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Solving the Schrödinger equation of hydrogen
molecules with the free-complement variational
theory: essentially exact potential curves and
vibrational levels of the ground and excited states
of the R symmetry†

Yusaku I. Kurokawa, * Hiroyuki Nakashima and Hiroshi Nakatsuji *

The Schrödinger equation of hydrogen molecules was solved essentially exactly and systematically for

calculating the potential energy curves of the electronic ground and excited states of the 1Sg, 1Su, 3Sg,

and 3Su symmetries. The basic theory is the variational free complement theory, which is an exact

general theory for solving the Schrödinger equation of atoms and molecules. The results are

essentially exact with the absolute energies being correct beyond m-hartree digits. Furthermore, all of

the present wave functions satisfy correct orthogonalities and Hamiltonian-orthogonalities to each

other at every nuclear distance along the potential curve, which makes systematic analyses and

discussions possible among all the calculated electronic states. It is noteworthy that these conditions

were not satisfied in many of the accurate calculations of H2 reported so far. Based on the present

essentially exact potential curves, we calculated and analyzed the vibrational energy levels associated

with all the electronic states. Among them, the excited states having double-well potentials showed

some interesting features of the vibrational states. These results are worthy of future investigations in

astronomical studies.

I. Introduction

Solving the Schrödinger equation (SE) is a paramount theme of
quantum chemistry because it is a governing principle of
chemical phenomena. A general exact theory for solving the
SE was proposed by one of the authors.1–5 It was initially called
free ICI theory and later renamed as free complement (FC)
theory. The FC theory produces the complement functions (cf’s)
{fi} with which the exact solution of the SE is described as
c =

P
Cifi: the FC wave function has a potentially exact

structure so that after applying the variational principle, we
can get the exact wave function. This FC-variation principle (VP)
method3 is straightforward and accurate when one can evaluate
the matrix elements in the Hamiltonian and overlap matrices
analytically, though such cases are limited only for some small
systems. We have applied the FC-VP method to solve the SE of
small systems, like helium atoms,6–8 hydrogen molecular ions
in the ground and excited states in both Born–Oppenheimer

(BO) and non-BO levels,9–12 and hydrogen molecules at the
equilibrium geometry in the ground state.13 Their solutions
were extremely accurate with satisfying the variational princi-
ple: the calculated absolute energies always keep upper bounds
to the exact ones.

On the other hand, when analytical evaluations of the over-
lap and Hamiltonian matrices over the complement functions
are difficult, we use the local SE’s at many sampling points over
the target atoms or molecules as the conditions to determine
the coefficients of the complement functions. This method is
called the local Schrödinger equation (LSE) method.4 The LSE
method is an integral-free method, so that one can apply it to
any systems and any type of cf’s. This method has been applied
to various atoms and small organic and inorganic molecules
and gave highly accurate energies satisfying chemical accuracy
(less than 1 kcal mol�1 as the absolute energy) for both the
ground and excited states.5,14–17

In this study, we systematically investigate the electronic
ground and excited states of the hydrogen molecule. We solve
the BO SE of a hydrogen molecule in the ground and lower
excited states almost exactly by the FC-VP theory: all the
integrals involved are calculated analytically. We calculate
highly accurate PECs of the 1Sg, 1Su, 3Sg, and 3Su symmetries.
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The calculated wave functions at each nuclear distance R of
state n, cn(R), satisfy

Ĥ(R)cn(R) = En(R)cn(R), (1)

hcn(R)|cm(R)i = dmn, (2)

and

hcn(R)|Ĥ(R)|cm(R)i = En(R)dmn, (3)

where En is the electronic energy of state n. Then, from these
PECs, we systematically calculate almost all the vibrational
energy levels associated with each electronic state.

The study of the accurate wave functions of hydrogen mole-
cules has a long history since it is the simplest molecule and is
very often used as the benchmark study for new quantum
chemistry calculations. In 1933, as a pioneering study, James
and Coolidge (JC)18 succeeded in obtaining very accurate energies
and the equilibrium geometries of the hydrogen molecule. Sims
and Hagstrom improved the JC type wave function and obtained
the PECs in the 1Sg symmetry.19 In 1965, Kolos and Wolniewicz
(KW) reported the wave functions20 that cover the whole region of
the internuclear distance R for the ground and several excited
states. The KW type wave functions were applied to various states
of different spin and spatial symmetries,21–29 but their methods
were state-specific so that their wave functions were not guaranteed
to be orthogonal and Hamiltonian-orthogonal with those in the
other states. In 1995, Cencek, Komasa, and Rychlewski showed that
the explicitly correlated Gaussian (ECG) type wave functions give
very accurate energies for the 3Sg, 3Su, 1Su, 1Pu, and 1Sg states.30

Adamowicz et al. also performed non-adiabatic calculations
using the ECG wave functions and very accurate vibrational
levels for the ground state.31 In 2009, Corongiu and Clementi
employed the full CI method and calculated the PECs of the
ground and 12 excited states in the 1Sg state.32,33 Recently, in
2013, Pachucki reported very precise energies for the 1Sg states
at some R values.34,35 The accurate calculations of the triplet
states: 3Sg and 3Su symmetries were also reported by Hagstrom
et al. and Pachucki and Komasa.36,37 Also, the PECs of several
states were reported by the experiments.38,39

In most of the above literature of the theoretical studies, several
target states were selected and computed state-specifically. There-
fore, the physical features among the states had not been
discussed systematically. On the other hand, in the present
study, all the calculated states satisfy orthogonality and Hamiltonian
orthogonality to each other between the different states,
which is a necessary condition for the exact solutions of the
Schrödinger equation. This is so for all the distances along
the potential energy curves, from which we systematically
calculated the vibrational energy levels associated with each
potential curve of a different state.

In the present FC calculations, we dealt with the l functions
with negative powers which were used originally in the previous
study of hydrogen molecules with the FC theory.13 This type of
functions (defined in Section IIB) is very important for small R
and near-equilibrium distance,13 but these l functions have not
used in other literature studies.

Recently, we were also successful in calculating the highly
accurate PECs of the ground and various excited states by the
FC-LSE method, i.e. using a sampling method. With the FC-LSE
method, the computations are much easier than the present
analytical FC-VP method since no integrations are necessary
there, though the variational principle is not always satisfied
and special care about sampling dependency is required. The
results of the FC-LSE calculations will be published elsewhere.40

II. Free complement theory

The FC theory is a general theory of solving the Schrödinger
equations, and the details of this theory were explained in
previous studies.2,3,5 We explain here only the points pertinent to
the present study. The FC wave function of order n is represented
as a linear combination of the complement functions (cf’s) {f(n)},
given by

cn ¼
XM nð Þ

i¼1
C

nð Þ
i f nð Þ

i : (4)

The coefficients {C(n)} are determined by the variational principle,
i.e., by solving the secular equation, HC = ESC, where H and S are
the Hamiltonian and overlap matrices, respectively. Each energy
value is the upper bound to the exact energy according to the
variational principle, and the wave function is always orthogonal
to each other since both H and S are Hermite matrices. The {f(n)}
is generated from an initial function c0 by using the following
simplest iterative complement (SIC) formula,

cn+1 = [1 + Cng(Ĥ � En)]cn, (5)

where g is a scaling function that was introduced to overcome
the singularity problem caused by the singular Coulomb potentials
existing in the Hamiltonian of atoms and molecules.2,3,5 Cn and En

are the coefficient and energy at the iteration n in the SIC formula,
respectively. We perform the operation of eqn (5) n times from c0

and select only linearly independent and non-divergent functions
as {f(n)} in the right-hand side of eqn (5). The number of the
selected function is defined as dimension: M(n). The cn determined
by eqn (4) is guaranteed to converge to the exact solution of the SE
as the order n increases.2,3,5

A. Initial wave function

In the FC theory, we first need to select an appropriate initial
wave function c0. The converging speed to the exact solution
depends on the choice of c0. In our previous study of hydrogen
molecules for the ground state,13 we employed the JC type
function as c0. In the present study, we modified it and
employed

c0 ¼ Â exp �r1A � r2Bð Þ þ exp �r1A �
1

2
r2B

� �
1� r2Bð Þ

�

þ exp �r1A �
1

3
r2B

� �
1� r2B þ r2B

2
� ��

;

(6)

as our initial wave function, where riX represents the distance
between electron i and nucleus X (X = A or B), and Â is the
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symmetry-adaptation operator, which will be explained in
Section IIC. The first, second, and third terms in the brackets
in eqn (6) ensured that the wave function correctly dissociates
to H(1s)–H(1s), H(1s)–H(n = 2), and H(1s)–H(n = 3) states,
respectively. We fixed the orbital exponents (the coefficient of
riX in the exp functions) as given in eqn (6) in the whole regions
of the PECs. This has three merits: the first is that the resultant
PECs dissociate into the correct states, the second is that the
PECs are smooth because we do not do any non-linear optimizations
at each R, and the third is that one can save the computational time.
The demerit of the fixed exponents is that the descriptions of the
wave function in the bonding region may become worse than
those of the dissociated region. This demerit, however, can be
overcome with the FC theory automatically by increasing its order.

B. Hamiltonian and complement functions in elliptic
coordinates

We employ the elliptic coordinates whose variables are defined
as li � (riA + riB)/R, mi � (riA � riB)/R, where R is the distance
between the nuclei A and B, and ji, which is the azimuthal
angle around the molecular axis (i = 1 and 2). We further use

supplementary variables, r, defined by r � 2

R
r12.

Using the elliptic coordinates, the initial wave function (6) is
rewritten generally as

c0 ¼
XM 0ð Þ

i

CiÂ exp �a1il1 � a2il2 � b1im1 � b2im2ð Þlmi
1 lni2 m

ji
1m

ki
2 :

(7)

The exponents a and b in eqn (7) change as the inter-nuclear
distance changes due to the existing R in l and m coordinates.

The kinetic operator and the potential in the Hamiltonian
are written as

ri
2 ¼ 4

R2 li2 � mi2ð Þ
@

@li
li2 � 1
� � @

@li
þ @

@mi
1� mi

2
� � @

@mi

�

þ 1

li2 � 1
þ 1

1� mi2

� �
@2

@ji
2

� (8)

and

V̂ ¼ 2

R
� l1
l12 � m12

� l2
l22 � m22

þ 1

r
þ 1

2

� �
; (9)

respectively, in the elliptic coordinates. The g function
employed in this study is

g ¼ 1þ l12 � m1
2

l1
þ l22 � m2

2

l2
þ r; (10)

where the second and third terms correspond to the inverse
orders of the electron–nucleus potentials of electrons 1 and 2,
1/r1A + 1/r1B and 1/r2A + 1/r2B, respectively, and the fourth term
corresponds to the inverse order of the electron–electron repulsive
potential 1/r12. When we operate the kinetic and potential operators

and the g function on c0 according to eqn (5), we obtain the general
expression of the cf’s as

fi ¼ Â exp �a1il1 � a2il2 � b1im1 � b2im2ð Þlmi
1 lni2 m

ji
1m

ki
2 r

pi : (11)

Note that the integers j, k, and p that appear as the power of m1,
m2, and r, respectively, take zero and positive and the integers m
and n (the power of l1 and l2, respectively) take negative, zero,
and positive in the cf’s. The cf’s with the negative power of l1

and/or l2, which have not been used in the other literature
studies, are our original and first used in our study. Their
efficiencies were examined in the previous study,13 and they
would be important to describe especially the bonding region.

C. Symmetry adaptation

The symmetry adaptation operator, Â, in eqn (6) is defined as
Â = P̂spinP̂space, where

P̂spin � 1þ P̂12 for singletð Þ

� 1� P̂12 for tripletð Þ
(12)

P̂space � 1þ P̂AB for geradeð Þ

� 1� P̂AB for ungeradeð Þ;
(13)

and P̂12 interchanges the electrons 1 and 2 as P̂12 = {l1 2 l2,
m1 2 m2} and P̂AB interchanges the nuclei A and B as P̂AB =
{m1 2 �m1, m2 2 �m2}. The combinatorial use of these
operators can express the 1Sg, 1Su, 3Sg, and 3Su states from
the common initial wave function.

D. Integral evaluation

The Hamiltonian matrix H and the overlap matrix S of the cf’s
are defined by Hij � hfi|Ĥ|fji and Sij � hfi|fji, respectively. The
integrands are the linear combination of the following basic
integrals:

I¼
ð
exp �a1l1�a2l2�b1m1�b2m2ð Þlm1 l

n
2m

j
1m

k
2r

pdl1dl2dm1dm2dj1dj2

(14)

where j, k, and p take zero or positive integers, m and n take
negative, zero, or positive integers, the integration ranges of
each of the variables are, 1 r li r N, �1 r mi r 1, and 0 r

ji r 2p(i = 1, 2), and the Jacobian J � R6

64
l12 � m1

2
� �

l22 � m2
2

� �
is already considered and expanded in the integrands.

To evaluate eqn (14), the rp is reduced to r0 when p is even or
to r�1 when p is odd using the relation

r2 ¼ l12 þ l22 þ m1
2 þ m2

2 � 2l1l2m1m2

� 2 l12 � 1
� �

l22 � 1
� �

1� m1
2

� �
1� m2

2
� �� 	1

2cos j1 � j2ð Þ
(15)

repeatedly.
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The r�1 can be expanded using the Neuman’s expansion,

r�1¼
X1
t¼0

X1
N¼0

DN
t P

N
t

l1
l2

� �
QN

t
l2
l1

� �
PN
t m1ð ÞPN

t m2ð Þcos N j1�j2ð Þ½ �;

(16)

where D0
t = 2t + 1, DN

t = 2(2t + 1)[(t � N)!/(t + N)!]2 (N 4 0), and
P and Q are the associated Legendre functions of the first and
second kinds, respectively, and we take the upper variables
when l2 Z l1 and the lower ones otherwise. Then, the integrand
in eqn (14) is decomposed into a sum of products of l1 and l2

parts, the m1 part, the m2 part, and the j1 and j2 parts. We can
integrate over these variables separately. In the t summation in
eqn (16), we truncate it when the summed value reaches in more
than 60-digit accuracy. In integrating the l2 part, we need to
evaluate the integral

I 0 ¼
ð1
l2¼1

exp �al2ð ÞEi �bl2ð Þlm2 ln
l2 þ 1

l2 � 1

� �
(17)

and related ones. These integrations including the Ei functions
with negative m were calculated numerically using the Maple
program.41 All the other calculations were done using the GMP
(GNU multiple precision arithmetic) library.42

III. Convergence of the FC wave function

In Table 1, the numbers of the cf’s M(n) generated at order n = 0,
1, 2, and 3 are presented for each symmetry, 1Sg, 1Su, 3Sg, and
3Su. A set of the cf’s at order n always includes those at lower
orders m (m o n). At order n = 0, the number of the initial wave
functions is M(0) = 10 for the 1Sg and 3Su symmetries, but
M(0) = 9 for the 1Su and 3Sg symmetries. This is because the
exp(�r1A � r2B) term in the initial wave function, which
represents the H(1s)–H(1s) state at the dissociation limit,
vanishes when the symmetry-adaptation operator is applied
as explained in Section IID. For the same reason, the numbers
of the generated cf’s are different for each symmetry at order =
1, 2, and 3. All cf’s at order n = 3 in the 1Sg, 1Su, 3Sg, and 3Su

states are listed in Tables S1–S4, respectively, in the ESI.†
We calculated the energies and the FC wave functions,

changing the inter-nuclear distance R at order n = 0, 1, 2, and
3. We call the lowest eigenvalue in each symmetry E0, and
second, third,. . . solutions E1, E2,. . .. We also use the Herzberg’s
notation for known states. To check the convergence of the
FC wave functions, Fig. 1 shows the PECs of the 1Sg state at
n = 0, 1, 2, and 3, and their energies are shown in Table 2 at the
selected inter-nuclear distances. As the order n increases, the

energies converge from the above to the exact values cited at
the bottom of each distance in Table 2. It was observed that, at
n = 2, the energies of each state have more than 3-digit accuracies
at each distance, except for short inter-nuclear distances in the
E2(GK), E3(H %H), E4(P) and E5(O) states. At n = 3, the energies
of each state almost converged to the exact values, and they
have m-hartree accuracies or better, as discussed below. These
observations hold true for the other symmetry states. In the
following discussions, we use the current best results at n = 3, if
not specially mentioned.

IV. Potential energy curves

In Fig. 2, all the ground and excited PECs in the 1Sg, 1Su, 3Sg,
and 3Su symmetries and vibrational levels associated with each
PEC are shown. In Fig. 3–6, the PECs of the lowest six states of
the S symmetry are separately plotted. The detailed energy
values for each R are given in Tables S5–S8 of the ESI.† Note
that the sixth states of the 1Su and 3Sg symmetries, which
dissociate to the H(1s)–H(n = 4) states, are not guaranteed to
dissociate to the correct states in the present method because
the proper wave functions for the H(1s)–H(n = 4) states are not
included in the initial wave function. In the FC theory, however,
the higher order of the cf’s from other initial functions can
accurately cover these states. We again emphasize that the
present calculations are not state-specific: the ground and excited
states are common eigenfunctions of the same Hamiltonian
matrix of each symmetry, 1Sg, 1Su, 3Sg, and 3Su, at each R. This
makes systematic discussions possible for all the calculated
states and their PECs.

For the ground state of the 1Sg state, the total energy E0(X)
at the equilibrium geometry (R = 1.4011 a.u.) is calculated to
be E = �1.174475307 a.u. as seen from Table 2. This has
a m-hartree accuracy compared with the reference energy:
E =�1.174475931400216 a.u. from the 22 363-basis calculations
by Pachucki.34 The energies at R 4 1.4 a.u. also have m-hartree
accuracies and those at R o 1.4 a.u. have 5-digit accuracies,
compared with those by Pachucki.34

The excited states of the 1Sg symmetry are also calculated
accurately compared with the best values in the literature
studies; the differences between the FC energies and the Pachucki’s
energies35 are calculated to be DE0 = 1.98 � 10�7 a.u., DE1 = 3.30 �
10�8 a.u., DE2 = 1.43 � 10�7 a.u., DE3 = 1.90 � 10�8 a.u.,
DE4 = 4.90 � 10�8 a.u., and DE5 = 7.96 � 10�7 a.u. for the first
(EF), second (GK), third (H %H), fourth (P), and fifth (O) excited
states, respectively, at R = 3.0 a.u. At R = 6.0 a.u., the energies are
calculated to more than 7-digit accuracies. Similarly, the 1Su,28

3Sg,27,36 and 3Su
27,36,37 states are calculated to more than 5-digit

accuracy in the bonding regions (R = 2.0 a.u.).
It was observed that the FC energy becomes more accurate

with increasing R. For example, the FC energy has more
than 10-digit accuracy at R = 10.0 a.u. in the 1Sg state (the FC
energy is E0 = �1.000008755715 a.u., and Pachucki gave
E0 = �1.000008755746 a.u.),34 while the FC energy has a m-hartree
accuracy at the equilibrium geometry, as mentioned above.

Table 1 Number of the complement functions (cf’s) at order n = 0, 1, 2,
and 3 for different symmetries

State

Order

0 1 2 3

1Sg 10 63 422 1819
1Su 9 58 386 1642
3Sg 9 58 388 1609
3Su 10 63 424 1786
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This observation applies also to the excited states. The reason
why the FC energies become more accurate with increasing R is
that the initial wave functions of the FC wave functions were
chosen to be exact at the completely dissociated geometry, as
explained in Section IIA.

At short inter-nuclear distances (R o 1.0 a.u.), where the
potential curve is repulsive and steep, the energies are less
accurate; for example, the energy of the E4 state in the 1Su

symmetry at R = 1.0 a.u. has a milli-hartree accuracy.28 This is
because we do not include an appropriate wave function as the
initial function for short R. To study very short inter-nuclear
regions, it may be better to include a function for a united
atom, such as the Chemical Orbital proposed by Clementi and
Corongiu.33

We also note that, at many points of the calculated PECs,
our results gave better energies than ever reported values; for
example, our FC theory gave the energy E5 = �0.632458510 a.u. at
R = 2.0 a.u. of the 1Sg state, while Wolniewicz and Dressler gave
E5 = �0.632457557 a.u.25 But at some points, our energies are a
little worse than the reported values; for example, in the ground
state of the 1Sg symmetry, Pachucki gave better energies in the
whole region.34 However, it seems that our values have more than
5-digit accuracies in the bonding and dissociation regions of
the PECs of the 1Sg

34 and 1Su,28 3Sg,27,36 and 3Su
27,36,37 states.

However, note that we have used less than 2000 functions to
describe simultaneously the ground and excited states of each
symmetry (see Table 1), whereas Wolniewicz and Dressler used the
different basis function sets for different states since their calcula-
tions were state-specific.

It is known that the potential energy curves of some excited
states have van der Waals minima at large nuclear distances:29

Staszewska et al. gave the minima in the b3Su state (the ground
state in the 3Su state) at R = 8.0 a.u. with 4.4369 cm�1 depth and
in the e3Su state (the first excited state in the 3Su state) at
R = 15.0 a.u. with 2.9993 cm�1 depth (the depth is the difference
between the energy of the dissociation limit and the local
minimum energy).27 The present FC theory gives the minima
for the b3Su state at R = 8.0 a.u. with 4.4380 cm�1 depth and in
the e3Su state at R = 15.0 a.u. with 2.9998 cm�1 depth (see
Table S8, ESI†). They gave another minimum in the h3Sg state
(the first excited state in the 3Sg state) at R = 15.6 a.u. with
1.8338 cm�1 depth,27 while the FC theory gives it at R = 15.6 a.u.
with 1.8339 cm�1 depth (see Table S7, ESI†). Thus, the present
method can describe such a small van der Waals interaction
very accurately.

In Fig. 7, we also show the potential energy curves of the
excited states higher than the sixth state for the 1Sg symmetry,
and their detailed values are listed in Table S9 (ESI†). Corongiu
and Clementi already reported 12 excited states by the full CI
method,32 but we report here the 15 states by the FC-VP
method. These energies are obtained as the higher eigenvalues
of the secular equation and are the upper bounds to the exact
values, but there are no initial functions corresponding to their
dissociations. Nevertheless, these data would be still accurate
and become useful references for the future theoretical and
experimental studies.

Fig. 8 and Fig. S1 (ESI†) summarize all the PECs of the
1Sg, 1Su, 3Sg, and 3Su symmetries, calculated in this paper.

Fig. 1 Convergence of the FC energies at order n = 0, 1, 2, and 3 for the potential energy curves of hydrogen molecules in the 1Sg state.
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The lowest-energy curves of 1Sg and 3Su dissociate to H(1s) +
H(1s), but there are no such dissociation channels in 1Su and
3Sg. This is trivially understandable from their spatial and spin
symmetries. By comparing the PECs of 1Sg and 1Su with those
of 3Sg and 3Su, the former includes more complicated curves.
This is due to the existence of the ionic channels that dissociates
to H� + H+ in 1Sg and 1Su. On the other hand, no ionic channels
exist in 3Sg and 3Su where two electrons cannot occupy the same
position in H� due to the Pauli repulsion. At the dissociation
limits of 1Sg and 1Su, the energy of the ionic state: H� + H+ is
higher than that of H(1s) + H(n = 3). However, since the ionic
contribution indicates a long-range interaction proportional to
1/R, the ionic curve moves from lower states to higher states,
step by step, as approaching dissociation. Thus, the existence of
the ionic term makes the PECs complicated and causes double-
well potential shapes and state repulsions. Although the ionic
channels indicate long-range behavior, the PECs showing that
the ionic characters are dominant almost overlap between 1Sg

and 1Su at large R, for example, compare the EF state of 1Sg with
the B state of 1Su. This indicates that the origin of the long-range
behavior is mainly explained from the classical ionic Coulombic
interactions. In the present calculations, we do not explicitly employ
the ionic terms, such as exp(�r1A � r2A), into our initial functions.
Nevertheless, all the PECs including ionic contribution can be
accurately described at least near equilibrium distances. This is a
numerical proof that the FC wave function converges to the exact
solutions with increasing the FC order from any initial functions at
the same symmetry. Actually, the cf’s including lm terms, where m
runs positive and negative integers, are two-centered functions and
contain the ionic characters also with the covalent characters.
However, explicitly introducing ionic-type functions into the initial
function, the excited states containing ionic characters can be
more efficiently described, especially for near the dissociations
and/or higher excited states. In the forthcoming paper40 by the
FC-LSE method, we employ such ionic terms explicitly as the initial
function and will do further discussions for their states.

Table 2 The energies (a.u.) of hydrogen molecules at the selected inter-nuclear distances in the 1Sg state calculated with the FC method at order n = 0,
1, 2, and 3a

R (a.u.) Order E0(X) E1(EF) E2(GK) E3(H %H) E4(P) E5(O)

0.5 0 �0.473160090 0.467150166 0.526489788 0.554210586 0.647965456 0.748789199
1 �0.522270516 0.178662300 0.271787939 0.302046504 0.307437497 0.362205778
2 �0.526517488 0.127170779 0.206447033 0.210128548 0.233044870 0.238357218
3 �0.526636133 0.127042609 0.205960702 0.209276728 0.232336865 0.233707889
Ref. �0.526638758b 0.127044530c

1.0 0 �1.097460370 �0.400906655 �0.340543336 �0.312559747 �0.219768603 �0.176895708
1 �1.122793990 �0.560602662 �0.487470814 �0.467911114 �0.459860854 �0.401596139
2 �1.124496291 �0.580068223 �0.508024388 �0.507783883 �0.483221875 �0.479786999
3 �1.124538673 �0.580085427 �0.508066032 �0.507859752 �0.483310834 �0.483260350
Ref. �1.124539720b �0.580085101c �0.508065352d �0.507857287d �0.483309219d �0.483247664d

1.4011 0 �1.151637266 �0.583738232 �0.523262560 �0.495015865 �0.409139152 �0.387201495
1 �1.173265053 �0.683500301 �0.616199031 �0.604979087 �0.589610053 �0.536101526
2 �1.174450788 �0.692155449 �0.626657136 �0.624549899 �0.600828388 �0.599117068
3 �1.174475307 �0.692162609 �0.626679488 �0.624559939 �0.601824405 �0.600880012
Ref. �1.174475931b

2.0 0 �1.119487252 �0.663841484 �0.604125928 �0.575030024 �0.531480597 �0.464243660
1 �1.137224888 �0.714988763 �0.652681227 �0.650634303 �0.626984693 �0.586189922
2 �1.138116836 �0.717711177 �0.660423055 �0.654923977 �0.633261515 �0.632402335
3 �1.138132582 �0.717715211 �0.660430062 �0.654926430 �0.634909096 �0.632458511
Ref. �1.138132957b �0.717714276d �0.660428175d �0.654926063d �0.634885512d �0.632457557d

3.0 0 �1.047489133 �0.670000092 �0.632345999 �0.605622343 �0.573958494 �0.544594688
1 �1.056767266 �0.690228452 �0.656010205 �0.628286094 �0.620220068 �0.602579339
2 �1.057316865 �0.690744333 �0.656978883 �0.630548949 �0.623906192 �0.607306364
3 �1.057326071 �0.690747023 �0.656985802 �0.630554115 �0.623922686 �0.607983717
Ref. �1.057326269b �0.690747056e �0.656985945e �0.630554134e �0.623922735e �0.607984513e

6.0 0 �1.000100834 �0.659400228 �0.623820422 �0.577252084 �0.558001450 �0.547795548
1 �1.000815298 �0.692111313 �0.625995288 �0.582171944 �0.564240910 �0.552563424
2 �1.000835357 �0.694242391 �0.626146298 �0.583447929 �0.564423020 �0.553887236
3 �1.000835702 �0.694266430 �0.626147956 �0.583463397 �0.564424570 �0.553905248
Ref. �1.000835708b �0.694267029d �0.626147969d �0.583463574d �0.564424574d �0.553905272d

10.0 0 �1.000000522 �0.629934919 �0.624203739 �0.587207122 �0.555495453 �0.549842549
1 �1.000008459 �0.637305568 �0.624627378 �0.599068694 �0.555923767 �0.555457695
2 �1.000008753 �0.640213070 �0.624640969 �0.603362241 �0.555999881 �0.555538697
3 �1.000008756 �0.640253722 �0.624641133 �0.603416613 �0.556000843 �0.555539183
Ref. �1.000008756b �0.640246025d �0.624641106d �0.603407271d �0.556000540d �0.555538599d

a The complete data at order n = 3 for the 1Sg, 1Su, 3Sg, and 3Su symmetries are listed in Tables S5–S8 in the ESI. b Ref. 34. c Ref. 26. d Ref. 25.
e Ref. 35.
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V. Vibrational energy levels

Thus, we could evaluate very accurate PECs for the ground and
excited states of S symmetries by the FC-VP method. Since their

Fig. 2 All ground and excited potential energy curves (PECs) and vibra-
tional levels associated with each PEC.

Fig. 3 The 1Sg potential energy curves of hydrogen molecules calculated
by the FC method at order n = 3.

Fig. 4 The 1Su potential energy curves of hydrogen molecules calculated
by the FC method at order n = 3.

Fig. 5 The 3Sg potential energy curves of hydrogen molecules calculated
by the FC method at order n = 3.

Fig. 6 The 3Su potential energy curves of hydrogen molecules calculated
by the FC method at order n = 3.
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PECs are essentially exact, it is valuable to proceed to the vibrational
analysis based on their accurate PECs. Here, we numerically solve
the vibrational Schrödinger equations, given by

� 1

2m
d2

dR2
þ EnðRÞ

� �
jv;nðRÞ ¼ Vv;njv;nðRÞ; (18)

where En(R) is a potential energy function obtained by fitting
the discrete PEC of state n with appropriate fitting functions, m
is the reduced mass, and jv,n(R) and Vv,n are the vibrational
wave function and the corresponding energy of the v-th
state, respectively. For solving eqn (18), we actually used the
Level 8 package by Le Roy.43 Since the number of the points
of R that we calculated at n = 3 is limited, the highly
accurate discrete PECs were interpolated and extrapolated
and then obtained En(R): for the interpolation, the cubic spline
method was employed, and for the extrapolation of the outer
region of the PECs, the energy values were fitted to the function
E(R) = EN � A/RB, and for the extrapolation of the inner region
of the PECs, the energy values were fitted to the function
E(R) = E0 + A exp(�BR).43 Then, the vibrational SEs for each
PEC in the 1Sg, 1Su, 3Sg, and 3Su symmetries were solved
numerically, and the vibrational energy levels Ev, the expecta-
tion value of the nuclear distances hRi, and those of the squared
values hR2i were obtained associated with all the calculated
potential energy curves.

In Fig. 9, the calculated vibrational levels associated with the
PECs of the ground and excited states are plotted. The vibrational
levels in the sixth states of the 1Su and 3Sg symmetries, which
dissociate to the H(1s)–H(n = 4) states, are not calculated since the
PECs do not dissociate correctly, as explained in Section IV. The
complete data for all the calculated vibrational levels are listed
in Tables S10–S13 in the ESI,† where we listed only the lowest
50 vibrational states for the E3(H %H) 1Sg and E2(B00 %B) 1Su states
because very high energy states would be highly dependent on
the fitting method and may be unphysical. The ground state of
the 3Su curve has no vibrational state because it is a repulsive
curve. The three, six, one, and one highest vibrational levels for

the E1(h)3Sg, E2(f)3Su, E4(5)1Su, and E5(O)1Sg curves, respectively,
are unstable because the outer region of these curves are repulsive
and these vibrational levels are higher than the dissociation limit of
their curves in energy. Fig. 10–13 are the calculated vibrational levels
associated with the 1Sg, 1Su, 3Sg, and 3Su PECs, respectively. It is
observed that, in the 1Sg and 1Su states, the densities of the
vibrational levels are sparse between E = �0.625 and�0.604 a.u.
This is due to the very broad wells of the E3(H %H) 1Sg and E2(B00 %B)
1Su curves.

Table 3 summarizes some selected vibrational energy levels
of the ground (X) and three excited states (EF, GK, and H %H) in
the 1Sg symmetry and the hRi and hR2i values, the expectation
value of the nuclear distance. We compared the vibrational

Fig. 7 The 1Sg potential energy curves in the higher excited states of
hydrogen molecules calculated by the FC method at order n = 3.

Fig. 8 (a) Potential curves of all the S states calculated by the FC method
at order n = 3. The black, blue, red, and green curves are for the 1Sg, 3Su,
3Sg, and 1Su symmetries, respectively. The region in the broken line is
enlarged in (b). (b) Enlarged figure of (a). Potential curves of all the S states
calculated by the FC method at order n = 3. The black, blue, red, and green
curves are for the 1Sg, 3Su, 3Sg, and 1Su symmetries, respectively.
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energy splitting: DEv (= Ev � Ev�1) by the present method with
those by theoretical and experimental references.22,31,39,45 For
simple single-well PECs, such as the ground state (X) of 1Sg,
and B state of 1Su, the present results agreed well with those by

the experiment in 2- or 3-digits. In these curves, as the vibrational
level increases, the hRi and hR2i values gradually increase and the
DEv value gradually decreases, which shows the anharmonicity
of the potential. For the double-well PECs, such as the EF, GK,

Fig. 9 All vibrational energy levels associated with each PEC calculated by the FC method at order n = 3. The numerical data are listed in Tables S10–S13
of the ESI.†
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and H %H states of 1Sg, our results only agreed with those of the
experiment within 1- or 2-digits. This would be because non-
adiabatic effects become important. Wolniewicz and Dressler25

considered the non-adiabatic effects for some states and their
correspondence with the experiments are improved. We do not
consider their effects in the present study since the present
purpose is to compute the vibrational energy levels systematically
for all the calculated ground and excited states at the nonrelativistic
(essentially exact) limits within the BO approximation.

Here, we especially focus on the discussions about the
double-well PECs of the EF, GK, and H %H states of the 1Sg

symmetry since these states indicate interesting features due to
the ionic contribution. The presence of a double minimum in
these excited states was first theoretically demonstrated by
Davidson.44 Table 4 summarizes the positions R of the left-
and right-local minima and the hill of the double wells of the

Fig. 10 All vibrational energy levels associated with the 1Sg PECs. The
detailed energy values are given in Table S10 of the ESI.†

Fig. 11 All vibrational energy levels associated with the 1Su PECs. The
detailed energy values are given in Table S11 of the ESI.†

Fig. 12 All vibrational energy levels associated with the 3Sg PECs. The
detailed energy values are given in Table S12 of the ESI.†

Fig. 13 All vibrational energy levels associated with the 3Su PECs. The
detailed energy values are given in Table S13 of the ESI.†
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Table 3 Vibrational energy levels Ev (cm�1) of the ground (X) and three low-lying excited states (EF, GK, and H %H) of 1Sg, calculated from the PECs of the
FC method at order n = 3 and the comparisons with other studiesa

State v Assignmentb

FC method Ref. (theoretical) Ref. (experimental)

hRic hR2ic Ev
d Ev � Ev�1 Ev � Ev�1 Ev � Ev�1

X 1Sg 0 0.76646 0.59534 �255590.81 Stanke et al.e Pardof

1 0.81797 0.69308 �251422.77 4168.03 4161.19 4161.14
2 0.87099 0.79990 �247491.76 3931.02 3925.86 3925.79
3 0.92594 0.91722 �243799.75 3692.01 3695.41 3695.43
4 0.98420 1.04843 �240340.90 3458.84 3467.99 3467.95
5 1.04705 1.19745 �237108.37 3232.53 3241.58 3241.61
6 1.11551 1.36852 �234100.24 3008.13 3013.86 3013.86
7 1.19085 1.56737 �231320.39 2779.85 2782.15 2782.13
8 1.27536 1.80350 �228777.18 2543.21 2543.19 2543.25
9 1.37269 2.09225 �226482.67 2294.51 2292.96 2292.93
10 1.48885 2.45993 �224453.96 2028.71 2026.36 2026.38

EF 1Sg 0 Left 1.04654 1.10931 �156380.80 Wolniewicz et al.g Bailly et al.h

1 Right 2.35303 5.56457 �156203.48 177.32 198.73 199.10
2 Right 2.41294 5.90780 �155009.06 1194.42 1195.67 1194.96
3 Left 1.12820 1.32172 �154053.51 955.55 936.93 935.89
4 Right 2.46532 6.23244 �153871.06 182.45 204.61 204.21
5 Right 2.50233 6.49463 �152799.62 1071.43 1081.44 1079.28
6 Left 1.51400 2.67541 �152027.49 772.13 783.97 781.37
7 Right 2.30528 5.89949 �151725.39 302.10 285.74 278.97
8 2.40554 6.35675 �150866.64 858.75 897.08 892.03
9 2.12272 5.30197 �150192.15 674.49 671.55 654.32
10 2.32806 6.30229 �149571.13 621.02 583.17 581.24
11 2.48828 7.09208 �148837.58 733.55 749.94 746.89
12 2.51076 7.31799 �148114.76 722.82 725.33 712.80
13 2.57944 7.76638 �147417.63 697.12 681.99 672.64
14 2.69065 8.41895 �146718.82 698.82 694.55 695.03
15 2.78398 9.00918 �146021.78 697.04 701.09 700.35

GK 1Sg 0 Right 1.717483 2.98119 �144365.95 Wolniewicz et al.g Bailly et al.h

1 Left 1.163475 1.400071 �143909.19 456.76 360.60 183.82
2 1.588394 2.652501 �142527.50 1381.69 1452.23 1580.81
3 1.506582 2.476543 �141689.39 838.11 764.63 651.13
4 1.707744 3.165721 �140546.42 1142.96 1145.83 1055.26
5 1.775294 3.482897 �139520.59 1025.84 1001.21 1064.81
6 1.971575 4.292311 �138589.65 930.94 892.81 916.76
7 2.237863 5.509267 �137794.47 795.17 775.20
8 2.757091 8.250715 �137235.43 559.04 523.71

H %H 1Sg 0 Left 1.077938 1.176718 �142576.61 Wolniewicz et al.g Bailly et al.h

1 Left 1.155198 1.380249 �140358.93 2217.68 2248.49 2293.94
2 Left 1.253108 1.651700 �138350.21 2008.72 2130.59 2045.57
3 Left 1.362133 1.975955 �136601.32 1748.89 1817.18
4 Left 1.444969 2.250600 �134989.12 1612.20 1476.75
5 Left 1.545178 2.594699 �133467.32 1521.79 1556.35
6 Right 5.949931 35.496886 �132669.76 797.56 694.39
7 Right 5.980785 36.060560 �132318.58 351.18 351.03
8 Left 1.653023 2.990029 �132071.04 247.54 308.81
9 Right 6.020838 36.747809 �131977.19 93.85 32.60
10 Right 6.069392 37.552327 �131646.03 331.16 331.93
11 Right 6.120844 38.407051 �131324.35 321.68 322.63
12 Right 6.175278 39.313906 �131011.38 312.97 313.51
13 Left 1.781358 3.486536 �130804.85 206.52 262.16
14 Right 6.233125 40.280642 �130706.79 98.06 42.45
15 Right 6.294557 41.312137 �130410.71 296.08 295.83
16 Right 6.359092 42.404713 �130123.20 287.50 287.20
17 Right 6.425669 43.546667 �129844.33 278.88 278.75
18 Left 1.935205 4.123028 �129682.18 162.15 218.56
19 Right 6.491295 44.701125 �129573.90 108.27 51.81
20 Right 6.553864 45.843374 �129311.76 262.14 262.10
21 Right 6.610493 46.940327 �129057.95 253.81 253.75
22 Right 6.653100 47.902398 �128812.82 245.13 245.14
23 Left 2.154131 5.135558 �128728.19 84.63 128.31
24 Right 6.680300 48.707079 �128576.71 151.48 107.92
25 Right 6.649869 48.873334 �128351.63 225.08 225.51
26 Right 6.214292 44.670160 �128145.68 205.95 208.62
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EF, GK, and H %H states of 1Sg. The energy barriers: DELeft =
EHill � ELeft and DERight = EHill � ERight from the left- and right-
local minima and the numbers of the vibrational states lower
than the hill are also given in the table, which were 8, 2, and 27
for the EF, GK, and H %H states, respectively. The assignments
of these vibrational states are also given in Table 3. Fig. 14
illustrates the energy positions of the vibrational levels asso-
ciated with the states: (a) EF, (b) GK, and (c) H %H, respectively,
on their PECs.

For the EF state, the left- and right wells are similar to each
other, but the right well is a little bit broad. The numbers of
states assigned to the left well were 4 and 5 to the right. The left
and right minima locate at R = 1.016 and 2.330 Å, respectively,
and the position of the hill was 1.646 Å with the barriers:
DELeft = 6290.14 cm�1 and DERight = 5572.46 cm�1. The v = 0
energy level lies below the v = 1 energy level by only 177.32 cm�1,
and their hRi values lie at 1.047 Å for v = 0 and 2.353 Å for v = 1,
as given in Table 3. We can clearly assign the v = 0 state to the
left well (E state) and the v = 1 state to the right well (F state). The
v = 2 level can be assigned to the right well since hRi = 2.413 Å.
The v = 3 and v = 4 levels again lie close to each other with the
splitting of only 182.45 cm�1, and they are assigned to the
left and the right wells, respectively. The v = 5 level is assigned
to the right well. The v = 6 energy level is calculated to be
E = �152027.49 cm�1 = �0.692688 a.u., which is near the local
maximum energy value of the E1 (EF) 1Sg potential curve,
E = �0.690747 a.u. at R = 3.0 a.u., and the hRi value of the
v = 6 state is 1.514 Å. This implies that the v = 6 state is
delocalized over the two wells. The v = 7 level is somewhat
localized again in the right well since the hRi values are about
2.305 Å. All of the vibrational states above v = 8 are delocalized
and they are mixed states of E and F states since their absolute
energies are higher than the top of the hill. If the double wells
are completely symmetric, then two vibrational states should
always become degenerate. In the present case, since the E and
F shapes are similar to each other, the states: v = 0 and 1 and

Table 3 (continued )

State v Assignmentb

FC method Ref. (theoretical) Ref. (experimental)

hRic hR2ic Ev
d Ev � Ev�1 Ev � Ev�1 Ev � Ev�1

27 4.060663 22.960315 �128020.74 124.95 141.54
28 5.996018 43.795645 �127898.80 121.93 110.60
29 6.312263 47.414667 �127718.73 180.07 176.89
30 6.213519 46.940387 �127545.00 173.73 174.94

a The complete data for all the calculated vibrational levels associated with all the PECs of the ground and excited states of the 1Sg, 1Su, 3Sg, and
3Su symmetries are listed in Tables S10–S13 of the ESI. b Assignments of the vibrational states for the double-well potentials. c The expectation
value of the nuclear distance R in Å and that of the squared value. d Absolute energies in cm�1. e Ref. 31. f Ref. 39. g Ref. 22. h Ref. 45.

Table 4 The positions of the minima (left and right) and the hill of the double wells of EF, GK, and H %H states of 1Sg and the energy barriers: DELeft = EHill � ELeft

and DERight = EHill � ERight from the left and right minima are summarized. The number of vibrational states lower than the hill is also summarized

1Sg Rmin(left) (Å) Rmax(hill) (Å) Rmin(right) (Å) DELeft: EHill � ELeft (cm�1) DERight: EHill � ERight (cm�1)
No. of vibrational states
lower than the hill

EF 1.016 1.646 2.330 6290.14 5572.46 8
GK 1.080 1.446 1.736 1977.47 2519.57 2
H %H 1.050 3.211 6.152 15391.76 5682.20 27

Fig. 14 Vibrational energy levels (horizontal lines) associated with the
double-well potential energy curves for the (a) EF, (b) GK, and (c) H %H
states of the 1Sg symmetry.
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v = 3 and 4 nearly degenerate only with the energy gaps: 177.32
and 182.45 cm�1, respectively. Therefore, only with small thermal
effects, the vibrational levels would shift between the left and the
right by the tunneling process.

For the GK state, the energy barriers are quite small, i.e.
DELeft = 1977.47 cm�1 and DERight = 2519.57 cm�1, compared
with those of the EF and H %H. The number of the vibrational
states below the hill, therefore, was only 2. The lowest one: v = 0
is assigned to the right well and the v = 1 state is assigned to the
left well with the energy gap: 456.76 cm�1. Thus, each well has
one vibrational state.

For the H %H state, the shape of the left well is sharp but that
of the right side is very broad since it is on the ionic curve
proportional to 1/R. A lot of vibrational states belonging to the
right well were obtained. From v = 0 to 5, all their vibrational
levels are assigned to the left well. The lowest vibrational state
assigned to the right is v = 6. In the vibrational states of v = 0 to
27, the number of states belonging to the right well is 17 and, in
contrast, only 4 to the left. The energy intervals between
the neighboring two vibrational states belonging to the right
well were calculated around 800 cm�1 (maximum) to 200 cm�1

(minimum). The energy gaps between v = 14 and 15 and v = 23
and 24 were incidentally small: 98.1 and 84.6 cm�1, respectively.
However, the coupling of these vibrational states would be
small because the positions of the left and right minima:
R = 1.050 and 6.152 Å were apart and their energy barriers:
DELeft = 15391.76 cm�1 and DERight = 5682.20 cm�1 were also
very different from each other.

Similar discussions can be accomplished for the vibrational
levels for the other double-well PECs as seen in the ESI.† In the
BO approximation, however, the vibrational analysis of a PEC
having a complicated shape would highly depend on how to
analyze the PEC, i.e. fitting function, the number of discrete
points to fit the analytical curve, etc. Moreover, non-adiabatic
effects become significant for these states. In such a case, we
will need a non-BO treatment to obtain accurate vibrational
states.11,12,46

VI. Concluding remarks

We have systematically solved the Schrödinger equation of
hydrogen molecules for the ground and excited states of the
1Sg, 1Su, 3Sg, and 3Su symmetries and obtained their accurate
potential energy curves with the free complement variational
method within the BO approximation. The calculated energies
were very accurate, considered as essentially exact solutions,
and guaranteed to be the upper bound to the exact energies due
to the variational principle. We could describe the very small
van der Waals minima (B5 cm�1 depth) in the excited states
very accurately. All the PECs were calculated in a common
comprehensive manner according to the FC theory: the energies
and wave functions of the ground and excited states were obtained
simultaneously from the same secular equations. It guarantees
that the wave functions of different states are orthogonal and
Hamiltonian orthogonal to each other as shown by eqn (2) and (3).

Therefore, even the complicated PECs that relate to the ionic
contribution were also accurately described. To describe the
dissociation limits accurately, it is better to introduce the ionic
term and higher Rydberg functions corresponding to 2pz, 3pz,
etc. orbitals of hydrogen atoms from the initial function. Since
it may cause computational difficulty for integrations near
dissociations, we did not introduce them to the present case.
However, in the upcoming paper40 by the FC-LSE method where
no integration problem occurs, these functions are introduced
as the initial function and the PECs will be well described up to
dissociation.

Based on the essentially-exact PECs by the FC theory, we
also numerically solved the vibrational Schrödinger equations
comprehensively for all the electronic ground and excited states
calculated in this paper. In particular, we discussed the vibrational
states on the double-well PECs of EF, GK, and H %H states of 1Sg. The
double-well potential of the H %H state originates from the mixing of
the ionic contributions. The present data and analysis should be
valuable for experimental studies and useful as accurate reference
data, in particular for future investigations in astronomical studies.

However, the non-adiabatic effects would often become
significant especially for higher electronic excited states, and
vibrational analysis often depends on computational conditions
especially for the PECs having complicated or broad shapes. For
these states, the non-BO approach is interesting11,12,46 and will
be performed in the near future.
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