(HB)
4s terms are introduced for

the correct dissociations to the atomic 2s, 3s, and 4s Ryd-
berg excited states, where electron 2 occupies 2s to 4s orbitals
on the HB atom. Although p, d, and f orbitals are orthogo-
nal to s orbitals in the atomic case, some of them also mix
in the same spatial symmetry in the molecular case. There-
fore, ϕ(HA)

1s ϕ(HB)
2pz

to ϕ(HA)
1s ϕ(HB)

4pz
, ϕ(HA)

1s ϕ(HB)
3dz2

to ϕ(HA)
1s ϕ(HB)

4dz2
, and

ϕ(HA)
1s ϕ(HB)

4fz3
terms were also employed for 1Σg

+ symmetry and

they dissociate to the atomic 2p, 3p, 4p, 3d, 4d, and 4f Ryd-
berg states. The second term of 1Σg

+ in Eq. (2) ϕ(HA)
1s ϕ(HA)

1s
represents an ionic contribution. Although the atomic energy
level of H− is rather higher than the above Rydberg dis-
sociations, it significantly influences binding properties and
shapes of the potential energy curves. We omitted the terms
corresponding to double Rydberg excitation or the Rydberg
ionic term, like ϕ(HA)

2s ϕ(HB)
2s or ϕ(HA)

1s ϕ(HA)
2s , since they have

very high energies out of scale of the present targets. Thus,
totally 11 terms were employed as initial functions for 1Σg

+

symmetry.
The initial functions for 1Σu

+, 3Σg
+, and 3Σu

+ symmetries
were similarly constructed to the 1Σg

+ case. However, from
symmetric restrictions due to spin function and antisymme-
try rule by A, the dissociation channels to the same HA and
HB states disappear for 1Σu

+ and 3Σg
+; then, the first term

ϕ(HA)
1s ϕ(HB)

1s is unnecessary for these symmetries. The lowest
states of 1Σg

+ and 3Σu
+, therefore, only describe the homopo-

lar dissociations to the ground states (1s states) of the hydrogen
atom. Similarly, the ionic contribution of the ground-state H−

cannot be allowed for the triplet states; then, the second term
ϕ(HA)

1s ϕ(HA)
1s is unnecessary for 3Σg

+ and 3Σu
+. For Π, ∆, and

Φ symmetries, the initial functions are also similarly con-
structed, but they are much simpler than the Σ symmetry
case because both the ground-state dissociation channel and
the ionic contribution are unnecessary and, therefore, double
occupied configurations do not exist.

We report totally 54 states and their potential energy
curves: 7, 6, 6, and 7 states for 1Σg

+, 1Σu
+, 3Σg

+, and 3Σu
+

(26 states for Σ symmetry), all 4 states for 1Πg, 1Πu, 3Πg, and
3Πu (16 states for Π symmetry), all 2 states for 1∆g, 1∆u, 3∆g,
and 3∆u (8 states for ∆ symmetry), and all one states for 1Φg,
1Φu, 3Φg, and 3Φu (4 states for Φ symmetry). In these states,
however, only a single state in each symmetry is included for
the states of principal quantum number n = 4 at dissociation
because some sampling ambiguities were caused in higher
excited states for which initial functions of n = 5 states and
more sampling points may be required.

B. FC-LSE calculations

We generated the cf’s by applying the Hamiltonian and g
function to the initial functions. The g function used here is
given by

g = r1A + r1B + r2A + r2B + r12, (4)

where riA and riB denote the inter-nuclear distances between
electron i and HA and HB atoms and r12 denotes the inter-
electron distance of electrons 1 and 2. In the case electron 1
belongs to the orbital centered on the HA atom, r1B is consid-
ered as the inter-atomic coordinate and works for polarization

effect and also satisfies the inter-atomic cusp condition. This
term might not be important for general molecules because of
the locality of the wave function but, in the case of hydrogen,
it is effective due to its small inter-nuclear distance. In varia-
tional calculations, the integrations for riB terms are generally
not easy, but these are treated in the LSE method without dif-
ficulty. We performed the FC-LSE calculations at the order
4 and order 6 only for ϕ(HA)

1s ϕ(HB)
1s which is important for the

ground-state dissociation channel. The numbers of generated
cf’s {φI } are 1450, 1204, 1134, and 1380 for 1Σg

+, 1Σu
+, 3Σg

+,
and 3Σu

+, respectively, and 756, 378, and 126 for Π, ∆, andΦ,
respectively.

The LSE method was employed to determine {cI } in
Eq. (1). In some choices of the LSE method, we employed
the HS method.26,29 In the HS method, we solve the secular
equation HC = SCE, where Hij =

∑
µ φi(rµ) · Hφj(rµ) and

Sij =
∑

µ φi(rµ) · φj(rµ) with rµ denoting the sampling point.
This has a non-symmetric form of the eigenvalue equation with
symmetric S and non-symmetric H. It is a method to match
to the conventional variational method with increasing sam-
pling and a single diagonalization for each symmetry provides
the solutions for all states simultaneously from the lowest to
higher excited states. Therefore, the state- and Hamiltonian-
orthogonalities among solutions are guaranteed on the space
of sampling coordinates. They are the necessary conditions
of the SE and significant to describe correct relations among
ground and excited states.

C. Sampling points

In the LSE method, it is also necessary to prepare
appropriate sampling points adapting to quantum mechanical
highly accurate calculations to reduce statistical ambiguities
as much as possible. In Ref. 29, we extensively examined
the nature of sampling points for the LSE method. As a
conclusion, the distribution of sampling points should have
similar amplitudes to the electron distributions of the tar-
get states. Since we need to calculate not only the valence
but also the Rydberg-type higher excited states, widely dis-
tributed sampling points are necessary. For the present pur-
pose, we employed a Metropolis scheme38 starting from the
local sampling points.27,29 We first prepared the sampling
distribution by the local sampling method according to the

densities ���ϕ
(HA)
1s ϕ(HB)

1s
���
2
, ���ϕ

(HA)
1s ϕ(HB)

2s
���
2
, ���ϕ

(HA)
1s ϕ(HB)

3s
���
2
, ���ϕ

(HA)
1s ϕ(HB)

4s
���
2
,

and ���ϕ
(HA)
1s ϕ(HA)

1s
���
2

which belong to totally symmetric 1Σg
+, cor-

responding to n = 1–4 and ionic contribution, for each 1 × 106

sampling points. Starting with this initial sampling distribu-
tion, we constructed totally 5 × 106 sampling points using the
Metropolis scheme38 according to the density function γ given
by

γ =
���(1 + PAB)(1 + P12)

[
ϕ(HA)

1s ϕ(HB)
1s + ϕ(HA)

1s ϕ(HB)
2s + ϕ(HA)

1s ϕ(HB)
3s

+ ϕ(HA)
1s ϕ(HB)

4s + ϕ(HA)
1s ϕ(HA)

1s

] ���
2
, (5)

where this γ includes spatial and spin symmetric and elec-
tron antisymmetry effects. At each R for the potential energy
curves, we independently generated the sampling points using
the above local sampling and Metropolis scheme. The con-
tinuity about sampling points at each R, therefore, is not
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strictly satisfied. Nevertheless, the present results, discussed in
Sec. III, were sufficiently accurate and showed smooth poten-
tial energy curves, where statistical fluctuations appeared in
negligible digits of absolute energies.

III. POTENTIAL ENERGY CURVES OF THE GROUND
AND LOW-LYING EXCITED STATES

Figure 1 shows the potential energy curves of the ground
state 11Σg

+ and the lowest state of 3Σu
+. Only these states cova-

lently dissociate to the 1s orbitals of the hydrogen atom, H(1s)
+ H(1s). Figures 2–17 represent the potential energy curves
of the 1Σg

+, 1Σu
+, 3Σg

+, 3Σu
+, 1Πg, 1Πu, 3Πg, 3Πu, 1∆g, 1∆u,

3∆g, 3∆u, 1Φg, 1Φu, 3Φg, and 3Φu symmetries, respectively,
except for the lowest states 11Σg

+ and 13Σu
+. Figures 18 and

19 summarize all the calculated curves with the regions of
R = 0.0–20.0 a.u. and R = 0.0–100.0 a.u., respectively, except
for 11Σg

+ and 13Σu
+ since they locate the lower energy region.

Figures S1 and S2 give the plots also including the 11Σg
+ and

13Σu
+ states. Table I summarizes the calculated absolute ener-

gies by this work compared with those by the other calculations
in the literature6,7,15,19–21 for the 1Σg

+ symmetry. All the calcu-
lated energies of the potential energy curves and the H-square
errors defined in Ref. 29 are available in Tables S1–S16 in the
supplementary material. The H-square error is a good indi-
cator to examine the accurateness of the wave function. It is
easily evaluated in the LSE method, whereas the variational
method requires difficult integrations of the square root of the
Hamiltonian.

As shown in Table I, Figs. 1–19, Tables S1–S16, and
Figs. S1 and S2, we were successful in obtaining highly accu-

FIG. 1. Potential energy curves of the ground state 11Σg
+ and the lowest state

of 3Σu
+. Both states dissociate to the 1s orbitals of the hydrogen atom. The

figure is plotted with the region of R = 0.0–10.0 a.u.

rate potential energy curves from the ground to various excited
states with the FC-LSE method. Comparing the calculated
energies EFC-LSE with those from the references ERef., their
absolute energy differences ∆E = EFC-LSE − ERef. from the
most accurate references by Pachucki20,21 were 10−6 hartree
order almost less than 1 cm−1 satisfying spectroscopic accu-
racy for the states at several R whose reference values are
available. When comparing to other old Refs. 6 and 7, ∆E
at several R for some states were 10−4-10−5 hartree order,
but our results would be expected to be more accurate than
those. In spite of long theoretical studies of H2, there were no
accurate theoretical results in the literature for some highly
excited states and they were first calculated in the present
study.

FIG. 2. Potential energy curves of the
six lower excited states of 1Σg

+ with the
energy region of −0.5 to −0.8 a.u. The
ground state locates the lower energy
region out of range. The left and right
figures are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 3. Potential energy curves of the
six lower excited states of 1Σu

+

with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-037847
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FIG. 4. Potential energy curves of the
six lower excited states of 3Σg

+

with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 5. Potential energy curves of the
six lower excited states of 3Σu

+ with
the energy region of −0.5 to −0.8
a.u. The lowest state dissociates to
the 1s orbital of the hydrogen atom
and locates the lower energy region
out of range. The left and right fig-
ures are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 6. Potential energy curves of the
four lower excited states of 1Πg with
the energy region of −0.5 to −0.8 a.u.
The left and right figures are plotted with
the regions of R = 0.0–20.0 a.u. and R
= 0.0–100.0 a.u., respectively.

FIG. 7. Potential energy curves of the
four lower excited states of 1Πu with
the energy region of −0.5 to −0.8 a.u.
The left and right figures are plotted with
the regions of R = 0.0–20.0 a.u. and R
= 0.0–100.0 a.u., respectively.

Thus, there was no integration difficulty in the LSE
method even for higher excited states, long distant R, and
the states belonging to higher angular momentum symmetries.
The computation algorithm of the LSE method is simple and
can be easily parallelized. For the 1Σg

+ symmetry which has
the largest number of the complement functions, we needed
about 15 min computation at each R with 1 node (28 core)

using PRIMERGY CX2550 at the Research Centre for Com-
putational Science, Okazaki, Japan. Therefore, it was almost
a one-day job for all the calculations to describe the potential
energy curves.

In Subsections III A–III E, we will individually discuss
the potential energy curves of each state and symmetry in more
detail.
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FIG. 8. Potential energy curves of the
four lower excited states of 3Πg with
the energy region of −0.5 to −0.8 a.u.
The left and right figures are plotted with
the regions of R = 0.0–20.0 a.u. and R
= 0.0–100.0 a.u., respectively.

FIG. 9. Potential energy curves of the
four lower excited states of 3Πu with
the energy region of −0.5 to −0.8 a.u.
The left and right figures are plotted with
the regions of R = 0.0–20.0 a.u. and R
= 0.0–100.0 a.u., respectively.

FIG. 10. Potential energy curves of the
two lower excited states of 1∆g with the
energy region of −0.5 to −0.8 a.u. The
left and right figures are plotted with
the regions of R = 0.0–20.0 a.u. and R
= 0.0–100.0 a.u., respectively.

FIG. 11. Potential energy curves of the
two lower excited states of 1∆u with the
energy region of −0.5 to −0.8 a.u. The
left and right figures are plotted with
the regions of R = 0.0–20.0 a.u. and R
= 0.0–100.0 a.u., respectively.

A. Ground and excited states of the 1Σg+ symmetry

Since the Σ symmetries, especially 1Σg
+ including the

ground state, are the most important both experimentally and
theoretically, their ground and excited states have been inves-
tigated in many literature.6,7,15,19–21,36,37 Table I and Table S1
summarize the numerical data of calculated energies for 1Σg

+.

For the 11Σg
+ ground state, the calculated energy by this

work was −1.174 474 33 a.u. at the equilibrium distance
R = 1.4011 a.u. The energy difference ∆E was 1.601
× 10−6 a.u. (0.35 cm−1) from that obtained by Pachucki,
whose energy should be variationally the best at this moment.20

Thus, even using a sampling methodology, absolute energies
by the FC-LSE method were sufficiently accurate. In Table I,
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FIG. 12. Potential energy curves of
the two lower excited states of 3∆g
with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 13. Potential energy curves of
the two lower excited states of 3∆u
with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 14. Potential energy curves
of the lowest excited state of 1Φg
with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 15. Potential energy curves
of the lowest excited state of 1Φu
with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

the results of the excited states 21Σg
+ to 61Σg

+ called EF,
GK, HH, P, and O, respectively, are also summarized at sev-
eral R. These are the conventional spectroscopic notations.
The two-character states EF, GK, and HH denote the double
minimum potential energy curves. For all these states, ∆E,
where Pachucki’s results are available,21 were also equal or
less than 10−6 hartree order satisfying spectroscopic accu-
racy almost less than 1 cm−1. Since the dissociation limits are

represented as the exact solutions of the hydrogen atoms, the
results generally become accurate when approaching to the
dissociations. Wolniewicz and Dressler6,7 reported the very
accurate results at many R up to higher excited states. Their
solutions were also accurate, but we only suspect a mistype
or miscalculation at R = 20.0 a.u. in 41Σg

+. In comparison
with Wolniewicz and Dressler,6 although some ∆E were 10−4

hartree order at some R in 51Σg
+ and 61Σg

+, the results in this
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FIG. 16. Potential energy curves
of the lowest excited state of 3Φg
with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

FIG. 17. Potential energy curves
of the lowest excited state of 3Φu
with the energy region of −0.5 to
−0.8 a.u. The left and right figures
are plotted with the regions of R
= 0.0–20.0 a.u. and R = 0.0–100.0 a.u.,
respectively.

paper should be better than the ones of Ref. 6, which are much
older.

Clementi et al. also reported whole range potential energy
curves of the 15 1Σg

+ states and performed the density
analysis of them. Although their potential energy curves
from the united atom regions to the dissociations are quite
reliable, the errors as their absolute energies appeared on
10−4 hartree order due to the lack of r12 terms. With the
LSE method, the H-square errors are available as a good

FIG. 18. All 54 states’ potential energy curves of 1Σg
+, 1Σu

+, 3Σg
+, 3Σu

+,
1Πg, 1Πu, 3Πg, 3Πu, 1∆g, 1∆u, 3∆g, 3∆u, 1Φg, 1Φu, 3Φg, and 3Φu symmetries
with the energy region of −0.5 to −0.8 a.u. Only the lowest states of 1Σg

+ and
3Σu

+ are excluded since they locate the lower energy region. The figure is
plotted with the region of R = 0.0–20.0 a.u.

judgment tool for the accurateness of the wave function.
As shown in Table S1, the H-square errors of 1Σg

+ states
were almost the same order among all the states at simi-
lar inter-nuclear distances R. It indicates that all the states
are described with the same quality and, therefore, rela-
tive quantities such as excitation energy should be also reli-
able in the FC-LSE method. This is because the overlap
and Hamiltonian orthogonalities are ensured in the present
calculations.

FIG. 19. All 54 states’ potential energy curves of 1Σg
+, 1Σu

+, 3Σg
+, 3Σu

+,
1Πg, 1Πu, 3Πg, 3Πu, 1∆g, 1∆u, 3∆g, 3∆u, 1Φg, 1Φu, 3Φg, and 3Φu symmetries
with the energy region of −0.5 to −0.8 a.u. Only the lowest states of 1Σg

+ and
3Σu

+ are excluded since they locate the lower energy region. The figure is
plotted with the region of R = 0.0–100.0 a.u.
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TABLE I. Comparisons of the absolute energies (a.u.) by this work and the references at several inter-nuclear distances R for the 1Σg
+ symmetry. All the

calculated energies on the potential energy curves are given in the supplementary material.

R FC-LSE ∆E = EFC-LSE Wolniewicz Sims and Hagstrom Clementi
State (a.u.)a (this work) � ERef.

b et al.c et al.d Pachuckie et al.f

11Σg
+ (X) 1.2 �1.164 932 36 2.883× 10�6

�1.164 935 241 876 �1.164 935 243 440 028 1 �1.164 935 243 440 309 9(7) �1.164 66
1.4011 �1.174 474 33 1.601× 10�6

�1.174 475 930 742 �1.174 475 931 399 84 �1.174 475 931 400 216 7(3)
1.6 �1.168 584 24 �8.666× 10�7

�1.168 583 371 916 �1.168 583 373 370 926 3 �1.168 583 373 371 459 3(8)
2.0 �1.138 131 91 1.047× 10�6

�1.138 132 955 488 �1.138 132 957 131 503 5 �1.138 132 957 132 648 0(34) �1.137 89
3.0 �1.057 327 92 �1.651× 10�6

�1.057 326 265 285 �1.057 326 268 869 243 9 �1.057 326 268 872 661 7(70) �1.057 13
4.0 �1.016 389 65 6.030× 10�7

�1.016 390 251 364 �1.016 390 252 947 128 3 �1.016 390 252 950 668 1(55) �1.016 26
6.0 �1.000 835 79 �8.234× 10�8

�1.000 835 707 231 �1.000 835 707 654 227 9 �1.000 835 707 655 180 4(23) �1.168 33
8.0 �1.000 055 62 �1.503× 10�8

�1.000 055 604 837 �1.000 055 604 973 073 0(4) �1.000 05
10.0 �1.000 008 77 �1.425× 10�8

�1.000 008 755 746 051 5(1) �1.000 01
12.0 �1.000 002 54 5.970× 10�9

�1.000 002 545 969 528 5(1) �1.000 00
16.0 �1.000 000 42 �4.137× 10�10

�1.000 000 419 586 312 2
20.0 �1.000 000 11 �3.260× 10�9

�1.000 000 106 740 128 3 �1.000 00
30.0 �1.000 000 01 �1.000 00
50.0 �1.000 000 00 �1.000 00

100.0 �1.000 000 00 �1.000 00

21Σg
+ (EF) 1.2 �0.653 979 28 �0.653 94

1.6 �0.710 342 22 �0.710 30
2.0 �0.717 724 70 �0.717 714 276 �0.717 68
3.0 �0.690 746 80 2.563× 10�7

�0.690 746 690 �0.690 747 056 3 �0.690 70
4.0 �0.711 884 91 �0.711 61
6.0 �0.694 268 41 �1.381× 10�6

�0.694 263 365 �0.694 267 029
8.0 �0.662 220 74 �0.662 216 015 �0.661 97

10.0 �0.640 256 38 �0.640 246 025 �0.640 11
12.0 �0.628 742 05 �3.800× 10�8

�0.628 730 759 �0.628 742 088 �0.628 69
16.0 �0.625 079 18
20.0 �0.625 005 64 �0.625 005 430 �0.625 01
30.0 �0.625 000 32 �0.625 00
50.0 �0.625 000 01 �0.625 00

100.0 �0.625 000 00 �0.625 00

31Σg
+ (GK) 1.2 �0.585 297 65 �0.585 24

1.6 �0.647 812 35 �0.647 78
2.0 �0.660 443 58 �0.660 428 175 �0.660 42
3.0 �0.656 985 12 8.250× 10�7

�0.656 983 847 �0.656 985 945 �0.656 84
4.0 �0.648 202 15 �0.648 202 826 �0.648 11
6.0 �0.626 148 19 �2.210× 10�7

�0.626 147 852 �0.626 147 969
8.0 �0.624 553 17 �0.624 553 229 �0.624 54

10.0 �0.624 641 26 �0.624 641 106 �0.624 64
12.0 �0.624 745 62 3.300× 10�8

�0.624 745 653 �0.624 74
16.0 �0.624 793 69
20.0 �0.624 867 18 �0.624 866 924 �0.624 87
30.0 �0.624 959 19 �0.624 96
50.0 �0.624 991 13 �0.624 99

100.0 �0.624 998 89 �0.625 00

41Σg
+ (HH) 1.2 �0.584 344 97 �0.584 26

1.6 �0.644 571 78 �0.644 54
2.0 �0.654 928 46 �0.654 926 063 �0.654 91
3.0 �0.630 550 34 3.794× 10�6

�0.630 550 821 �0.630 554 134 �0.630 52
4.0 �0.605 657 88 �0.605 654 911 �0.605 60
6.0 �0.583 464 51 �9.360× 10�7

�0.583 461 341 �0.583 463 574
8.0 �0.592 842 06 �0.592 840 002 �0.592 69

10.0 �0.603 419 20 �0.603 407 271 �0.603 27
12.0 �0.604 584 76 �4.800× 10�7

�0.604 529 322 �0.604 584 280 �0.604 41
16.0 �0.590 773 08
20.0 �0.578 454 87 �0.570 324 253g

�0.578 27
30.0 �0.561 299 77 �0.561 09
50.0 �0.555 555 67 �0.555 55

100.0 �0.555 555 56 �0.555 55

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-037847
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TABLE I. (Continued.)

R FC-LSE ∆E = EFC-LSE Wolniewicz Sims and Hagstrom Clementi
State (a.u.)a (this work) � ERef.

b et al.c et al.d Pachuckie et al.f

51Σg
+ (P) 1.2 �0.560 582 84 �0.560 528 775 �0.560 51

1.6 �0.622 806 31 �0.622 744 249 �0.622 73

2.0 �0.634 924 12 �0.634 885 512 �0.634 88

3.0 �0.623 917 63 5.105× 10�6
�0.623 917 301 �0.623 922 735 �0.623 87

4.0 �0.594 768 31 �0.594 768 919 �0.594 73

6.0 �0.564 424 24 3.340× 10�7
�0.564 423 608 �0.564 424 574

8.0 �0.557 571 47 �0.557 570 885 �0.557 53

10.0 �0.556 001 07 �0.556 000 540 �0.555 97

12.0 �0.555 682 16 9.600× 10�8
�0.555 682 256 �0.555 66

16.0 �0.555 579 88

20.0 �0.555 562 77 �0.555 562 684 �0.555 55

30.0 �0.555 556 24 �0.555 55

50.0 �0.555 555 59 �0.555 54

100.0 �0.555 555 56 �0.555 54

61Σg
+ (O) 1.2 �0.560 168 89 �0.560 087 944 �0.560 03

1.6 �0.621 338 43 �0.621 334 070 �0.621 29

2.0 �0.632 475 06 �0.632 457 557 �0.632 42

3.0 �0.607 983 35 1.163× 10�6
�0.607 841 139 �0.607 984 513 �0.607 93

4.0 �0.578 872 23 �0.578 810 210 �0.578 80

6.0 �0.553 905 61 �3.380× 10�7
�0.553 862 823 �0.553 905 272

8.0 �0.555 462 99 �0.555 460 283 �0.555 42

10.0 �0.555 539 34 �0.555 538 599 �0.531 32

12.0 �0.555 533 64 8.100× 10�8
�0.555 533 721 �0.555 52

16.0 �0.555 538 61

20.0 �0.555 545 12 �0.555 545 150 �0.555 53

30.0 �0.555 552 21 �0.555 53

50.0 �0.555 554 22 �0.555 53

100.0 �0.555 555 38 �0.555 52

aInter-nuclear distance.
bEnergy differences between the energies by the FC-LSE method and reference: ∆E = EFC-LSE � ERef. (a.u.), compared to Refs. 20 and 21 where their reference values are provided.
cReferences 6 and 7.
dReference 15.
eExtrapolation energy for 11Σg

+ (X) in Refs. 20 and 21 for the other states.
fReference 19.
gSuspect a mistype or miscalculation in the reference.

We draw the potential energy curve of the ground state
11Σg

+ in Fig. 1 and this state smoothly dissociates to H(1s)
+ H(1s). Figure 2 includes all the other excited states 21Σg

+

to 71Σg
+, which dissociate to H(1s) + H(2s), H(1s) + H(2pz),

H(1s) + H(3s), H(1s) + H(3pz), H(1s) + H(3dz2), and H(1s)
+ H(4s), respectively. Since the ionic curve that dissociates
to H− + H+ exists in 1Σg

+, the potential energy curves of
these excited states become complicated. Since this ionic curve
indicates a long-range behavior proportional to 1/R which is
rather simple, the ionic contribution moves from lower states
to higher states, step by step. The potential energy curve of
21Σg

+(EF) showed a typical double well potential having the
local minimums around R = 2.0 and 4.5 a.u. and the global
minimum position was a smaller one, R = 2.0 a.u. As under-
standable from the right-hand side of Fig. 2, the ionic contribu-
tion appeared in the region from R = 4.0 to 10 a.u. On the other
hand, although the potential energy curve of 31Σg

+(GK) also

indicated a double well potential having the local minimums
around R = 2.0 and 3.2 a.u., the global minimum position was
a larger one, R = 3.2 a.u. This state is not much influenced by
the ionic contribution since it dissociates to H(1s) + H(2pz)
and is symmetrically orthogonal to the ionic S state of H− in
large R. This double well potential, therefore, rather comes
from the state repulsion to 21Σg

+(EF). The state 41Σg
+(HH)

has the lowest energy minimum around R = 2.0 a.u. and a
local minimum around R = 11.0 a.u. in a broad curve. This
state shows a typical ionic nature proportional to 1/R from
R = 10.0 to R = 37.0 a.u. The complement functions from
covalent initial functions only can cover the ionic contribu-
tion if one increases the FC order. Introducing an ionic-type
initial function, however, is practically important to describe
41Σg

+(HH) efficiently at the lower FC order since this state
is on the ionic 1/R curve around equilibrium. The potential
energy curves of 51Σg

+(P) and 61Σg
+(O) dissociate to H(1s)
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+ H(3pz) and H(1s) + H(3dz2), respectively, and they are also
symmetrically orthogonal to the ionic state in large R. There-
fore, they were almost free from the ionic contribution. There
were small shoulders and humps around R = 2.0–6.0 a.u. due
to the state repulsions, where many states exist in the small
energy region. The state 71Σg

+ has a nature to dissociate to
mixed H(1s) + H(3s) and H(1s) + H(4s) before R = 20.0.
a.u. and almost H(1s) + H(3s) before R = 37.0 a.u. How-
ever, after the intersystem crossing with 41Σg

+(HH) around
R = 37.0 a.u., its nature changed from H(1s) + H(3s) to the
ionic state. After R = 37.0 a.u., 41Σg

+(HH) goes to the disso-
ciation of H(1s) + H(3s). As discussed in Ref. 19, this state
finally goes to H(1s) + H(4s) after the intersystem crossing
with the higher state. As shown in Table S1, the H-square
errors of 41Σg

+(HH) became suddenly small after R = 38.0 a.u.
By contrast, the H-square errors of 71Σg

+ became large after
R = 36.0 a.u. since the dissociation of H−H+ is not exact. Thus,
also from the H-square errors, one can recognize that their
natures of the ionic state and H(1s) + H(3s) exchange each
other.

B. Excited states of the 1Σu+ symmetry

In the states of 1Σu
+, the ionic contribution H− + H+ exists

but there is no state that dissociates to H(1s) + H(1s) since it
is impossible to satisfy both the spatial antisymmetry and sin-
glet spin state at this dissociation. As given in Fig. 3, 11Σu

+(B),
21Σu

+(B′), 31Σu
+(B′′B), 41Σu

+, 51Σu
+, and 61Σu

+ dissociate to
H(1s) + H(2s), H(1s) + H(2pz), H(1s) + H(3s), H(1s) + H(3pz),
H(1s) + H(3dz2), and H(1s) + H(4s), respectively. As shown
in Table S2, these potential energy curves were also in very
good agreement with those by Wolniewicz et al.11 Shapes of
these potential energy curves look similar to those of 1Σg

+

but there are also noticeable differences. The potential energy
curve of 11Σu

+(B) has the single minimum around R = 2.4 a.u.
although the corresponding 21Σg

+(EF) state indicated a double
well potential. This potential well was quite broad due to the
ionic contribution. The potential energy curve of 21Σu

+(B′)
also indicated a single minimum curve with the minimum
around R = 2.0 a.u. although its corresponding 31Σg

+(GK) had
the double minimums. These would be explained by the nature
of weak bonding due to the spatial antisymmety of ungerade
symmetry. From the orthogonality between H(1s) + H(2pz)
and the ionic H−, 21Σu

+(B′) is unaffected by the ionic contri-
bution. Similar to the case in 41Σg

+(HH), the state 31Σu
+(B′′B)

indicated a typical ionic curve proportional to 1/R from
R = 10.0 to R = 37.0 a.u. Interestingly, this state has the min-
imum around R = 2.0 a.u. with the nature of H(1s) + H(3s)
before R = 5.5 a.u., where there is a peak with the state repulsion
to 41Σu

+. After R = 5.5 a.u., the energy of this state decreases
to acquire the ionic character with the broad minimum around
R = 11.0 a.u. Since the potential energy curves of 41Σu

+ and
51Σu

+ dissociate to H(1s) + H(3pz) and H(1s) + H(3dz2),
respectively, which are orthogonal to H− at dissociation, they
are not influenced by the ionic character. The state 61Σu

+ also
has the nature of mixed H(1s) + H(3s) and H(1s) + H(4s)
before R = 20.0. a.u. and almost H(1s) + H(3s) before R = 37.0
a.u. Among the potential energy curves of 31Σu

+ to 61Σu
+,

there were also small shoulders and humps around R = 2.0–
6.0 a.u. due to their state repulsions in the small energy region.

Similar to the case in 1Σg
+, the natures of 31Σu

+(B′′B) and
61Σu

+ exchange each other around R = 37.0 a.u. This behavior
was also observed in the H-square errors given in Table S2,
where the H-square errors of 31Σu

+(B′′B) get better after R
= 38.0 a.u., and those of 61Σu

+ get worse after R = 36.0 a.u.
Wolniewicz et al. precisely studied these excited states of 1Σu

+

especially for 61Σu
+ up to very long distance larger than R =

37.0 a.u.11 Beyond R = 40.0 a.u., the energies of 61Σu
+ were

not especially accurate in our calculations since higher dif-
fuse functions like H(5s) were not included. Nevertheless, their
accuracies keep almost within 1 kcal/mol, compared to those
from the work of Wolniewicz et al.11

C. Excited states of the 3Σg+ and 3Σu+ symmetries

In the states of 3Σg
+ and 3Σu

+, there is no ionic contri-
bution due to triplet spin where two electrons cannot occupy
the same 1s orbital in H−. Their potential curves, therefore,
are simpler than those of 1Σg

+ and 1Σu
+. There is also no

state that dissociates to H(1s) + H(1s) in 3Σg
+, but it exists in

3Σu
+. As shown in Fig. 1, the potential energy curve of 13Σu

+

was mostly repulsive but a very weak energy minimum was
observed around R = 8.0 a.u. with its binding energy being 20 µ
hartree. This would be due to a dispersion interaction like a
van der Waals interaction.

Thus, 13Σg
+ to 61Σg

+ and 23Σu
+ to 71Σu

+ dissociate to
H(1s) + H(2s), H(1s) + H(2pz), H(1s) + H(3s), H(1s) + H(3pz),
H(1s) + H(3dz2), and H(1s) + H(4s), respectively. Their poten-
tial energy curves are given in Figs. 4 and 5 for 3Σg

+ and 3Σu
+,

respectively. These are also in very good agreement with those
by Wolniewicz and Staszewska10 as given in Tables S3 and S4.
Generally speaking, the binding energies of the states of 3Σg

+

are larger than those of 3Σu
+ since spatially symmetric 3Σg

+

forgives an overlap of the atomic orbitals located in each H. So,
the binding energy of 13Σg

+ to the dissociation was quite larger
than that of 23Σu

+. The potential energy curve of 23Σu
+ having

higher energy upheaves the higher state 33Σu
+ and this causes

a state repulsion around R = 4.8 a.u. between 33Σu
+ and 43Σu

+.
There was no such a state repulsion between 23Σu

+ and 33Σu
+.

Around R = 2.0 a.u., the states of 23Σg
+ and 33Σg

+ and those
of 43Σg

+ and 53Σg
+ were almost degenerate since the Rydberg

H(3s), H(3pz), and H(3dz2) contribute similarly but they are
orthogonal each other. Such quasidegeneracy was not observed
in 3Σu

+.

D. Excited states of the 1Πg, 1Πu, 3Πg, and 3Πu
symmetries

For the Π, ∆, and Φ symmetries, both the ionic state H−

+ H+ and the state dissociating to H(1s) + H(1s) are not
included. Their potential energy curves, therefore, are further
simpler than those of theΣ symmetry. Figures 6–9 represent the
potential energy curves of the 1Πg, 1Πu, 3Πg, and 3Πu sym-
metries. Each of them includes four states that dissociate to
H(1s) + H(2px), H(1s) + H(3px), H(1s) + H(3dxz), and H(1s)
+ H(4px).

The shapes of the potential energy curves 1Πg and 3Πg

look similar and also those of 1Πu and 3Πu resemble each
other. Thus, there is no significant difference between singlet
and triplet states for higher angular momentum symmetries
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because even the lowest state of these symmetries is already
a Rydberg excitation of the hydrogen atom and it is spatially
diffuse. On the other hand, for the Σ symmetry, the poten-
tial shapes of the singlet and triplet states were quite different
because the ionic state disarranges the potential energy curves
of the singlet states only. In Π symmetry, gerade Πg repre-
sents antibonding character like the π∗ orbital and ungerade
Πu represents bonding character like the π orbital. Therefore,
the binding energies of the states belonging to 1Πu and 3Πu

are larger than those of 1Πg and 3Πg. As shown in 3Σu
+, the

potential energy curves of 11Πg and 13Πg locate in higher
energy regions and they upheave the higher states 21Πg and
23Πg and trigger some state repulsions observed between R
= 4.0 and 8.0 a.u. When one compares the potential energy
curves of 3Σg

+ and 1Πu or 3Πu, their shapes also have some
similarities, but the only difference is the existence of the
states which dissociate to the s orbitals (2s, 3s, . . .) in 3Σg

+.
So, the number of states is smaller in the Π symmetry. The
same holds for the potential energy curves of 3Σu

+ and 1Πg

or 3Πg.
As summarized in Tables S5–S8, Wolniewicz et al. also

studied these states at various R.8,10,12 ∆E from the energies
reported in these references were almost 10−5 hartree order
or smaller than it but, for some states at some R, the present
results should be more accurate than the ones of the references,
which are older.

E. Excited states of the 1∆g, 1∆u, 3∆g, 3∆u, 1Φg,
1Φu, 3Φg, and 3Φu symmetries

The potential energy curves of the ∆ and Φ symmetries
are furthermore simpler than those of theΠ symmetry because
the states dissociating to p orbitals disappear in the ∆ and
Φ symmetries and the states dissociating to d orbitals also
disappear in the Φ symmetry. Figures 10–13 represent the
potential energy curves of the 1∆g, 1∆u, 3∆g, and 3∆u sym-
metries. Each of them includes two states that dissociate to
H(1s) + H(3dxy) and H(1s) + H(4dxy). Figures 14–17 show the
potential energy curves of the 1Φg, 1Φu, 3Φg, and 3Φu sym-
metries. Each of them includes one state that dissociates to
H(1s) + H(4fx2y).

About their potential curves, similar discussions to the
Π symmetry hold and there is no remarkable speciality. For
instance, between the singlet and triplet states, the shapes of
the potential energy curves 1∆g and 3∆g, 1∆u and 3∆u, 1Φg and
3Φg, and 1Φu and 3Φu quite resemble each other. Thus, the spin
state does not make significant differences. In ∆ symmetry, ∆g

and ∆u have bonding and antibonding characters, respectively.
In Φ symmetry, Φg and Φu have antibonding and bonding
characters, respectively. Therefore, similar to the cases of Σ
andΠ, the potential energy curves of the∆u andΦg symmetries
locate higher energy regions in bonding regions than those of
the ∆g and Φu symmetries. They cause some state repulsions
in the potential energy curves of the ∆u and Φg symmetries.

As summarized in Tables S9–S16, Wolniewicz reported
the results of the 1∆g and 3∆g symmetries at various R.9 ∆E
from these energies in Ref. 9 shows a good correspondence,
almost about 10−5 hartree order or smaller than it, but, for
some states at some R, the present results should also be more

accurate. There are no more references about the other states
and we first reported them in the present study. Thus, the cor-
rect solutions even for higher angular momentum symmetries
were also simply obtained.

F. Vertical excitation energies

Vertical excitation spectra of H2 have been studied
experimentally for many years by ultraviolet (UV) spec-
tra, vacuum-ultraviolet (VUV) laser action, etc.39–45 due to
their scientific importance in various scientific fields. How-
ever, experimental studies often cause some difficulty since
even the lowest excited state of H2 locates over 10 eV,
i.e., in the VUV region. In theoretical studies, besides accu-
rate variational calculations as in the present work, scat-
tering dynamical processes after applied laser pulse have
been investigated by the R-matrix method, convergent close-
coupling method, etc.46,47 These experimental and theoreti-
cal studies, however, reported only a few low-lying excited
states.

In the present study, we computed the vertical excitation
energies for the 53 excited states at the equilibrium geometry
of the 11Σg

+ ground state R = 1.4011 a.u. and summarized them
in Table II, where the presented values do not include vibra-
tional corrections; if one wants to include them, the vertical
excitation energies are shifted by −0.2702 eV correspond-
ing to the zero-point vibrational energy 2179.3(1) cm−1 of
the ground state.48 The lowest vertical excited state 13Σu

+

was found at 10.611 eV. This state is on the dissociation
channel to H(1s) + H(1s). The adiabatic lowest excited state
is 11Σu

+, but this low energy derives from the ionic con-
tribution and its minimum position is considerably distant
from R = 1.4011 a.u. Almost 2.0 eV above, 13Σg

+, 13Πu,
11Σu

+, 21Σg
+, and 11Πu states exist at 12.537, 12.729, 12.750,

13.125, and 13.216 eV, respectively, in less than 13.5 eV and
these states locate within 1.0 eV and their dissociation lim-
its are H(1s) + H(2s,2p). 23Σu

+ locates at 14.443 eV and it
also dissociates to H(1s) + H(2s,2p) despite the large 1 eV
interval after 11Πu. In Σ and Π symmetries, there are dis-
sociation channels to 2s and 2p (principal quantum number
n = 2), but, in ∆ and Φ symmetries, their lowest dissocia-
tions are to 3d (n = 3) and 4f (n = 4), respectively, having
high energies. The lowest ∆ state, therefore, locates in the
higher energy region at 14.939 eV as 13∆g and this state
almost degenerates with 11∆g at 14.940 eV. Similarly, the low-
est Φ state exists as 13Φu at 15.598 eV and it also almost
degenerates with 11Φu. Thus, the differences by spin spates
are almost negligible especially for higher angular momen-
tum states and the effects of the Pauli repulsion also become
negligible. In the higher energy region, the density of states
becomes large and accurate theoretical studies would be more
desirable to distinguish these electronic states precisely. In
Table II, we also summarized comparisons with the other
theoretical studies. The references of accurate variational cal-
culations by Wolniewicz et al. and Hagstrom et al.6–12,14 are
available but these were calculated at R = 1.4 a.u. Although
these reference values were separately reported in different
papers,6–12,14 the present study, on the other hand, systemat-
ically provided them on the same theoretical level and more
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data were presented than references. The vertical excitation
energies by the FC-LSE calculations were in good agree-
ment with those of Refs. 6–12 and 14 with the differences
less than 0.01 eV and, for some states, the present results

may be more accurate than the reference values. They also
agreed well with those by the R-matrix and Convergent close-
coupling method46,47 which reported only a few lower excited
states.

TABLE II. Absolute energies and vertical excitation energies by the FC-LSE calculations for all the calculated ground and excited states at the equilibrium
geometry (R = 1.4011 a.u.) of the 11Σg

+ ground state. The results are compared with other studies.

Absolute energy (a.u.) Vertical excitation energy (eV)

Ref. (variational Ref. (convergent
State FC-LSE (this work) FC-LSE (this work) calculations at R = 1.4 Ref. (R-matrix close-coupling

a.u.)a,b,c,d,e,f,g,h method)i method)j

11Σg
+

�1.174 474 33
13Σu

+
�0.784 535 74 10.611 10.619b 10.45(21) 10.67

13Σg
+

�0.713 752 72 12.537 12.540b 12.41(15) 12.32
13Πu �0.706 702 66 12.729 12.732b 12.60(21) 12.56
11Σu

+
�0.705 919 72 12.750 12.754c 13.15(21) 12.66

21Σg
+

�0.692 150 03 13.125 13.25(28) 12.92
11Πu �0.688 785 01 13.216 13.220d 13.11(21) 13.03
23Σu

+
�0.643 694 05 14.443 14.447b

23Σg
+

�0.630 442 43 14.804 14.807b

23Πu �0.628 928 06 14.845 14.850b

21Σu
+

�0.628 825 93 14.848 14.851c

33Σg
+

�0.626 655 80 14.907 14.909b

31Σg
+

�0.626 602 67 14.908
13Πg �0.626 383 27 14.914 14.918b

11Πg �0.626 325 78 14.916 14.920e

13∆g �0.625 486 07 14.939 14.944f

11∆g �0.625 426 45 14.940 14.945f

41Σg
+

�0.624 540 82 14.964
21Πu �0.623 754 41 14.986 14.990d

33Σu
+

�0.608 265 32 15.407 15.412b

43Σg
+

�0.603 304 84 15.542 15.547g

31Σu
+

�0.602 737 56 15.558 15.562c

33Πu �0.602 700 33 15.559 15.563b

53Σg
+

�0.601 830 74 15.582 15.586g

51Σg
+

�0.601 797 60 15.583 15.588h

23Πg �0.601 679 23 15.587 15.590b

21Πg �0.601 649 04 15.587 15.591e

11∆u �0.601 476 63 15.592
13∆u �0.601 473 87 15.592
43Πu �0.601 451 09 15.593
31Πu �0.601 450 28 15.593 15.596d

41Σu
+

�0.601 422 19 15.594 15.596c

43Σu
+

�0.601 420 94 15.594
23∆g �0.601 334 31 15.596 15.601f

21∆g �0.601 295 89 15.597 15.602f

13Φu �0.601 275 53 15.598
11Φu �0.601 275 20 15.598
61Σg

+
�0.600 886 53 15.608 15.613h

41Πu �0.600 536 63 15.618 15.621d

53Σu
+

�0.593 530 90 15.808
63Σg

+
�0.591 350 21 15.868

51Σu
+

�0.590 882 45 15.880 15.886c

71Σg
+

�0.590 534 25 15.890
33Πg �0.590 208 33 15.899
31Πg �0.590 178 60 15.899
23∆u �0.590 166 29 15.900
21∆u �0.590 160 62 15.900
63Σu

+
�0.590 130 41 15.901

61Σu
+

�0.590 129 29 15.901 15.903c
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TABLE II. (Continued.)

Absolute energy (a.u.) Vertical excitation energy (eV)

Ref. (variational Ref. (convergent
State FC-LSE (this work) FC-LSE (this work) calculations at R = 1.4 Ref. (R-matrix close-coupling

a.u.)a,b,c,d,e,f,g,h method)i method)j

41Πg �0.589 996 95 15.904
43Πg �0.589 984 65 15.905
13Φg �0.589 859 17 15.908
11Φg �0.589 851 12 15.908
73Σu

+
�0.585 290 25 16.033

aReference 7 for the ground-state energy.
bReference 10.
cReference 11.
dReference 12.
eReference 8.
fReference 9.
gReference 14.
hReference 6.
iReference 46.
jReference 47.

IV. CONCLUSIONS

The accurate potential energy curves of the ground and
excited states (total 54 states) for the 1Σg

+, 1Σu
+, 3Σg

+, 3Σu
+,

1Πg, 1Πu, 3Πg, 3Πu, 1∆g, 1∆u, 3∆g, 3∆u, 1Φg, 1Φu, 3Φg, and
3Φu symmetries were theoretically obtained by the FC the-
ory with the sampling-type integral-free LSE method instead
of the variational method. We prepared the initial functions
represented as the HLSP type from hydrogen-atom wave func-
tions, which guarantee the correct dissociations to atoms for
all the target states. The calculated potential energy curves
were accurate and smooth as not only relative shapes but also
absolute energies almost satisfying spectroscopic accuracy.
Compared to the variational methods that require analytical
integrations, the LSE calculations were performed with lower
computational cost and were highly efficiently parallelized.
For practical calculations in the LSE method, however, it is sig-
nificant to generate appropriate sampling points for the target
states as much as possible.

In the present study, we performed a comprehensive study
to understand the potential energy curves of H2 with accurate
solutions of the SE, from equilibrium to dissociation, and from
the ground and low-lying excited states up to higher angular
momentum symmetries. There is no such inclusive study in
the literature even for the simple H2 molecule. By looking at
all the potential curves and comparing them concurrently, we
could systematically understand the physical natures of their
states and potential energy curves. For example, the potential
energy curves in the 1Σg

+ and 1Σu
+ symmetries showed some

complicated behaviors due to the existence of the ionic state.
On the other hand, there is no such complexity for the other
symmetries. The present study first reported some potential
energy curves of the higher excited states belonging to higher
angular momentum symmetries. We also examined the vertical
excitation energies at the equilibrium geometry of the 11Σg

+

ground state. Thus, the data presented in this study may be
valuable as a theoretical database. The present study is one of
the simple and clear examples in which the FC theory and the

LSE method are used as a reliable tool to study not only ground
but also excited states and their potential energy curves.

SUPPLEMENTARY MATERIAL

See supplementary material for the numerical data of the
potential energy curves and their plots for all the calculated
states.
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