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Solving the Schrödinger equation of the hydrogen
molecule with the free-complement variational
theory: essentially exact potential curves and
vibrational levels of the ground and excited states
of P symmetry†

Yusaku I. Kurokawa, * Hiroyuki Nakashima and Hiroshi Nakatsuji *

Following a previous study of the S states (Phys. Chem. Chem. Phys., 2019, 21, 6327), we solved the

Schrödinger equation (SE) of the hydrogen molecule in the ground and excited P states using the free

complement (FC) variational method. This method is a general method to solve the SE: the energies

obtained are highly accurate and the potential energy curves dissociate correctly. The calculated

energies are upper bound to the exact energies, and the wave functions at any distance are always

orthogonal and Hamiltonian-orthogonal to those in the different states calculated in this study. Using

the essentially exact potential energy curves, the vibrational energy levels of each state were calculated

by solving the vibrational Schrödinger equation.

I. Introduction

A general method for solving the Schrödinger equation (SE) is
important because quantum chemistry is governed by the SE.
One author proposed the free complement (FC) theory1–5 for
solving the SE. The high potentiality of this theory was demon-
strated by solving the SE of helium atoms and hydrogen
molecules in the ground states.2,3 The early-stage results were
summarized in a review article.4 Recently, this theory has
been combined with the chemical formula theory (CFT)6,7

and applied to the studies of the ground and highly excited
states of Li and Be atoms.8

In a previous study, which is referred to as Paper I,9 we
studied the potential energy curves (PECs) of the hydrogen
molecule in the ground and excited states of the S symmetry
using the FC-variation principle (FC-VP) method. There, we
studied the 1Sg, 1Su, 3Sg, and 3Su states. In this study, we study,
using the same method, the highly accurate PECs of the
hydrogen molecule of the P symmetry in the ground and
excited states: the 1Pg, 1Pu, 3Pg, and 3Pu states are studied
by the FC variational method based on the analytical integral
evaluations. Thereafter, we solve the vibrational SE of each state
using the obtained theoretical PECs.

The study of the accurate wave functions of hydrogen
molecules has a long history. In 1933, James and Coolidge (JC)
succeeded in obtaining very accurate energy and equilibrium
geometry of the hydrogen molecule.10 In 1965, Kolos and
Wolniewicz (KW) reported the accurate methods that were applied
to various states of different spin and spatial symmetries.11

However, their wave functions were not guaranteed to satisfy
the orthogonality and Hamiltonian-orthogonality relationships,
which are written as

Ĥ(R)cn(R) = En(R)cn(R), (1)

hcn(R)|cm(R)i = dmn, (2)

and

hcn(R)|Ĥ(R)|cm(R)i = En(R)dmn, (3)

where cn is the wave function of the state n, En is its energy,
and R the inter-hydrogen distance. These are the necessary
conditions for the wave functions to be the exact solutions of
the SE. The FC-VP wave functions satisfy these orthogonality
and Hamiltonian-orthogonality conditions.1–5

Recently we have also calculated the PECs of the hydrogen
molecule in various symmetries by the FC-LSE method,12 which
is based on a sampling method and is not variational. Many
other studies are carried out on the PECs of the hydrogen
molecule. Good reviews are found in ref. 13 including the
theoretical studies on the PECs.
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II. Free complement wave functions
A. Free complement theory

The FC theory was derived from the scaled SE (SSE) that was
introduced to overcome the divergence difficulty of the original
SE.2,3 It was explained in many papers published thereafter,4,6,7

and also in Paper I.9 So, here, we only briefly explain the
method. The FC method starts from choosing the initial wave
function c0, which is arbitrary but has a large overlap with the
target states: the choice of c0 affects the speed of the conver-
gence to the exact solutions of the SE. In this respect, we
recently proposed the chemical formula (CF) theory for con-
structing a good (set of) initial wave function(s) c0.6,7 In this
study we chose them only intuitively as explained in Section B.
Starting from c0, the solution of the SE is obtained by the
recursion formula called the simplest iterative complement
interaction (SICI) formula2,3 as,

cn+1 = [1 + Cng(H � En)]cn (n = 0,1,2,. . .). (4)

By increasing the order n of the SICI, we can obtain the exact
solutions of the SE without meeting the divergence difficulty of
the integrals. In eqn (4), Cn is a variational parameter, En is the
energy of cn, and H and g are the Hamiltonian and scaling
functions that will be explained in Section C for the hydrogen
molecule. The speed of the converging of eqn (4) is much
accelerated if we rewrite eqn (4) by picking up linearly inde-
pendent and non-diverging functions included in the right
hand side of eqn (4) as {f(n)

i |i = 1, 2,. . .,M(n)}, where f(n)
i is

called the complement functions (cfs) at order n with M(n) being
the number of the cfs at order n. Then, we can rewrite eqn (4) by
a linear combination of the cfs, which defines the FC wave
function at order n as

cn ¼
XM nð Þ

i

c
nð Þ
i f nð Þ

i ; (5)

where c(n)
i is the variational parameter determined by solving

the variational secular equation, giving the total energy En at
the same time.

B. Initial wave function

The initial function c0 of the FC theory is chosen, considering
the physical nature of the solution and the converging speed.
In the present study, we employ

c0 ¼ Â exp �r1A � r2Bð Þ þ exp �r1A �
1

2
r2B

� �
1� r2Bð Þ

�

þ exp �r1A �
1

3
r2B

� �
1� r2B þ r22B
� ��

X2 þ Y2Ið ÞL;
(6)

as the initial wave function. riA represents the distance between
electron i and nucleus A. Xi and Yi are related to the x and y
coordinates, respectively, perpendicular to the molecular axis,
Zi of electron i, as will be mentioned in Section C. L takes 1 for
the P states, Â is the symmetry-adaptation operator, which will
be mentioned in Section D, and I is the imaginary unit. In Paper
I for the S state, we employed the same function as eqn (6) but

L took zero.9 The second and third terms in the bracket in
eqn (6) ensured that the wave function correctly dissociates to
H(1s)–H(n = 2), and H(1s)–H(n = 3) states, respectively. The wave
functions which dissociate to H(1s)–H(n = 4) and higher states
are not included in the initial wave function. Thus the calcu-
lated results by the present method are highly reliable for up to
the H(1s)–H(n = 3) states, but less reliable for the higher states
dissociating to H(1s)–H(n 4 4) states. There is no state to
dissociate to the H(1s)–H(1s) state in the P symmetry, but we
included the exp(�r1A � r2B) term in the initial wave function to
make the present calculations comparable with the previous
one.9 We fixed the orbital exponents in eqn (6) in the whole
regions of the PECs. This has three merits: the first is that the
obtained PECs dissociate into the correct states, the second is
that the PECs are smooth because we do not perform the non-
linear optimization in the exponential functions, and the last
merit is that we can save computational time. The demerit of
the fixed exponents is that the description of the wave function
in the bonding region is worse than that of the dissociating
regions. This demerit is recovered by the FC method automa-
tically as the FC order increases. These merits and demerits
also apply to the previous calculations of the S states.9

C. Hamiltonian and complement functions in the elliptic
coordinates

The elliptic coordinates were employed in the actual calculations.
In these coordinates, variables are defined as li � (riA + riB)/R
and mi � (riA + riB)/R, where R is the distance between nuclei A
and B, and ji, is the azimuthal angle around the molecular axis
(i = 1 and 2). We further use supplementary variables, Xi, Yi, and r,
which are defined as

Xi � li2 � 1
� �

1� mi
2

� �� 	1
2cosji (7)

Yi � li2 � 1
� �

1� mi
2

� �� 	1
2sinji (8)

and

r � 2

R
r12 (9)

The Xi and Yi are related to the Cartesian coordinates of electron i

as Xi ¼
2

R
xi and Yi �

2

R
yi, respectively. These variables are useful

to represent the P and higher-angular momentum states.
Using the elliptic coordinates, the initial wave function (6) is

written in a general form as

c0 ¼
XM 0ð Þ

i

CiÂ exp �a1il1 � a2il2 � b1im1 � b2im2ð Þ

� lmi
1 lni2 m

ji
1m

ki
2 X2 þ Y2Ið ÞL:

(10)

The exponents a’s and b’s in eqn (10) change as the inter-
nuclear distance changes in the elliptic coordinates, but they
are essentially constants because they are related to the expo-
nents kept constant in eqn (6).
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The kinetic operator and the potential in the Hamiltonian
are written as

V̂ ¼ 2

R
� l1
l12 � m12

� l2
l22 � m22

þ 1

r
þ 1

2

� �
(11)

and

ri
2 ¼ 4

R2 li2 � mi2ð Þ

� @

@li
li2 � 1
� � @

@li
þ @

@mi
1� mi

2
� � @

@mi
þ 1

li2 � 1
þ 1

1� mi2

� �
@2

@ji
2

� �
;

(12)

respectively. The g function we employ in this study is

g ¼ 1þ l12 � m1
2

l1
þ l22 � m2

2

l2
þ r: (13)

When we utilize the kinetic operator, potential operator and the
g function on c0 according to the FC scheme,2,3,5 the function
obtained is written as a sum of the following functions

fi¼ Âexp �a1il1�a2il2�b1im1�b2im2ð Þlmi
1 lni2 m

ji
1m

ki
2 r

pi X2þY2Ið ÞL:
(14)

This is the general expression of the complement function (cf).
In the actual calculation, we neglect the Y2I terms from the cf,
because the X2 and Y2I terms are orthogonal and that they have
always the same coefficients. Note that the j, k, and p (the power
of m1, m2, and r, respectively) take zero and positive integers and
m and n (the power of l1, and l2, respectively) take negative,
zero, and positive integers in the cfs. The cfs with negative
powers of l1 and/or l2 have not been used in other studies.10,11

D. Symmetry adaptation

The symmetry adaptation operator, Â, in eqn (6) is defined as
Â = P̂spinP̂space, where

P̂spin � 1þ P̂12 for singletð Þ

� 1� P̂12 for tripletð Þ:
(15)

P̂space � 1þ P̂AB for geradeð Þ

� 1� P̂AB for ungeradeð Þ;
(16)

and P̂12 interchanges the electrons 1 and 2 as P̂12 = {l1 2 l2,
m1 2 m2, X1 2 X2, Y1 2 Y2} and P̂AB interchanges the nuclei A
and B as P̂AB = {m1 2 �m1, m2 2 �m2, X1 2 �X1, X2 2 �X2,
Y1 2 �Y1, Y2 2 �Y2}. The L takes 1 for the P states, as
mentioned before. Combinatorial use of these operators can
express 1Pg, 1Pu, 3Pg, and 3Pu states from the common initial
wave function.

E. Integral evaluation

To determine the wave function of each state, we need to
construct the Hamiltonian matrix H and overlap matrix S
defined by Hij � hfi|H|fji and Sij � hfi|fji, respectively, with
respect to the cfs. The integrands, in both cases, can be a linear

combination of the following basic integrals:

I ¼
ð
exp �a1l1 � a2l2 � b1m1 � b2m2ð Þ

� lm1 l
n
2m

j
1m

k
2r

pX1
L1X2

L2dl1dl2dm1dm2dj1dj2:

(17)

where the j, k, and p take zero or positive integers, m and n take
negative, zero, or positive integers, and L1 and L2 take 0, 1, or 2;
the integration range of each variable is 1 r li r N, �1 r
mi r 1, and 0 r ji r 2p (i = 1, 2), and the Jacobian

J � R6

64
l12 � m1

2
� �

l22 � m2
2

� �
is already considered and expanded

in the integrands. The X1
L1X2

L2 term in eqn (17) is new,
appearing in the calculations of the P state.

To evaluate eqn (17), the X1 and X2 are replaced for li, mi, and
ji using eqn (7). The rp is reduced to r0 when p is even or r�1

when p is odd using the relationship

r2 ¼ l12 þ l22 þ m1
2 þ m2

2 � 2l1l2m1m2

� 2 l12 � 1
� �

l22 � 1
� �

1� m1
2

� �
1� m2

2
� �� 	1

2cos j1 � j2ð Þ:
(18)

The r�1 can be expanded using Neuman’s expansion,

r�1¼
X1
t¼0

X1
N¼0

DN
t P

N
t

l1
l2

� �
QN

t
l2
l1

� �
PN
t m1ð ÞPN

t m2ð Þcos N j1�j2ð Þ½ �;

(19)

where Dt
0 = 2t + 1, Dt

N = 2(2t + 1)[(t � N)!/(t + N)!]2 (N 4 0),
P and Q are the associated Legendre functions of the first and
second kinds, respectively, and we take the upper variables
when l2 Z l1 and the lower ones otherwise. Then, the inte-
grand in eqn (17) is decomposed into a sum of the products of
the l1 and l2 part, m1 part, m2 part, and j1 and j2 part. We can
integrate over these variables separately. In the t summation in
eqn (19), we truncate it when the summed value reaches more
than 60-digits accuracy. In integrating the l2 part, we need to
evaluate the integrals

I 0 ¼
ð1
l2¼1

exp �al2ð ÞEi �bl2ð Þlm2

I 00 ¼
ð1
l2¼1

exp �al2ð ÞEi �bl2ð Þlm2 ln
l2 þ 1

l2 � 1

� �
:

(20)

with negative m. These integrations including the Ei functions
were performed using Maple program.14 The other calculations
to construct the overlap and Hamiltonian matrices were per-
formed using the GMP (GNU multiple precision arithmetic)
library.15

III. Convergence of the FC wave
functions and potential curves

In Table 1, the number of the cfs M(n) generated at the orders
n = 0, 1, 2, and 3 is shown for the 1Pg, 1Pu, 3Pg, and 3Pu

symmetries. A set of cfs at order n always includes those at
lower orders m (m o n). In the calculations for the P symmetry,
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the number of the cfs was smaller than that for the S
symmetry.9 This is because the terms representing the H(1s)–
H(1s), H(1s)–H(2s), and H(1s)–H(3s) states at the dissociations
vanish in the initial wave function of eqn (6) for the P
symmetry. The remaining three states, i.e., H(1s)–H(2p),
H(1s)–H(3p), and H(1s)–H(3d) states, are included in the initial
wave function. In other words, the PECs are guaranteed to be
exact only for these states at the dissociation limit.

We calculated the FC energies and wave functions, chan-
ging the inter-nuclear distance R at order n = 0, 1, 2, and 3.
We refer to the lowest eigenvalue in each symmetry as E0, and
second, third, . . . solutions as E1, E2, . . .. Fig. 1 shows the PECs
of the 1Pu state at n = 0, 1, 2, and 3, and their detailed values
are shown in Table 2 at the selected inter-nuclear distances. As
the order n increases, the energies approached from above the
reference values cited at the bottom of each distance in
Table 2, and some energy values at n = 3 were lower than
them; for example, the energy of the first excited state (E1(D)
state) at R = 1.4 a.u. was calculated as E = �0.623745005 a.u.

by the FC method, while E = �0.623586924 a.u. by Wolniewicz
et al.17

It is observed that the converging speed becomes faster as
the inter-nuclear distance becomes longer in both the ground
and excited states; for example in the E0(C) state, the energy
difference between orders n = 2 and 3 is DE = 0.000117399 a.u. at
R = 0.8 a.u., while it is much decreased to DE = 0.000001281 a.u.
at R = 10.0 a.u. This was also observed in the calculation of the S
symmetry. This is because our initial wave function (order n = 0)
is already exact when the inter-nuclear distance is infinity, as
explained in Section II-B.

In the following discussion, we focus on the order n = 3
results, if not specially mentioned.

IV. Potential energy curves

In Fig. 2–5, the PECs of the six lowest states in the P symmetry
calculated by the FC method at order n = 3 are plotted. All the
calculated PECs are shown together in Fig. 6. The detailed
values are given in Tables S1–S4 in the ESI.†

The lowest curves in Fig. 2–5 converge to the H(1s)–H(2p)
state (E = �0.625 a.u.), and the second and third lowest curves
are converging to the H(1s)–H(3p) and H(1s)–H(3d) states (E =
�0.555555. . . a.u.). In the bonding regions, the FC energies are
lower than the literature values at some points; for example, in
the 3Pu state at R = 2.0 a.u., the FC energies are E1 =
�0.660716722 and E2 = �0.634903530 a.u., while Staszewska

Table 1 The number of generated complement functions (cfs)

State

Order

0 1 2 3

1Pg 4 29 213 1050
1Pu 4 29 213 1050
3Pg 4 29 213 1044
3Pu 4 29 213 1044

Fig. 1 Convergence of the potential energy curves of the hydrogen molecule in the 1Pu state calculated at order n = 0, 1, 2, and 3 of the FC-VP method.
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Table 2 The energies of the hydrogen molecule at selected inter-nuclear distances in the 1Pu state calculated with the FC-VP method at order n = 0, 1,
2, and 3a

R (a.u.) Order E0(C) E1(D) E2(V) E3(D0) E4 E5

0.8 0 �0.207503679 �0.145335591 �0.080719121 0.778430492
1 �0.392128773 �0.324536086 �0.274772586 �0.124542597 �0.097363706 0.113727435
2 �0.426025923 �0.358835752 �0.334353709 �0.329843374 �0.307715889 �0.269367589
3 �0.426143322 �0.358968050 �0.335703794 �0.335264576 �0.323696706 �0.321483070
Ref.b �0.426144006 �0.358968509 �0.335762214 �0.335271730

1.4 0 �0.584861085 �0.523660320 �0.456409759 0.052670701
1 �0.680101765 �0.614947775 �0.568638938 �0.498906325 �0.473827142 �0.282861572
2 �0.688787663 �0.623725119 �0.600009590 �0.596823350 �0.576342599 �0.546231212
3 �0.688818370 �0.623745005 �0.601448689 �0.600560621 �0.589376238 �0.587572335
Ref.b �0.688664532 �0.623586924 �0.601320038 �0.600402500

2.0 0 �0.665039905 �0.604620553 �0.533960368 �0.236271942
1 �0.715534563 �0.652632771 �0.611179125 �0.577672517 �0.551575472 �0.386084631
2 �0.718225797 �0.655320254 �0.632220183 �0.630646814 �0.610834079 �0.592339138
3 �0.718242144 �0.655328191 �0.634036945 �0.632669650 �0.621700378 �0.620612402
Ref.b �0.718242330 �0.655328261 �0.634058929 �0.632670214

3.0 0 �0.668337663 �0.608446301 �0.534785983 �0.433353887
1 �0.688312018 �0.628260028 �0.594184602 �0.580765258 �0.550374839 �0.439898207
2 �0.689260931 �0.629092845 �0.607262464 �0.606739186 �0.588441485 �0.579951590
3 �0.689273682 �0.629098846 �0.609246171 �0.607110340 �0.596612330 �0.596402470
Ref.b �0.689273777 �0.629098883 �0.609254852 �0.607111045

6.0 0 �0.626515764 �0.561903716 �0.544838675 �0.498919184
1 �0.628050005 �0.564792428 �0.553120752 �0.538258760 �0.523108548 �0.518326923
2 �0.628438756 �0.564982052 �0.554618297 �0.541928061 �0.537843221 �0.527924001
3 �0.628452760 �0.564986575 �0.554668326 �0.542109754 �0.539119219 �0.531213377
Ref.b �0.628452782 �0.564986581 �0.554668394 �0.542110459

10.0 0 �0.624473909 �0.555597166 �0.552946203 �0.495945798
1 �0.624547121 �0.555874695 �0.555521393 �0.530690432 �0.527735278 �0.522192678
2 �0.624575449 �0.556002910 �0.555631706 �0.531700800 �0.531466448 �0.531316166
3 �0.624576730 �0.556015017 �0.555635886 �0.531729411 �0.531592079 �0.531359626
Ref.b �0.624576730 �0.556014966 �0.555635880 �0.531729509

a The complete data at order n = 3 for the 1Pg, 1Pu, 3Pg, and 3Pu symmetries are listed in Tables S1–S4 in the ESI. b Ref. 16.

Fig. 2 Potential energy curves of the hydrogen molecule in the 1Pg state
calculated by the FC-VP method at order n = 3.

Fig. 3 Potential energy curves of the hydrogen molecule in the 1Pu state
calculated by the FC-VP method at order n = 3.
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and Wolniewicz’s energies are E1 = �0.660716627 and
E2 = �0.634901713 a.u.16 In the dissociating region, the FC
energies agree with the Wolniewicz and Staszewska’s values to
more than 9 digits; for example, the energy differences between
them at R = 20.0 a.u. are DE = 8 � 10�11, �1.4 � 10�9, and
2 � 10�10 a.u. for the E0(C), E1(D), and E2(V) states, respectively,
in the 1Pu symmetry.16 In short inter-nuclear regions, where
the PEC is repulsive and steep, the FC energies seem to have
more than 4-digit accuracies; for example at the worst case, the
energy of the E2(V) state at R = 0.8 a.u. is E = �0.335704 a.u.,
while Wolniewicz and Staszewska reported E = �0.335762 a.u.
In the previous calculation of the E4 state in the 1Su symmetry,
the FC energy has only 3-digit accuracy compared with the best

literature value, even though the number of cfs in the S
calculation is more than that in the present P calculation. This
is because, we suppose, the best literature values of the P
calculation are not so accurate compared with that of S
calculation. Our calculations are not so accurate in the short
region, because no special wave functions are included in the
initial wave function to describe the short region. To study very
short inter-nuclear regions, we need to increase the order of the
FC wave function.

The fourth, fifth, and sixth lowest curves in Fig. 2–5, which
must dissociate into the H(1s)–H(n = 4) states, are not guar-
anteed to dissociate into the correct energy under the present
conditions because we do not include the appropriate exponents
in the initial wave function. However, the FC method produces
qualitatively correct PECs for those states: it is observed that the
fourth, fifth, and sixth lowest curves almost converge to the
correct energy (E = �0.531250 a.u.) to more than 3 digits at
R = 20.0 a.u. in all the P calculations. For example, in the 1Pg

state, the fourth, fifth, and sixth lowest energies are E = �0.531320,
�0.531266, and �0.531261 a.u., respectively, at R = 20.0 a.u. In the
bonding and short regions in the fourth states the FC energies have
more than 3-digit accuracies; for example in the 1Pu state,
E = �0.335265, �0.632670, and �0.607110 a.u. for R = 0.8, 2.0
and 3.0 a.u., respectively, while Wolniewicz and Staszewska
reported E = �0.335272, �0.632670, and �0.607111 a.u.,
respectively.16 For the sixth states of the 1Pg, 1Pu, and 3Pg

symmetries that dissociate to H(1s)–H(n = 4), small wiggles are
found in the regions between 3 and 6 a.u. The energies of these
states are less reliable in the present calculation because the
appropriate initial wave functions corresponding to these states
were not included in the calculations as explained in Section II-B.
Comparing the FC energies of the sixth states of 1Pu symmetry at
the order 3 of the FC calculations with those at order 2, the

Fig. 4 Potential energy curves of the hydrogen molecule in the 3Pg state
calculated by the FC-VP method at order n = 3.

Fig. 5 Potential energy curves of the hydrogen molecule in the 3Pu state
calculated by the FC-VP method at order n = 3.

Fig. 6 Potential curves of all the P states calculated by the FC-VP method
at order n = 3. The black, blue, red, and green curves are for the 1Pg, 1Pu,
3Pg, and 3Pu symmetries, respectively.
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energies seem not to converge yet. In order to calculate these states
more accurately, we need to include the appropriate wave function
in the initial wave function which dissociate into the H(1s)–H(n = 4)
states.

In the S states, deep double-well type potential curves are
found; for example, in the EF 1Sg, GK 1Sg, H %H 1Sg, and B00 %B 1Su

states.9,13 In the P states, on the other hand, no deep double-
well type potential curves are found in the lowest six states of
each symmetry. Very shallow minimums due to the van der
Waals interaction were found at 8.2 a.u. in the I 1Pg PEC with
162.5 cm�1 depth, at 6.96 a.u. in the k 3Pu PEC with 395.0 cm�1

depth, and at about 12 a.u. in the w 3Pg PEC with 7.5 cm�1

depth. In the S states, a repulsive PEC was found in the b 3Su

state and no vibrational state exists there, while no repulsive
PEC was found in the six lowest electronic states of P states.
This is because two electrons in the six lowest P states occupy
the s and p orbitals which do not exhibit the anti-bonding
interaction.

V. Vibrational energy levels

We calculated the vibrational energy levels of all the calculated
electronic states in the same way as the previous paper,9 using
the Level 8 program,17 which can solve the radial Schrödinger
equation for bound and quasi-bound levels. The calculated
vibrational energy levels Ev, the expectation value of the nuclear
distances hRi, and those of the squared values hR2i associated
with the calculated potential energy curves are summarized in
Table 3 for the E0(C) 1Pu state. The vibrational energy splitting
(Ev � Ev�1) of the E0(C) 1Pu state calculated by our method has
more than 3-digit accuracies compared with the experimental
value, as shown in Table 3. In the study by Kolos and
Wolniewicz,18 ten vibrational levels were calculated for the
E0(C)1Pu states, while we obtained 13 vibrational levels with
the FC method. Note that we do not include the non-adiabatic
effects to calculate the vibrational levels. To study high

vibrational levels, non-adiabatic effects become important.
In such cases, a non-BO treatment will become necessary to
obtain accurate energy levels.20

The complete data for all the calculated vibrational levels
associated with all the PECs of the ground and excited states
of the 1Pg, 1Pu, 3Pg, and 3Pu symmetries are listed in
Tables S5–S8 of the ESI.† All the vibrational energy levels are
plotted in Fig. 7. In Fig. 8, all the ground and excited PECs in
the 1Pg, 1Pu, 3Pg, and 3Pu symmetries and vibrational levels
associated with each PEC are shown in different colors. These
results are helpful for further investigations in theoretical and
experimental studies in future.

VI. Summary

We have solved the Schrödinger equation of the hydrogen
molecule with high accuracy for the ground and excited states
of the P symmetries, 1Pg, 1Pu, 3Pg, and 3Pu states, using the
free complement (FC) variational method within the Born–
Oppenheimer approximation. We calculated the potential
energy curves (PECs) of the ground and excited states and the
associated vibrational energy levels. The calculations were
systematic within the FC-VP theory and all the PECs were
obtained in a common comprehensive manner. The ground
and excited energies and the wave functions were obtained
simultaneously as the eigenvalues and the eigenvectors of the
same secular equations, which guarantees that the wave func-
tions in different states are orthogonal and Hamiltonian ortho-
gonal to each other, and that the energies are the upper bound
to the exact energies.

The initial wave function we employed in the present study
is a sum of the products of the two exact wave functions of the
hydrogen atoms in the ground and/or excited states in the
dissociation limit, i.e., H(1s)–H(n = 2), and H(1s)–H(n = 3)
states, which ensures that the potential energy curves correctly
dissociate to these states. We did not include the wave function

Table 3 Vibrational energy levels Ev (cm�1) of the ground E0(C) 1Pu states calculated from the PECs of the FC-VP method at the order n = 3 and the
comparison with other studiesa

State v

FC method Ref. (theoretical)d Ref. (experimental)e

hRib hR2ib Ev
c Ev � Ev�1 Ev � Ev�1 Ev � Ev�1

1Pu 0 1.06675 1.15220 �156453.28
1 1.13572 1.33325 �154145.20 2308.08 2310.62 2308.67
2 1.20781 1.53332 �151971.81 2173.39 2176.04 2174.67
3 1.28385 1.75607 �149929.62 2042.19 2044.98 2043.14
4 1.36474 2.00603 �148016.24 1913.38 1915.03 1913.07
5 1.45140 2.28874 �146231.31 1784.94 1789.08 1783.87
6 1.54538 2.61250 �144576.13 1655.18 1655.81 1654.33
7 1.64904 2.99002 �143053.42 1522.70 1523.20 1522.56
8 1.76602 3.44107 �141667.79 1385.63 1386.41 1386.09
9 1.90217 3.99862 �140425.98 1241.81 1242.75 1242.27
10 2.06797 4.72343 �139338.68 1087.30 1088.54 1087.85
11 2.28274 5.73571 �138421.43 917.24
12 2.59278 7.34115 �137698.08 723.35
13 3.17123 10.80733 �137208.95 489.13

a The complete data for all the calculated vibrational levels associated with all the PECs of the ground and excited states of the 1Pg, 1Pu, 3Pg, and
3Pu symmetries are listed in Tables S5–S8 of the ESI. b The expectation value of the nuclear distance R in Å and that of the squared value.
c Absolute energies in cm�1. d Ref. 18. e Ref. 19.
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which dissociates to the H(1s)–H(n = 4) state in the initial wave
function. However, it was observed that the fourth, fifth, and
sixth lowest curves corresponding to the H(1s)–H(n = 4) state
almost converge to the correct energy to more than three digits
at R = 20.0 a.u. For the three lowest curves, it was observed that
the energy values have three- to six- digit accuracies in the

whole region of the PECs, and that the energies become more
accurate as the inter-nuclear distance increases.

Using the Born–Oppenheimer potential-energy curves calcu-
lated with the FC method, we calculated the vibrational wave
functions and the energy levels associated with all the poten-
tial curves of different symmetries. The energy values of the

Fig. 7 All vibrational energy levels associated with each PEC calculated by the FC-VP method at order n = 3. The numerical data are listed in Tables S5–S8
of the ESI.†
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potential curves and the associated vibrational levels are given
in the supplemental results. They should be useful as highly
accurate reference data. See ESI†for detailed energy values.
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