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ABSTRACT: The free complement (FC) theory for solving the scaled Schrödinger
equation (SSE) was applied to the Li atom for calculating the exact wave functions,
the energies, and the various properties of the ground doublet S and excited P states.
The SSE is equivalent to the Schrödinger equation (SE) but does not have the
divergence difficulty of the variational equation of the SE. Because the Li atom is a
three-electron system, the variational exact FC calculations for solving the SSE are
possible using the function g = 1 − exp(−γr) as the “correct” scaling function of the
SSE. The “reasonable” scaling function g = r was also used as comparative
calculations. We performed variational calculations to the order eight of the FC
theory and could obtain essentially exact solutions of the SSE or SE with the
“correct” g function of the FC theory. We report here the values of the exact energy,
spin density, electron density, and electron−nuclear and electron−electron cusp
values of the doublet S and P states. They agreed very well with the experimental
values and the best theoretical values presented by Drake and collaborators. This is a simple example that the exact theory gives the
exact solutions.

1. INTRODUCTION
For many years after the Schrödinger equation (SE)

H E( ) 0= (1)

was established, the SE was thought not to be soluble. This was a
big problem because the SE was believed to govern the world
composed of atoms and molecules: if we can obtain the exact
solutions of the SE, we can give exact predictions of the chemical
phenomena. A reason for this difficulty lay in the divergence
difficulty of the variational equation of the SE that occurs when
we try to solve the SE exactly by using the variational principle.
This divergence difficulty was solved in 2004 by one of the
authors by introducing the scaled Schrödinger equation (SSE)1

given by

g H E( ) 0= (2)

where the positive function g was called the “scaling function”,
which is the positive functions of the electron−nuclear and
electron−electron distances, riA and rij, respectively, like

g g r g r( ) ( )
i A

iA iA
i j

ij ij
,

= +
< (3)

where i, j denote electrons and A, B denote nuclei. A solution of
the SSE is written in a recursive formula as

C g H E1 ( )n n n n1 1= [ + ] (4)

which is called the simplest iterative complement interaction
(SICI) formula, where ψn and En represent the wave function
and energy at the order n and Cn is a variational parameter at

order n. This equation shows that the exact solution of the SSE
includes the scaling functions g, and therefore, the scaling
function is very important for solving the SSE or SE efficiently.1

In the above equations, H is the Hamiltonian of the atoms and
molecules and is given by
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where ZA is the nuclear charge of the atom A. We note that the
Coulombic potential between charged electrons and nuclei
diverges when the distances of the two charged particles become
zero, which is the origin of the divergence of the variational
equation of the SE associated with this Hamiltonian. In actual
calculations, the SICI formula given in eq 4 includes many
unnecessary terms. From the SICI formula, we select only the
independent analytical functions ϕI

(n) and their coefficients cI(n)

from the n-th order formula and obtain the form
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n( ) ( )=

(6)

which was referred to as the free ICI theory.1 This theory was
referred to later as the free complement (FC) theory because it is
composed of the free complete-element functions that span the
exact wave function. This theory produces wave functions that
converge to the exact solutions. Actually, in many applications,
we could get essentially exact solutions in the chemical kcal/mol
accuracy at n being 2−4.1−15

Based on the above formalism of the FC theory, the
construction of the exact quantum chemistry based on the
SSE had been performed.2−15 Because the theory is exact, its
solutions can become exact as n increases. From such examples,
we refer to the following two typical examples. One is the
superaccurate solutions of the He atom: we could calculate the
energy as accurate as over 40 digits from the decimal point.7,8

Other clear examples for molecules were the calculations of the
potential energy curves of the nine valence states of the Li2
molecule.13 The experimental and theoretical FC potential
curves were beautifully overlapped with each other on the
absolute energy diagrams to less than 1 kcal/mol over the
observed regions of the potential curves. These were the
prominent proofs of the correctness of the SSE and the FC
theory built on the SSE. From eqs 4 and 6, we note the important
role of the scaling function g in the course of building the exact
solutions of the SSE or SE. There were many other examples of
such agreements between our theoretical results and the
experiments.3,5,6,11,12

In this article, we apply the FC theory variationally to the
doublet ground 2S and excited 2P0 states of the Li atom by
solving the SSE for this atom. We calculate not only the energy
but also the properties like the electron density and the spin
density at the nucleus, the density at the electron−electron (e−
e) coalescence, and the electron−nuclear (e−n) and e−e cusp
values. The variational method is very powerful because it gives
the energy correct to the second order of the errors included in
the wave function. The variational application is straightforward
for the exact theory, but it becomes difficult for general atoms
and molecules because the integrals of the functions depending
on the interelectron distance rij become difficult as the number
of electrons increases. As a scaling function, we use the “correct-
type” g function14,15 given by

g r1 exp( )= (7)

This g function shows a correct behavior in all regions of r for
both riA and rij of the Hamiltonian given by eq 4. Moreover,
because of the simple Slater-type dependence of this function, it
is integrable for both riA and rij. For other correct-type functions,
g = r/(r + 1/γ), g = Ei(−γ(1)r − γ(2)) − Ei(−γ(2)), g = arctan(γr),
and g = tanh(γr), the integral evaluations for the two-electron
parts are not well established. For comparison with other g
functions, we also examined a “reasonable-type” ordinary g
function given by

g r= (8)

By comparing the SSE with the SE and examining the simplest
ICI formula given by eq 4, one may notice how important is the
scaling function in the exact theory for solving the SSE. For very
small atoms or molecules, a special choice depending on the
coordinate system may give the best choice.1,6,7 However, for
general atoms and molecules, the correct functions given above
show the proper behaviors at the limiting points at r = 0 and

infinity.14 We have investigated the qualities of the correct
scaling functions on the He atom for which all of them could be
examined with the variational principle.15 There, the perform-
ance of the exponential-type g function given by eq 7 was
reasonably good, although not the best. However, because this
function has a form similar to the 1s Slater orbital, it is integrable
in the case when general Slater functions are integrable. This is a
good feature of this g function.
For developing the exact theory, the variational theory is not

necessarily the best choice because the analytical integration
method is not yet fully developed for general atoms and
molecules.16 As can be clearly seen from eqs 1 and 2, the SE and
the SSE are the local equations that do not include integrals in the
formula. This suggests that local sampling would be a good way
of solving these equations. Thus, we have proposed the local
sampling method17 for solving the SE and developed it for actual
calculations for small atoms and molecules18 with the use of the
Metropolis sampling method.19 However, the Metropolis
sampling method introduced random fluctuation errors in the
calculations, which are unsuitable, particularly for studying the
continuous properties like the potential energy curves or
surfaces of molecules. Therefore, we have developed the direct-
or inverse-transformation sampling method20,21 for use in the
FC calculations of atoms andmolecules.22 Wewill use this direct
(or inverse-transformation) local sampling method for FC
calculations of the atoms andmolecules for which the variational
method is not directly applicable.
Li atom is the first system of the so-called many-electron

system. Therefore, many studies23−57 have been performed for
the purposes of examining many-electron theories with this
three-electron atom. First, the Hartree−Fock calculations of the
Li atom were performed by Wilson23 and Roothaan et al.24

James and Coolidge first employed the Hylleraas functions
including correlated rij terms for the Li atom25 in 1936 and
improved drastically the variational energy up to −7.476 075 au,
which is higher by ΔE = 1.246 kcal/mol from the now-known
exact energy −7.478 060 323 au.40,41 Thereafter, a variety of
studies were performed with various theoretical methods to
confirm their performances. They are the studies with the
ordinary configuration interaction (CI) theories,26,27 the
multiconfiguration self-consistent-field (MCSCF) theory,28

the Hylleraas29−42 and the Hylleraas-CI theories,43−48 the
explicitly correlated Gaussian (ECG) theory,49−55 the diffusion
Monte Carlo (DMC) theory,56−58 and our FC theory.12 Also,
highly accurate calculations with a huge number of basis
functions and/or freedoms had been reported to pursue the
lowest variational energies. For instance, highly accurate
variational calculations of the 2S ground states were reported
by Pachucki et al.37,38 and Drake et al.41 with large Hylleraas
basis functions.
The purpose of the present study is to give an extensive study

of this atom not only for the energy but also for many other
properties by using the correct scaling function given by eq 7 of
the SSE that is valid for both analytical solutions and variational
solutions differently from the original SE.

2. CONSTRUCTION OF THE FC WAVE FUNCTION FOR
THE 2S AND 2P0 STATES OF THE LI ATOM

The essentially exact wave functions for the 2S and 2P0 states are
prepared with the FC theory from the initial wave functions of
both states with the standard procedure.1−22 The initial wave
function for the 2S ground state was constructed using the two
doublet spin functions as follows
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0
( S)

0
( S:main)

0
( S:spin)2 2 2

= + (9)

with

A (1s1s )( ) (2s)0
( S:main)2

= [ · ] (10a)

A (1s1s 2s)(( ) 2 )0
( S:spin)2

= [ + ] (10b)

where A denotes the antisymmetrizer and α and β are the up-
spin and down-spin functions, respectively. ψ0

(d

2S:main) corre-
sponds to the main configuration of the 2S state, i.e., 1s orbital is
occupied by two electrons and 2s orbital by a single electron.
ψ0
(d

2S:spin) corresponds to the other doublet spin function, which
would be important for describing the spin correlations that are
important for the spin densities at the nucleus. Similarly, the
initial function for the 2P0 state is given by

0
( P )

0
( P :main)

0
( P :spin)2 0 2 0 2 0

= + (11)

with

A (1s1s )( ) (2p )x0
( P :main)2 0

= [ · ] (12a)

A (1s1s 2p )(( ) 2 )x0
( P :spin)2 0

= [ + ] (12b)

Each orbital was written by a simple Slater function as given by

N r

N r

N r r

N x r

N y r
N z r

1s exp( )

1s exp( )

2s exp( )

2p exp( ), 2p

exp( ), 2p
exp( )

x y

z

1s 1s

1s 1s

2s 2s

2p 2p

2p 2p

2p 2p

=

=

=

=
=
= (13)

where N represents the normalization factor. The so-called in−
out correlation was expressed with the double-ζ orbitals, which
were necessary to write up the two independent spin
eigenfunctions such as eqs 10a,b and 12a,b. For the orbital
exponents, we employed the Slater rule given many years ago,59

i.e., 1s: 2.7, 2s = 2p: 0.65, and the in−out exponents were split by
multiplying 1.15 and 0.85. Thus, (α1s, α1s′, α2s, α2p) = (3.105,
2.295, 0.65, 0.65).
The reader may think that it would be better to use more

sophisticated initial functions for faster convergence. In our
experience, however, the simpler is better for the initial function.
With simpler functions, the number of the functions produced
by the FC theory at first order becomes smaller and so on. In
other words, we want to use as many functions that are produced
by the FC theory as possible. Therefore, we use as simple
functions as possible for the initial guess functions. From our
experiences, FC theory produces the exact wave function even
from the minimal Slater functions; the labor of the calculations
and the physical insight are easier than using more complex
initial functions. The Gaussian functions are not adopted
because they do not satisfy the cusp condition, which is a
necessary condition of the exact wave function.
As the parameters e−n γiA and e−e γij of the correct scaling

function of eq 7, we used γiA = 0.3 that is obtained from the
exponent 2.7 of the 1s orbital and γij = 0.5 that corresponds to
the e−e cusp value for the 2S state. For the 2P0 state, we used γiA
= 0.1, which gave more accurate results than the case of 0.3.

3. VARIATIONAL CALCULATIONOF THE EXACTWAVE
FUNCTION OF THE LI ATOM USING THE
EXPONENTIAL-TYPE SCALING FUNCTION

We apply the variational integration method for the correct-type
scaling function of g = 1 − exp(−γr) of eq 7. The integral
calculations with the scaling function of g = r of eq 8 were already
discussed in ref12. A key step is the evaluation of the fully
exponential four-body integrands after expanding the 1 −
exp(−γr) terms, which are given by

f r r r r

r r

r r r1
64

d d d

e e e e e e

n n n m m m
n n n m

m m u r u r u r w r w r w r

, , , , , 3 1 2 3 23
1

13
1

12
1

1
1

2
1

3
1

1 2 3 1 2 3

1 2 3 1

2 3 1 23 2 13 3 12 1 1 2 2 3 3

=

· (14)

where n1, n2, n3,m1,m2, andm3 are the non-negative integers and
u1, u2, u3, w1, w2, and w3 are the exponents originating from the
Slater exponents in the initial functions and modified by the g
function given by eq 7. Several closed-form integral methods to
evaluate eq 14 had been provided in the literatures.37,39,60−63 In

Table 1. Results of the FC Variational Calculations of the 2S Ground State of the Li Atom up to Order n = 8 with a Correct-Type g
Function: giA = 1 − exp(−γiAriA), gij = 1 − exp(−γijrij)

na Mb energy (a.u.)
ΔE

(kcal/mol)c
electron density at the

nucleus ⟨δ(r0)⟩
spin density at the
nucleus ⟨δs(r0)⟩

density at the e−e
coalescence ⟨δ(rij)⟩

e−n cusp
value

e−e cusp
value

0 2 −7.434 881 080 5 27.095 13.150 479 0.258 407 0 0.774 129 −2.794 135 0.000 000
1 14 −7.476 142 895 3 1.203 13.691 021 0.220 236 8 0.564 551 −2.970 116 0.364 115
2 56 −7.477 797 775 8 0.165 13.821 545 0.228 731 4 0.555 471 −2.995 316 0.408 826
3 168 −7.478 035 484 3 0.015 6 13.836 472 0.230 221 7 0.547 449 −2.998 221 0.462 338
4 420 −7.478 055 755 4 0.002 87 13.841 503 0.231 061 8 0.545 956 −2.999 770 0.475 881
5 924 −7.478 059 327 7 0.000 625 13.842 368 0.231 193 7 0.544 977 −3.000 035 0.487 684
6 1848 −7.478 060 021 2 0.000 190 13.842 594 0.231 233 9 0.544 664 −3.000 097 0.492 333
7 3432 −7.478 060 227 2 0.000 060 7 13.842 639 0.231 245 1 0.544 484 −3.000 093 0.495 701
8 6006 −7.478 060 288 3 0.000 022 3 13.842 639 0.231 248 5 0.544 409 −3.000 073 0.497 344
exact by
Drake et
al.d

−7.478 060 323 9 13.842 543(53) 0.231 249 7 0.544 329 0(37)

experiment
or exact

0.231 3e −3.0 0.5
0.231 254 0f

aOrder of the FC theory. bNumber of cf’s (dimension). cEnergy differences from the estimated exact energy by ref 41. dBest nonrelativistic
variational calculation by ref 41. eExperimental value of ⟨δs(r0)⟩ from ref 66. fExperimental value of ⟨δs(r0)⟩ from ref 67.
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1987, Fromm and Hill60 proposed a sophisticated formula for
this integral, but it was mathematically difficult and not very
appropriate for numerical computations. On the other hand,
Harris formulated the recursive relations for eq 14 about non-
negative integers n and m with their initiated integrals.61−63

Especially, analytical closed-form evaluations of the basic
integral of the recursion were very useful.61 Pachucki et al.
also proposed similar recurrence schemes with their clever ideas
using the integration-by-parts method37,39 and their method can
also calculate the special cases that, for instance, some of the
exponents in eq 14 become zero. Their closed-form integration
formulas by both Harris et al. and Pachucki et al. enable
performing highly precise evaluations even beyond the ordinary
double precision. For the present FC variational calculations, we
implemented our own integration codes based on the above
integration formulas by Harris and/or Pachucki et al. We
programmed a Python code using the multiple-precision
arithmetic package, mpmath library,64 constructed with the
GNU multiprecision library,65 and the present FC variational

calculations were performed with setting the precision more
than 64 significant digits.

4. VARIATIONAL FC RESULTS FOR THE 2S AND 2P0
STATES OF THE LI ATOM

We give here the results of the variational calculations from the
initial stage to the order n = 8 of FC theory. Tables 1 and 2 show
the results for the 2S state obtained by using, respectively, the
“correct-type” scaling function given by eq 7 and the
“reasonable-type” scaling function given by eq 8 for both
electron−nuclear and electron−electron functions. Tables 3 and
4 show the results for the 2P0 state obtained by using,
respectively, the “correct-type” scaling function and the
“reasonable-type” scaling function for both electron−nuclear
and electron−electron functions. We calculated the energy, the
energy difference from the known exact energy, electron density
at the nucleus, spin density at the nucleus, the density at the e−e
coalescence, the electron−nucleus cusp value whose exact value
is minus the nuclear charge, −3, and the electron−electron cusp
value whose exact value is 0.5. We compare the present

Table 2. Results of the FC Variational Calculations of the 2S Ground State of the Li Atom up to Order n = 8 with a Reasonable-
Type g Function: giA = riA, gij = rij

na Mb energy (a.u.)

ΔE
(kcal/-
mol)c

electron density at the
nucleus ⟨δ(r0)⟩

spin density at the
nucleus ⟨δs(r0)⟩

density at the e−e
coalescence ⟨δ(rij)⟩

e−n cusp
value

e−e cusp
value

0 2 −7.434 881 080 5 27.095 13.150 479 0.258 407 0 0.774 129 −2.794 135 0.000 000
1 14 −7.472 488 497 8 3.496 13.650 184 0.228 824 4 0.600 355 −2.956 556 0.244 648
2 56 −7.476 301 982 2 1.103 13.791 818 0.224 950 9 0.567 050 −2.988 217 0.354 890
3 168 −7.477 386 694 9 0.423 13.823 365 0.226 939 1 0.555 398 −2.995 709 0.409 578
4 420 −7.477 804 396 1 0.161 13.834 477 0.228 801 6 0.550 358 −2.998 349 0.440 185
5 924 −7.477 965 977 4 0.059 2 13.838 993 0.230 074 4 0.547 870 −2.999 254 0.458 576
6 1848 −7.478 026 201 6 0.021 4 13.840 966 0.230 743 0 0.546 529 −2.999 617 0.470 279
7 3432 −7.478 047 884 7 0.007 81 13.841 778 0.231 022 3 0.545 755 −2.999 715 0.478 105
8 6006 −7.478 055 060 5 0.003 30 13.842 135 0.231 155 7 0.545 290 −2.999 758 0.483 418
exact by
Drake et
al.d

−7.478 060 323 9 13.842 543(53) 0.231 249 7 0.544 329 0(37)

experiment
or exact

0.231 3e −3.0 0.5
0.231 254 0f

aOrder of the FC theory. bNumber of cf’s (dimension). cEnergy differences from the estimated exact energy by ref 41. dBest nonrelativistic
variational calculation by ref 41. eExperimental value of ⟨δs(r0)⟩ from ref 66. fExperimental value of ⟨δs(r0)⟩ from ref 67.

Table 3. Results of the FC Variational Calculations of the 2P0 State of the Li Atom up to Order n = 8 with a Correct-Type g
Function: giA = 1 − exp(−γiAriA), gij = 1 − exp(−γijrij)

na Mb energy (a.u.)
ΔE

(kcal/mol)c
electron density at the

nucleus ⟨δ(r0)⟩
spin density at the
nucleus ⟨δs(r0)⟩

density at the e−e
coalescence ⟨δ(rij)⟩

e−n cusp
value

e−e cusp
value

0 2 −7.361 508 600 9 30.527 12.967 984 −0.039 996 6 0.758 165 −2.791 751 0.000 000
1 14 −7.405 191 053 2 3.116 13.462 464 −0.014 825 1 0.553 169 −2.954 334 0.358 584
2 56 −7.409 606 649 8 0.345 13.645 459 −0.018 078 6 0.544 396 −2.991 340 0.405 976
3 168 −7.410 054 768 1 0.063 9 13.666 427 −0.017 125 1 0.535 873 −2.997 192 0.457 828
4 420 −7.410 145 171 1 0.007 13 13.674 385 −0.017 095 5 0.533 983 −2.999 667 0.475 115
5 924 −7.410 154 236 4 0.001 44 13.675 915 −0.017 085 7 0.532 972 −3.000 179 0.487 056
6 1848 −7.410 155 968 9 0.000 354 13.676 265 −0.017 082 1 0.532 622 −3.000 257 0.492 270
7 3432 −7.410 156 349 5 0.000 115 13.676 312 −0.017 078 6 0.532 434 −3.000 229 0.495 744
8 6006 −7.410 156 465 1 0.000 042 4 13.676 289 −0.017 078 2 0.532 356 −3.000 175 0.497 457
exact by
Drake et
al.d

−7.410 156 532 6 13.676 064(17) −0.017 078 7 0.532 286 4(57)

experiment
or exact

−0.016 93e −3.0 0.5
−0.016 99f

aOrder of the FC theory. bNumber of cf’s (dimension). cEnergy differences from the estimated exact energy by ref 41. dBest nonrelativistic
variational calculation by ref 41. eExperimental value of ⟨δs(r0)⟩ from refs 68−70. fExperimental value of ⟨δs(r0)⟩ from ref 71.
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calculated values with the experimental values or the known
exact values. The experimental values of the spin density at the
nucleus are due to Kusch and Taub66 in 1949 and Beckmann,
Böklen, and Elke67 in 1974 for the 2S state, and by Brog, Eck, and
Wieder68,69 in 1967, by Lyons and Das70 in 1970, and by Orth,
Ackermann, and Otten71 in 1975 for the 2P0 state. In 2012,
Drake and others41 performed highly accurate calculations of
this atom for both 2S ground and 2P0 excited states and,
therefore, we also compare the present results to their highly
accurate results.
First, the energy was quickly improved as the order of the FC

theory increases when we use the correct g function of g = 1 −
exp(−γr) for both 2S and 2P0 states (Tables 1 and 3,
respectively). However, when we used the g = r function, this
improvement became much worse (Tables 2 and 4). In Table 1
(2S, correct g), the ΔE value at n = 8 has four zeros after the
period, but in Table 2 (2S, g = r), it has only two zeros after the
period. The same behaviors appeared for the 2P0 state in Tables
3 and 4. For the properties, Drake et al. gave essentially exact
results. When we compare the present results with those of
Drake’s, the results of Tables 1 and 3, which are both with the
correct g functions, agree well with each other. However, the
agreement becomes much worse when we refer to the results of

Tables 2 and 4, which are the results with the g = r function. The
same trends were also seen for the e−n and e−e cusp values.
Although the correct g function gives almost the exact cusp
values at n = 8 for both the 2S and 2P0 states, the g = r function
gives poorer results. Thus, the correct g function gives much
better results than the reasonable g = r function not only for the
energy but also for all of the properties calculated here.
An interesting observation is seen for the 2P0 state with

respect to the spin density at the nucleus. The present value is
−0.017078, but the experimental values were −0.0169368−70

and −0.01699.71 Which are correct? Drake et al. gave the result
−0.017078, which completely agrees with our theoretical result.
For the 2S state, the present result for the spin density with the
correct g function is 0.231248, Drake’s result is 0.231250, and
the experimental values were 0.231366 and 0.2312540.67 These
results seem to support the theoretical results.

5. CONVERGENCE BEHAVIORS OF THE ENERGIES
AND PROPERTIES OF THE 2S AND 2P0 STATES OF
THE LI ATOM TOWARD THE EXACT LEVEL

Although the above discussions on the calculated results were
based only on the results of the highest order 8 of the FC

Table 4. Results of the FC Variational Calculations of the 2P0 State of the Li Atom up to Order n = 8 with a Reasonable-Type g
Function: giA = riA, gij = rij

na Mb energy (a.u.)

ΔE
(kcal/-
mol)c

electron density at the
nucleus ⟨δ(r0)⟩

spin density at the
nucleus ⟨δs(r0)⟩

density at the e−e
coalescence ⟨δ(rij)⟩

e−n cusp
value

e−e cusp
value

0 2 −7.361 508 600 9 30.527 12.967 984 −0.039 996 7 0.758 165 −2.791 751 0.000 000
1 14 −7.404 320 475 0 3.662 13.463 628 −0.016 379 7 0.588 819 −2.951 945 0.241 478
2 56 −7.409 031 772 0 0.706 13.622 261 −0.018 366 9 0.556 204 −2.985 633 0.350 916
3 168 −7.409 825 499 4 0.208 13.660 701 −0.017 402 5 0.543 840 −2.995 511 0.407 399
4 420 −7.410 037 604 1 0.074 6 13.670 766 −0.017 053 1 0.538 537 −2.998 290 0.438 964
5 924 −7.410 109 500 6 0.029 5 13.674 078 −0.017 172 7 0.535 915 −2.999 306 0.457 919
6 1848 −7.410 136 729 1 0.012 4 13.675 194 −0.017 110 1 0.534 522 −2.999 615 0.469 918
7 3432 −7.410 147 669 6 0.005 56 13.675 632 −0.017 043 4 0.533 729 −2.999 721 0.477 863
8 6006 −7.410 152 213 5 0.002 71 13.675 827 −0.017 058 1 0.533 251 −2.999 757 0.483 308
exact by
Drake et
al.d

−7.410 156 532 6 13.676 064(17) −0.017 078 7 0.532 286 4(57)

experiment
or exact

−0.016 93e −3.0 0.5
−0.016 99f

aOrder of the FC theory. bNumber of cf’s (dimension). cEnergy differences from the estimated exact energy by ref 41. dBest nonrelativistic
variational calculation by ref 41. eExperimental value of ⟨δs(r0)⟩ from refs 68−70. fExperimental value of ⟨δs(r0)⟩ from ref 71.

Figure 1.Convergence speeds ofΔE (kcal/mol) as log10(ΔE) in the FC variational calculations with giA = riA, gij = rij and giA = 1− exp(−γiAriA), gij = 1−
exp(−γijrij) for the (left) 2S and (right) 2P0 states of the Li atom.
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calculations, the converging behaviors with increasing the order
n of the FC theory toward the exact ones were different for
different properties. Such a difference is seen most easily by
plotting the value against the order n. Figures 1−6 show such
behaviors for ΔE, electron density at the nucleus, spin density at
the nucleus, and density at the e−e coalescence, e−n cusp value,

and e−e cusp value, respectively. The left and right curves of
each figure correspond to the 2S and 2P0 states, respectively, and
the blue and green curves show the results of the “correct” g
function, g = 1 − exp(−γr), and the “reasonable” one r. Between
them, we are interested only in the blue curve due to the
“correct” g function, g = 1 − exp(−γr).

Figure 2. Convergence behaviors of the electron densities at nucleus: ⟨δ(r0)⟩ in the FC variational calculations with giA = riA, gij = rij and giA = 1 −
exp(−γiAriA), gij = 1 − exp(−γijrij) for the (left) 2S and (right) 2P0 states of the Li atom, compared to the reference values.41

Figure 3. Convergence behaviors of the spin densities at nucleus: ⟨δs(r0)⟩ in the FC variational calculations with giA = riA, gij = rij and giA = 1 −
exp(−γiAriA), gij = 1 − exp(−γijrij) for the (left) 2S and (right) 2P0 states of the Li atom, compared to the experimental values averaged from refs 66 and
67 for 2S and averaged from refs68−71 for 2P0.

Figure 4.Convergence behaviors of the electron densities at the e−e coalescences: ⟨δ(rij)⟩ in the FC variational calculations with giA = riA, gij = rij and giA
= 1 − exp(−γiAriA), gij = 1 − exp(−γijrij) for the (left) 2S and (right) 2P0 states of the Li atom, compared to the reference values.41
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Figure 1 shows the plot of the log10(ΔE) against order n. Even
though this is a log plot, the energy converges much more
rapidly with the function g = 1 − exp(−γr) than with g = r for
both the 2S and 2P0 states. At order 8, the former g function gives
2 orders of magnitude quicker convergence than the latter.
Figure 2 shows the convergence behavior of the electron density
at the nucleus. With the blue correct function, the electron
density converges well at order 4 for the 2S and 2P0 states. Figure
3 shows the convergence behavior of the spin density at the
nucleus, which is an interesting property, reflecting the spin
correlations in atoms and molecules. From order 2, both g
functions start the convergence from below. With the more
reliable blue curves, the spin density almost converges at order 5
for the 2S state and at order 3 for the 2P0 state, the latter
converging slightly below the experimental value, suggesting the
examination of the other effect like the relativistic effect on the
theoretical side or the experimental value itself. Figure 4 shows
the behavior for the electron density at the e−e coalescence.
Again, the blue curves show much quicker convergence in
comparison to the green curves. With the blue curve, the
electron densities almost converge at order 6 for both the 2S and
2P0 states. Figure 5 shows the curves for the e−n cusp values
whose exact value is −3 (minus the nuclear charge) for both the
2S and 2P0 states. The blue curves converge essentially at order 4
for both states. Figure 6 shows the convergence behaviors of the

e−e cusp value. Because this is a two-electron property, the
convergence is slow for both states. Even with the correct g
function (blue curve), the FC theory gave an almost converged
value of 0.5 at order 8 for both states.
From Figures 1−6, we see that to perform reliable prediction,

we need the “correct” g function, and even with it, we need
calculations higher than the order 3 or 4 for the one-electron
properties, but for the two-electron property, which is only the
e−e-cusp value here, we need more than the order 8 of the
present theory. The convergence speed with the scaling function
g = r was very slow, and therefore, we recommend using the
“correct” g function, g = 1 − exp(−γr), or other correct g
functions given under eq 7.

6. CONCLUDING REMARKS
In the previous paper,15 we examined the performances of the
various correct g functions for the two-electron He atom on the
basis of the variational principle. For the three-electron Li atom,
the evaluation of the analytical integrals for the functions
including two-electron scaling functions becomes feasible only
for the exponential-type g function given by eq 7. So, we could
examine the role of the “correct” scaling function only for this g
function. However, even so, we could show the powerful role of
the correct scaling function in contrast to the ordinary
“reasonable” function r. For the 2S and 2P0 states of the Li

Figure 5. Convergence behaviors of the e−n cusp values in the FC variational calculations with giA = riA, gij = rij and giA = 1 − exp(−γiAriA), gij = 1 −
exp(−γijrij) for the (left) 2S and (right) 2P0 states of the Li atom, compared to the exact value, i.e., −3.0.

Figure 6. Convergence behaviors of the e−e cusp values in the FC variational calculations with giA = riA, gij = rij and giA = 1 − exp(−γiAriA), gij = 1 −
exp(−γijrij) for the (left) 2S and (right) 2P0 states of the Li atom, compared to the exact value, i.e., 0.5.
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atom, the convergence of the energy to the exact one with the
correct g function was already 2 orders of magnitude quicker at
order 8 of the FC theory than that of the reasonable function r, as
seen fromTables 1 and 2 for the 2S state and fromTables 3 and 4
for the 2P0 state. This is also seen in Figure 1. This clearly shows
that the theoretical “correct” nature of the g function is very
important in actual computational situations.
Such an efficiency of the correct g function over the function r

was also seen for the other properties of the Li atom in both 2S
and 2P0 states. A remarkable situation was seen for the spin
density at the nucleus of the 2P0 state of the Li atom. At order 8
of the FC theory with the correct g function, the present
calculated value of the spin density at the nucleus, − 0.0170782,
became almost identical to the value −0.0170787 obtained by
Drake et al. with their highly accurate calculations.41 On the
other hand, the experimental values68−71 reported in 1967 and
1970 and 1975 as shown in Table 3 were −0.01693 and
−0.1699. Some detailed examination seems to be necessary for
both the experimental and theoretical sides. We will check the
relativistic effects, though it might be small for this light atom.
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