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We have improved in a stepwise manner the second-order sum-over-state perturbation -energy which
is written in the infinite sum over singly excited configurations based on the Hartree-Fock (HF)
zeroth-order wavefunction. Firstly, the conventional equation [Eq. (10)] is shown to be dependent on
the unitary transformations among singly excited configurations. The best unitary transformation
gives the Tamm-Dancoff (or singly excited configuration interaction) approximation of the excited
states. The resultant equation [Eq. (25)] includes in a simple form all of the coupling terms between
different singly excited configurations. As a restrictive special case, this unitary transformation leads
to the modified HF orbitals of Silverstone~-Huzinaga and Morokuma-Iwata. Secondly, it is shown
that the second-order energy of the coupled HF theory can also be written in a simple
sum-over-state perturbation formula. The resultant equation [Eq. (50)] does not require an iterative
solution. Moreover, it is shown that this is the best possible expression of the second-order energy
based on the HF zeroth-order wavefunction. As a restrictive special case, this treatment produces
new improved modified HF operators which are thought to be superior to those hitherto given.

. INTRODUCTION

Some properties of a many-electron system undergoing
a one-electron perturbation may be calculated using per-
turbation theory. When we have a complete set of eigen-
functions and eigenvalues of the zeroth-order Hamilto-
nian as ‘

Hy|n)=E,|n), ®=0,1,...) (1)
S (oia S Za 1
Ho VZ( 2 A,’ ; rAV) * g r“v ’ (2)

the second-order property of a system undergoing per-
turbation

H=H,+H, , (3)

may be calculated using the follow ing sum-over-siate
perturbation formula

Eq =Z'<0|H1 |n) ¢n | H, |0V /(B - E,) @)

where the sum is over an infinite number of excited
states (for continuum, it indicates integral).! However,
since it is impossible to obtain a set of exact many-elec-
tron wavefunctions satisfying Eq. (1), some approxima-
tion must be made. The most frequent approximation to
Eq. (4) is to replace 10) by the (closed-shell) Hartree—
Fock (HF) wavefunction ¥,, |n) by the singly excited con-
figuration ¥,,; built up from HF occupied orbitals {i} and
virtual orbitals {m}, and E, and E, by E,=(¥,|H,|¥,) and
En =¥, |Hyl¥,), respectively. However, this ap-
proximation has some intrinsic deficiencies.?3

In the present paper, we seek for the best expression
of the approximate second-order energy E ,, of the one-
electron perturbation H, in the form as simple as Eq.
(4). In the next section, it is shown that the E 5, approx-
imated as above depends on the unitary transformations
among singly excited configurations. Section III shows
that the best unitary transformation gives the Tamm-
Dancoff (or singly excited CI)_approxima.tion‘ of the ex-
cited states. The resultant E,, includes all of the cou-
pling terms in which different singly excited configura-
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tions couple through H,. As a restrictive special case,
this unitary transformation leads to the modified HF
orbitals proposed by Silverstone and Yin, 52 Huzinaga and
Arnau® (SY-HA), and Morokuma and Iwata (MI).® In
Sec. IV, it is shown that the second-order energy of the
coupled HF theory’ can also be written exactly in a sim-
ple sum-over-state perturbation formula. The resultant
equation of E, is very similar to the above case and
does not require an iterative solution. Moreover, this
treatment gives new improved modified HF operators
which are thought to be superior to those hitherto -
given.®® Inthe last section, it is shown that the E ,, ob-
tained in Sec. IV, which is equivalent to the coupled HF
energy, is the best possible second-order sum-over-
state perturbation energy based on the HF ¥,.

1l. DEPENDENCE OF E(z) ON THE UNITARY

TRANSFORMATIONS AMONG SINGLY EXCITED
CONFIGURATIONS

First, we examine the approximation stated in Sec. I.
Taking account of the one-electron property of the per-
turbation H,, one may assume the form of the perturbed
wavefunction as

V=¥, +Z; Coi St Vo (5)
m

where ¥, is the HF single determinant composed of dou-

bly occupied orbitals. S;,; is the single excitation opera-
tor defined by

Smi=(@ng 8o +angaidd V2 , ®)
for spin-less perturbations and
Smi = (@na 8o = ansaig)/V2 M

for spin-linear perturbations. a,,, and a;, are the crea-
tion and destruction operators which satisfy Fermion
anticommutation relation. S, ¥4(=¥,,) is a singly ex-
cited singlet or triplet configuration depending on Eq.
(6) or (7). As seen from Egq. (7), the spin-dependent
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perturbations are restricted here, for simplicity, to
those which commute with the z component of the total
spin operator. It is a simple matter to extend the fol-
lowing results to other kind of spin-dependent perturba-
tions. The following formulations are valid for both ex-
citation operators defined by Eqs. (6) and (7).

Using the Brillouin theorem for the HF ¥, the ap-
proximate second-order energy is obtained from the
secular equation for Eq. (5) as

E(2)=Z:<OIH13;-¢|0) Cni (8)

where C,; is the solution of the first-order equation

(Eg = Emy) Cpy =(0[Spi Hy[0) + 3 (0[S Ho S} [0) Cpy . (9)
(i

In the above equations and hereafter, ¥, and |0) are the

same and both denote the HF ¥,. E, and E,; are the

energies of the HF ¥, and S;,; ¥,.

Eg=(0|Hy|0) , Eni=(0|Sn HyShi]0) .

In the last term of Eq. (9), different singly excited con-
figurations couple through H,. If one neglects these
coupling terms, one obtains )

Cm( =<0|Smi Hllo)/(Eo—Emi) ) (93)

and the expression of the second-order energy becomes
B =Z; (O H, S, 10Y (0[S, Hy |0)/(Eg = Eng) . (10)
m

Equation (10) is an approximation to Eq. (4) as described
in Sec. I.

It should be noted that our zeroth-order Hamiltonian
H, is not a HF Hamiltonian, but the exact Hamiltonian in
the absence of perturbation, Eq. (2). If we start from
the HF Hamiltonian Hy,, namely from Hy ¥o=Ey ¥, (Egg
is the sum of orbital energies, Eq=J; 2¢,), Eq. (10) is
obtained by summing up appropriate infinite.correction
terms with respect to AV =H, - Hy, in the double pertur-
bation expansions, using the relation of geometric ex-
pansion.™® The first term in this expansion, which is
-zeroth order with respect to AV, corresponds to the
“uncoupled HF” second-order energy of Dalgarno.’

5(2.0) =Z (OlHls:nilc» (0|5m4H110>/(€¢—€m) . (11)

The energy denominator of Eq. (11) does not correspond
to the excitation energy in the HF approximation and the
result is poorer than that of Eq. (10).

Now, let us consider the dependence of E ,, on the
unitary transformations among singly excited configura-
tions given by

R*=S'U (12)

where S* and R' are the row vectors composed of S},
and the new excitation operators R;,,. Since the new set
of the singly excited configurations R* ¥ forms, as anold
set S’ ¥,, an orthonormal (not complete) set which is
orthogonal to the HF ¥,, it may well be used as a basis
of expansion in Eq. (5) in place of S* ¥,. If we write the
second-order energy thus obtained as E‘:z,,_ it is given by

E.:a)=Z<0‘H1R:n"0><0|RmiHl'0>/(ED_E;l{) s (13)
mi

where E,;=(0|R,;H,Rp;10). This is rewritten in the old

representation as

*
U mi u mi
EO - u,(.(mi)AU(m{)

Eg =(0|H, S’l0>:/_: ©|sH,|oy, (14)

where U n, is a column vector defined as U=(..., U
...) and A is a matrix defined by

A=(0|sH,S’|0) . (15)

(miy »

Note that the matrix A is Hermitian and that the quantity
Utniy AU, in the denominator of Eq. (14) is the mith
diagonal element of the matrix U* AU,

As seen from Eq. (14), the approximate second-order
energy in the conventional form depends on the unitary
transformations among singly excited configurations.
Different second-order energy is obtained if we use dif-
ferent set of singly excited configurations. Inspection
of Eq. (14) shows that E 4, is invariant to the unitary
transformation only when U=1 (no transformation) or
A=E 1, where E, is a constant. (Note the relations,
Ulmiy Uimiy =1 and 3,0 Uiy Ul =1.) The former case
is trivial and the latter cannot be satisfied in actual
problems, except when one forces this relation assum-
ing the average-excitation-energy approximation.®

Hirao and Kato'® calculated nuclear spin-spin coupling
constants using localized orbitals as a basis which can
be obtained in the above treatment by choosing special
kind of U.!! The calculated values were more than twice
as large as those obtained with the usual canonical orbit-
al basis. As seen in this example, one must be cautious
when one uses the conventional equation (10). Many
earier calculations based on Eq. (10) stand in need of
re-examinations.

As shown in the next section, the coupled equations
(8) and (9) themselves are independent on the choice of
U. The unitary dependence of E (@) originates from ne-
glecting the coupling terms in Eq. (9), the magnitude of
which depends on the choice of U. Thus, we reach the
following natural question, “What is the best choice
of U?”

. E£,, INCLUDING COUPLING TERMS COMPLETELY-
E(z) BASED ON SINGLY EXCITED CI WAVEFUNCTIONS

In order to consider the above question, we return to
Eqs. (8) and (9). They are rewritten in a matrix form
as

Eg =(0|H,S*|0)C , (16)
(0|sH,|0)+(A-E,1)C=0 , (17)

where C is a column vector composed of C,;. The pre-
vious equation (10) was obtained by neglecting the off-
diagonal elements of the matrix A, i.e. the coupling
terms.

Now, let us choose the unitary transformation U as
diagonalizing the Hermitian matrix A, or equivalently
the matrix A - E 1 as
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u*Aau=D , (18)

where D is the diagonal matrix with real diagonal ele-
ments D,,. Also, let us define the following unitary
transformations of S* and C..

R'=S'u, c'=u*c . (19)

Using these newly defined excitation operators R;,;, Eq.
(18) is rewritten as

<0|leH0 ;J|0>=6mn6UDmi ’
Dypy =0|Rpy HyRpy | 0) .

(20a)
(20b)

Thus, D,; is the energy associated with the configura-
tion R,,; ¥,. Also, Eq. (5) is rewritten as

¥ =¥, +Z CriRmi ¥ (21)
mi
and Eqs. (16) and (17) are transformed to
Egq =(0|H,R*|0)C’, (22)
(0|RH, |0y +(D - E; 1) C’ =0 . (23)

Comparing Egs. (21), (22), and (23) with Egs. (5), (16),
and (17), we understand that these coupled equations are
invariant to the unitary transformations among singly
excited configurations. Amos, Musher, and Roberts'?
showed a special case of this, limiting the unitary trans-
formations to those among occupied and vacant orbitals.!!
Since D is a diagonal matrix, Eq. (23) is equivalent to

Cni = (0| Ry H,[0)/(Ey - Dy) (24)

without approximation [compare with Eq. (9a)]. Then,
from Eq. (22), we obtain

E-(z)=Z(0IH1 ;{lo>(olRmi H1|0>/(E0_Dmi) . (25)

mi

This equation includes all of the coupling terms in
spite of its similarlity to Eq. (10). Namely, by choos-
ing U as diagonalizing the matrix A, the second-order
energy can be written in the same form as the conven-
tional one without neglecting the coupling terms between
singly excited configurations. To solve Eq. (25) is
equivalent to solving the coupled equations (16) and (17).
In other words, when we choose U as defined by Eq.
'(18), the coupling terms in Eq. (17) vanish identically
without approximation.

Moreover, this choice of U is physical. The configu-
ration R},; ¥, and its energy D, appearing in Eq. (25)
have realistic physical meanings as the energy and wave-
function of the excited state in the Tamm-Dancoff ap-
proximation.* This is because to solve Eq. (18) is
equivalent to solving the secular equation of the singly
excited configuration interaction (CI) method in the ab-
sence of perturbation. Thus, the E, given by Eq. (25)
is {dentical with the second-order energy based on the
singly excited (SE) CI wavefunctions. The Brillouin re-
lation (0 |HyR;,;10) =0 and the relation (20a) mean that ¥,
and R;,, ¥, are the best possible approximations to the
eigenfunctions of Hy [Eq. (1)] within the space spanned
by the HF and singly excited configurations. The energy
difference denominator of Eq. (25) corresponds to the
excitation energy in this approximation. :
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Murrell et al.'® reported a calculation of the contact
contribution to the nuclear spin-spin coupling constant
of hydrogen fluoride. It was calculated as 502 Hz by Eq.
(10),* but as 836 Hz by the SE-CI method, i.e., by Eq.
(25). The difference as large as 334 Hz comes from the
coupling terms and shows the importance of these terms.

Connection with the modified HF theories

A restrictive application of the above treatment leads
to the modified HF theories of Silverstone-Yin, 3 Huzin-
aga—-Arnau®™ (SY-HA), and Morokuma-Iwata (MI).® Let
us consider the unitary transformations within the HF
occupied orbitals i and/or the virtual orbitals m (i and m
are row vectors)

i'=iv°, m'=mu" | (26)

and redefine the destruction and creation operators as-
sociated with i’ and m’, e.g.,

Ay o =JZ (Uo*)uala ’ a:u’a =Za;a Un'm . (27)
n

Then, the new excitation operators S*' which are defined
using these new destruction and creation operators as in

"Egs.(6) and (7) are connected with the old S* by

s''=s'W, (28)

where W is the direct product of U° and U" defined by
Wi, n = Uy Unyn (U7 is a complex conjugate of Uy,

w=U°xU", (29)

Because U°®and U" are unitary, W is also unitary. How-
ever, the converse is not always true. Namely, an ar-
bitrary unitary matrix can not always be written as a
direct product of two unitary matrices of fixed dimen-
sions. Therefore, it is not generally possible to diag-
onalize the matrix A by the direct product of the unitary
transformations within the HF occupied and/or virtual
manifolds. The freedom due to the HF orbital ambiguity
is, as expected, insufficient to diagonalize the coupling
terms included in the A matrix.

However, some simplifications of the A matrix is pos-
sible by the orbital unitary transformations U°and U".
Let us restrict ourselves to consider only the excitation
operators of the form S;,o or S, ;, where i, and m, are
the one special orbitals chosen torom the occupied and vir-
tual manifolds. Then the submatrix of A defined by

A10={<0|Smi0 Hos;io 0}, (30)

or

Ay ={(0[S i HoSh s [0}, (31)

can be diagonalized, respectively, by the unitary trans-
formation U"or U° since both A; and A, are Hermi-
tian. The new orbitals m’ or i’ [Eq. (Zs)fthus obtained
satisfy

(0|Sm:40HoS;:‘OIO>=5m;n,Em:,D y (32)
or

(O] Smys+ HySpyyy+| 0y = 6400 E (33)

mol’
where E,i,and E, 0 are the energies of the singly ex-

cited configurations, S;.; ¥, and S;,;.¥,, respectively.
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Em‘{o =<0|sm' iy HOS;n IO) ’ Emol’ = <0 Ismoi’ HD S:nol' I 0> .
(34)
Furthermore, since the above result is due to the uni-
tary transformation within the virtual o» occupied mani-
fold, it is possible to select UY and U° in a self-consis-
tent fashion so as to satisfy both of the equations (32)

and (33). 1

l‘o

As studied by Morokuma and Iwata® and Hirao, * the
transformed virtual orbitals m’ satisfying Eq. (32) are
equivalent to the SY-HA’s modified virtual orbitals
which are the solutions of the modified HF equation!®

F'l) =l ,

F'=F+PQ,P+(1-P)Q,(1-P) , (35)

with the special selection of £2,=0 and Sz,=—J,o +Ky,
Ky [the upper and lower signs correspond to the singlet
and triplet excitations defined by Eqs. (6) and (7), re-
spectively]. In Eq. (35), F is the conventional HF op-
erator and P=33°|7) (i| is the projection operator onto
the HF manifold. Jy, and K, are the Coulomb and ex-
change operators. On the other hand, the new set of
occupied orbitals i’ satisfying Eq. (33) is equivalent to
the “electron potential” orbitals of MI® which are the
solutions of Eq. (35) with &, =J, - K, ¥K, and Q,=0.
The orbitals which satisfy both Eqs. (32) and (33) are
equivalent to the “electron—hole potential” orbitals®
which are the solutions of Eq. (35) with Q,=J, = K,

0
= 14
FKpg, Q, ==Ji +K,01K,° .

Thus, the orbital unitary transformations in the modi-
fied HF orbital theory help to diagonalize some of the
matrix elements of the A matrix as shown by Egs. (32)
and (33). However, there is no guarantee for the rest
of the off-diagonal elements to be small. The excited
states of this theory, which were originally devised so
that the excited electron feels the appropriate field of
the other N~ 1 electrons, %% correspond to the limited
approximations to the excited states of the Tamm-Dan-
coff approximation. Note lastly that for a one-HF-or-
bital system like hydrogen'? and helium atoms, the ma-
trix U” becomes identical with the matrix U of Eq. (18)
since in this case A=A, . Therefore, for this special
case, the coupling terms can be completely included
only by the unitary transformation among the virtual or-
bitals, and the resultant modified virtual orbitals become
useful as the basic orbitals of perturbation theory. **'1°

V. E(z) OF THE COUPLED PERTURBED HF THEORY

The second-order energy of the coupled perturbed HF
theory’ may be considered to be the best possible value
in the sense that it is based on the best possible orbitals
for the perturbed Hamiltonian Hy+H; . Applications of
the coupled HF theory are, however, still limited due
to the existence of the self-consistency terms. Many
variants of the “uncoupled” scheme have been proposed
in order to eliminate the self-consistency terms,®°'%®

In this section, we will show that the second-order
energy of the coupled HF theory can also be written ex-
actly in a simple sum-over-state perturbation formula.
The resultant equation is very similar to the previous
equation (25) and does not require an iterative solution.

3731

The coupled perturbed HF theory is essentially a vari-
ational method in that it is based on the best possible
single determinant (Hartree—-Fock) wavefunction for the
perturbed Hamiltonian H, + H, .?°

‘I’c}{}':" Iczc...ic...Nc” (36)

The difference between the perturbed orbital i€ and the
zeroth-order HF orbital i can be expanded with respect
to the order of the perturbation H, as

, (37)

where 7, and 7, are the first- and second-order orbital
corrections, respectively. In Eqgs. (36) and (37), the
orbitals are spin orbitals.

AT R AR A

What we are interested in here is the second-order
energy. This allows us some simplifications. Firstly,
in Eq. (37), we need only the first- and second-order
corrections 7, and 7, . However, due to the Brillouin
theorem, i, does not contribute to the second-order en-
ergy.?! Thus, in Eq. (37), only the first-order correc-
tion 7, contributes to the second-order energy. When we
put the relation, i°=7+¢, into the perturbed wavefunction
(36) and expand it, we obtainthe sum of the determinants
including the orbital correction i, never (HF ¥,), once
(first order), twice (second order), etc. Again, we can
make a simplification eliminating the determinants in-
cluding more-than-three orbital corrections (higher than
third order). Thus, using the previous notation, the
resultant wavefunction is written as

v =91<1 +Z; Cri Smi *%E E Cni Coy s:n{s:ll> ¥, . (38)
m mi nj

9 is a normalization constant and S;,; is the excitation
operator defined by Eqs. (6) or (7). In obtaining Eq.
(38), we have expanded i, by means of the virtual orbit-
als {m} [see Appendix A].

Thus, to solve the second-order energy from the cou-
pled perturbed wavefunction (36)?° is equivalent to solv-
ing the variational second-order energy from the trial
wavefunction (38). That is, the E 4, obtained variational-
ly from the wavefunction (38) is identical with the sec-
ond-order energy of the coupled HF theory. In Appendix
A, the identity is shown more explicitly. It is also
identical with the second-order energy of the method of
Cohen and Roothaan®?* and Pople, Mclver, and Ostlund
(finite perturbation method)*® in which the wavefunction
(36) is directly solved variationally in the perturbed
field Hy +H, .

The wavefunction (38) includes a contribution of the
doubly excited configurations in the last term. It is a
second-order correction and is written as a product of
the first-order corrections. There is another indepen-
dent doubly excited function which is not included in the
present coupled HF scheme. However, fortunately, it
does not contribute to the second-order energy based on
the HF ¥,, as will be discussed in Sec. V and Appendix
B [see also Ref. 7(i)]. When we neglect the contribution
of the doubly excited configurations in Eq. (38), we
reach the second-order energy obtained in Sec. III.

Now, let us solve the variational second-order energy
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associated with the wavefunction (38). The trial form of
the second-order energy is obtained from Eq. (38) as

B 2 (Cmi €01 Smi Hy [0 + Cy 0| H, 51| 00)
+ 2; Chy Cry (O] Sy Hy Sy | 0) = 6,8, Eq)
+%ZZ(C:£ C:j (0|S,,,;S,,,H0|0)
mi nj

+ Cpi Coy (0| Hy 53574 |0)) . (39)

Actually, almost all the perturbations we encounter are
either real or pure imaginary, and in these cases all of
the coefficients C,; in Eq. (39) are either real or pure
imaginary, respectively. Since we are dealing with
closed-shell systems, all the integrals with respect to
H, can be chosen as real. Therefore, Eq. (39) can be
rewritten in a simple matrix form as

EY, =2c*(0|sH,|0)+C*(AxB - Ey1)C . (40)

The matrix A is defined by Eq. (15) which is symmetric
because it is real. The matrix B is also a real symmet-
ric matrix defined by

B =(0|H,y(S")T *|0) = (0|SST H,|0) , (41)

where (S*)T is the transpose of the row vector S*. The
plus and minus signs in front of the matrix B correspond
to the real and pure imaginary perturbations, respec-
tively. C* is the Hermite conjugate of the column vec-
tor C(when real, C*=C7 and when imaginary, C*
=-C7).

Let us define the orthogonal matrix V which diagonal-
izes the sum of the matrices, A+ B, or equivalently,
A:+B-Eylas ’

VI (A:B)V=T , (42)

where T is the diagonal matrix with diagonal elements
Tmi . Also, let us define the following orthogonal trans-
formations of S* and C as.

Q'=s'v , c'=VvTc . (43)
Using these newly defined excitation operators @,,;, Eq.

(42) is rewritten as

(0] Qumi Ho @1y | 0) £0 | Hy Qs @1y | 0) = 6,,,, 8y (D £ Ky
(44)

where the plus and minus signs correspond to those in

Eq. (40). D, and K, are the integrals defined by®

Tpy=DpyKpy 45)
D;u =<OIQm6H0Q:n(lo> ]
Ky = (0| Hy @}y @5t | 0) . (46)

D, denotes the energy associated with the singly excited
configuration @;,; ¥,. The integral, (01H,Q%; @m;0) is
denoted as K,,, because if Q;,, is replaced by S},,, this
integral is just the ordinary exchange integral + K,,; be-
tween the orbitals m and 4.

O Hy Sy Sy 0V =2 Ky (47)

Thus, the integral K,’,li may be referred to as general-
ized exchange integral. In Eq. (47), the plus and minus
signs correspond to the singlet and triplet excitation op-
erators defined by Eqs. (6) and (7), respectively. These
plus and minus signs should not be confused with the
previous ones in Eqs. (40) and (44).

Using the orthogonal transformations given by Egs.
(42) and (43), equation (40) is rewritten equivalently as

Ey, =2¢™* |ag, |0y +Cc™*(T-E, N’ . (48)

Making the energy given by Eq. (48) stationary to small
changes in Cy, and using the fact that T(=D’+K') is diag-
onal, we obtain the variational solution,

Ci=(0|Qui Hy|0)/(Ey - DL, #KL,) . 49)

Inserting Eq. (49) into £q. (48), we obtain the variation-
al solution of the second-order energy associated with
the wavefunction (38) as

E(z) =ME'<0|H1 Q5110) (0] Qi H,|0Y/(Ey - DLy %KL,

(50)
where the minus sign corresponds to real perturbation

and the plus sign to the imaginary perturbation.

In spite of its simplicity, Eq. (49) is equivalent to the
ordinary coupled HF equation [Eq. (Al) or (A2) of Ap-
pendix A].7 In Appendix A, the equivalence is shown ex-
plicitly. Equation (50) is an alternative expression of
the second-order energy of the coupled HF theory. It is
written in a simple sum-over-state perturbation formu-
la. The calculation of Eq. (50) does not require an iter-
ative procedure, although it can also be calculated iter--
atively. The procedure is simply a single diagonaliza-
tion shown by Eq. (42) and the summation shown by Eq.
(50). The labor is almost the same as for the previous
singly excited CI case [Eq. (25)]. Therefore, the ter-
minology, the “self-consistency” terms, in the ordinary
coupled HF theory becomes inadequate in this represen-
tation. They are included here automatically in the
terms Dy, and K, of Eq. (50). Moreover, as will be
shown elsewhere,24 this expression is suitable for ex-
panding the coupled HF energy into the sum with respect
to the correlation correction, AV =Hy—~ Hy, "**! [see Eq.
(A4) of Appendix A]. This will clarify the nature of the
electron correlation included in the coupled HF theory?*
and give a support to the geometric approximation of the
coupled HF energy.!"3*

In comparison with the previous singly excited CI re-
sult, Eq. (25), the coupled HF result, Eq. (50), in-
cludes an additional term Kj,; in the denominator, though
the configuration @, ¥, and its energy D, are also dif-
ferent from R,; ¥, and D,,; in Eq. (25). The generalized
exchange integral K, originates from the B matrix
which represents the electron correlation (AV) interac-
tions of the HF ¥, with the second-order doubly excited
configurations. Therefore, this integral K,:,, may be
said to represent the effect of the electron correlation
induced by the perturbation.?® The sign of this integral.
depends on the nature of perturbation [plus for singlet -
perturbation and minus for triplet perturbation as shown
in Eq. (47)], and its magnitude is of the order of ordi-
nary exchange repulsion integral.
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The appearance of the ordinary exchange repulsion
integral in the energy difference demoninator was pointed
out previously by Caves and Karplus' inthe diagrammat-
ic double perturbation analysis of the coupled HF theo-
ry, by Ditchfield e al.? in the analysis of the finite per-
turbation theory,?? and by Nakatsuji?® in the analysis of
the spin-polarization corrections in various open-shell
orbital theories. However, the previous analyses cor-
respond essentially to neglecting the coupling terms ap-
pearing in both A and B matrices. ' Nevertheless, the
differences in the numerical values between the singly
excited CI and the coupled HF theories were well under-
stood from this exchange integral.”% The situation is
very similar to the previous analysis of the various
open-shell orbital theories. 28

Caves and Karplus™ analyzed the coupled HF theory
using the diagrammatic double perturbation-technique
and compared it with the singly excited CI method. In
comparison with the present results expressed by Eq.
(25) (singly excited CI)and Eq. (50) (coupled HF), their
presentations are much more complicated (see also Ref.
24).

New modified HF orbitals

As in Sec. I, the above treatment produces new mod-
ified HF orbitals as a restrictive special case. Let us
consider the orthogonal transformations of the HF oc-
cupied orbitals i and the virtual orbitals m.

, m'=mV" , (51)

The orthogonal matrix V'or V°is defined as diagonaliz-
ing the submatrix of A +B given by

(A£B)yo ={(0] S Ho S |0) £ (0| Hy Spyy Shiy [0}, (52)
or .
(A;EB),,,O={(0|SMD, Hos:nojl(»*(OIHos;M S;:DII())} , (63)

respectively, where i, and m, are the one special orbit-
als chosen from the occupied and virtual manifolds.
From the above definitions of U and U° and from Eq.
(47), the new orbitals m’ or i’ are shown to satisfy

(© Ism'lo H, S;.‘OIO) + (0| H, Smetg S o)

= O [Erig (& Koy )] (54)
or
(ols,,,o,.Hos;,o,,loﬁ<0|H°s;,o‘. St 10)

= 6‘,1. [E"'O{' +(x Kmog :)] B (55)

In Egs. (54) and (55), note the double + signs in front of
the exchange integrals K, and Kngie - The first plus
and minus signs correspond to real and imaginary per-
turbations, respectively, and the second signs to spin-
less and spin-linear perturbations, respectively. Epiyy
and E, ;. are defined similarly to Eq. (34) and represent
the energies of the configurations S;,., o ¥oand S;,o;: ¥,
respectively. Moreover, since the above result is due
to the orthogonal transformation within virtual or occu-
pied manifold, we can select V' and V°in a self-consis-
tent fashion so as to satisfy both Eqs. (54) and (55).'*

The above new orbitals i’ and m’ can also be expressed
as the solutions of the modified HF equation'®
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F'|k"y=¢€l|R"y,

. , , (56)
F'=F+PQ{P+(1-P)Q,(1-P) .

The new set of the virtual orbitals m’ which satisfy Eq.
(54) is equivalent to the solutions of Eq. (56) with 2,=0,
Q,=-J;,+cK,,, where c=3, -1, 1, 1 for real singlet,
real triplet, imaginary singlet, and imaginary triplet
perturbations, respectively. Similarly, the new set

of the occupied orbitals i’ satisfy Eq. (56) with Q¢ =dm,
- CKp s Q.=0. The orbitals which satisfy both Eqs.
(54) and (55) are the solutions of Eq. (56) with @] =J,,

= CKpyy Qq==dJyg+eck M

ﬂlo’

As shown by Eqs. (54) and (55), these modified orbit-
als i’ and m’ diagonalize some of the off-diagonal ele-
ments of the matrix, A+B. Therefore, these modified
orbitals are thought to be superior, as the basis of per-
turbation theory, to the SY-HA’s and MI’s modified or-
bitals®’® which diagonalize some of the off-diagonal ele-
ments of the A matrix only (see also Sec. V). However
there is no guarantee that the off-diagonal elements
other than those shown by Eqs. (54) and (55) are small
in magnitude. Note that for a one-HF-orbital system
like helium atom, the matrix (A £ B);; turns out to be
identical with the matrix A+B in Eq. (42) and then the
matrix V' becomes identical with V. That is, for this
special case, the coupled HF second-order energy can
be obtained only by the orthogonal transformation of the
virtual orbitals. In fact, when the solutions of the modi-
fied HF equation (56) are inserted into the “uncoupled
HF” equation of Dalgarno, Eq. (11), it becomes identi-
cal, in this special case, with Eq. (50), i.e. the coupled
HF value. Therefore, these virtual orbitals are very
useful as the basis of perturbation theory.

’

V. DISCUSSION AND CONCLUSION

The second-order energy given by Eq. (50) is identi-
cal with the coupled HF second-order energy. This
identity may suggest that it is the best possible expres-
sion of the approximate second-order energy based onthe
HF ¥, and expressed as the sum over singly excited con-
figurations. This point is discussed in this section.

Let us write the approximate perturbed wavefunction
as ¥. The variational principle requires E = (¥ | H1¥)/
@ 1) pe minimum, where H is the perturbed Hamilto-
nian given by Eq. (3). Expanding this expression with
respect to the order of perturbation, we obtain the vari-
ational principles for individual order corrections as?’

Egy =@ |Hl¥), 0Eg =0, (67)
E(x)=<‘i’(o)|Hxl‘i’(0)>+<‘i’a)|H6|‘i’(0)>+<‘i’(o)IHolli“I’uQ,
6E 4, =0, (58)
E gy = o) | H [T o) + @ o | H [T ) + @ o, [ Ho | T )
+@ o) | Ho|F o)+ F oy |Ho| Ty, 0By =0, (59)

where Hy=Hy-E oy, H{=H,-E,, and ¥, is taken to
be normalized. These equations are used as the basis
of the following discussions.

Although the HF ¥, is not an eigenfunction of Hy, it
does satisfy Eq. (57) in a limited sense. Then, we
choose the HF ¥, as the zeroth-order wavefunction ¥ g,
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and fix this choice throughout Eqs. (57)-(59), although,
generally speaking, the ¥ g,’s determined from Egs.
(58) and (59) are not necessarily required to be identical
with the ¥ o, obtained from Eq. (57).*" Similarly, we
restrict ¥ ,, in Eq. (58) to be identical with that in Eq.
(59).

Taking into account the one-electron property of H,,
the above choice of \i/(o) leads naturally to the choice of
the first-order wavefunction ¥ ;, as the sum of the singly
excited configurations. In fact, in this choice, the sec-
ond and third terms of Eq. (58) vanish identically due to
the Brillouin theorem and the natural expressmn E )
=(¥olH, ¥y results. Moreover, this choice of \Ilm is
shown to be wnique.?® 1t is written by means of the single
excitation operators given by Eq. (6) or Eq. (7), depend-
ing on the property of the perturbation.

After the above choice of the \if(o, and \ilm ,_only possi-
ble choice of the second-order wavefunction ¥ ,, in Eq.
(59) is the sum of doubly excited configurations. In fact,
second-order singly excited configurations do not con-
tribute to E ;) due to the Brillouin theorem, and triply
and more highly excited configurations can not contrib-
ute in Eq. (59). Moreover, the form of the doubly ex-
cited terms of \il(z) is restricted. It can never be free
from that of the singly excited terms of ¥ a,-2° The de-

-pendence of the doubly excited terms of \Il(z) on the singly
excited terms of \Irm is represented in the coupled HF
framework by the last term of Eq. (38). Although there
is another doubly excited singlet function [only singlet
function contribute to E, of Eq. (59)] independent from
Smi S,,, ¥, it does not contribute to E(z, given by Eq. (59),
as shown in Appendix B. This fact is very fortinate for
the coupled HF theory, since its framework is the one
which can not include the other independent doubly ex-
cited function.

Thus, the variation of the E , of Eq. (59), starting
from the restriction of ¥, to the HF ¥;, reduces to the
variation of the second-order energy associated with the
wavefunction (38). That is, the second-order energy
given by Eq. (50), which is identical with the coupled HF
energy, is the best possible second-order energy based
on the HF¥,. Moreover, Eq. (50)is written in the sum
over singly excited configurations. Therefore, the an-
swer of the question, “What is the best expression of the
second-order sum-over-state perturbation energy based
on the HF ¥, ?” may be said to be the equation (50).

Referring to Eq. (59), we understand that the coupling
terms between different singly excited configurations
appear in the third term. If one neglects these coupling
terms and the last two terms, the variation of Eq. (59)
leads to the conventional equation (10) of Sec. II. If we
include these coupling terms but neglect the last two
terms, ** we obtain Eq. (25) of Sec. III, which is identical
with the second-order energy based on the singly excited
CI wavefunctions. If we include all of the terms of Eq.
(59), we reach Eq. (50) of Sec. IV, which is identical
with the second-order energy of the coupled HF theory.
All of these second-order energies are written in the
sum over singly excited configurations. The equation
(50) is the best possible expression.
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The present formulation has also shown that the modi-
fied HF theory can be obtained as a restrictive applica-
tion of the present theory. Each step of the above step-
wise improvements gives a different stage of the modi-
fied HF theory. The HF theory associated with Eq. (10)
of Sec. II is actually a standard one. The modified HF
orbitals of SY-HA® and MI® are all associated with the
treatment given in Sec. III. The treatment of Sec. IV
gives, as a by-product, new modified HF operators
given by Eq. (56), which are thought from the above dis-
cussions to be superior to the modified HF operators
hitherto given, 58
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APPENDIX A

This appendix gives an explicit proof of the identity
between the second-order energy given by Eq. (50) of
Sec. IV and that of the coupled HF theory. For simplic-
ity, we consider only the spin-free perturbation.

The coupled HF equation for the first-order orbital
correction i, of Eq. (37) is written as’
(o) = €9)dy () + [y (1) + &1 (1) - €}]i(w) =0, (A1)

where h, is the unperturbed HF operator, €, the orbital
energy, h, the one-electron perturbation defined by H,
=Yy, h (1), and g, the operator defined by

oce

s =3[ [ anit0Iniz- Pn)iw)

o [ an v - P,

which is the origin of the so-called self-consistency
term. When we expand the first-order correction i, by
means of the virtual orbitals

11=Ecm¢ m,
m

the coupled HF equation (Al) is rewritten as
(€% =€) cpy + (| 1y |3) + Z [cy (2(mj | iny = (mj|ni))
nj

+cpy @Onn|ij) = Gun|ji))] =0 . (A2)

where (mjlin) = (m*(1)7*(2) 1»141i(1)n(2)). The coupled
HF second-order energy is calculated using the solutions
of Eq. (A2) as

?z’fF Z (Cmi G| Ry [ ) +Cmt (m|ny]d) . (a3)

In order to rewrite Eq. (A2) by means of the notations
used in the text, we introduce the following HF and elec-
tron-correlation operators.

00 = Z ho(1)
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V=Hy—Hy = Zl/ruu Zgo(l-l) (A4)

u>v

8o is the usual Coulomb minus exchange operator in the
unperturbed HF operator. Using these operators, the
quantities appearing in Eq. (A2) are rewritten as

€ = €1 = 0[Sy Hoo Sp4|0) = (0| Hoo [0,

|y |8y =0|Sp; Hy |ON2Z

20mj | in) = (mj|ni) = (0] Sp; VSty|0) = 8, 655 (0| V| 0) ,

2(mn |ij) = (mn |ji) = (0] S,y Soy V| 0) . (A5)
where S,,; is the singlet excitation operator defined by
Eq. (6), and 10) is the HF ¥,. Inserting Eq. (A5) into

Eq. (A2) and using Eq. (A4), we can rewrite the coupled
HF equation (A2) as

<olsmH1|o>+>;cn, (O] Sps Ho Sty | 0) = 8,y 845 Ey)

+ D Cr(0]Sni Sy Hyl0) =0, (A86)
nj

where E,=(0|H,10) and we have scaled the coefficient as
Crni=V2cCpy . (A7)

Using the definition of the A and B matrices given by
Eqgs. (15) and (41), Eq. (A6) is rewritten in a matrix
form as

(0|sH,|0)+(AB-E,1)C=0, (A8)

where we have restricted H, to be real (plus sign) or
pure imaginary (minus) perturbation. This equation can
be further simplified using the orthogonal transforma-
tion defined by Eqs. (42) and (43) as

(0|QH,|0) +(T - E,1)C’=0,
which is equivalent to
Cri = 0| Qui Hy [0)/(Bq - Ty) (A9)

namely to Eq. (49) of the text. Thus, Eq. (49) of the
text is identical with the coupled HF equation (Al) or
(A2) in spite of its simplicity, The coupled HF second-
order energy given by Eq. (A3) is rewritten as

EGT =22 01H,Q4: 10 0] Qui 1100/ By~ i),

(A10)
which is identical with Eq. (50) of the text. Thus, the
theory developed in Sec. IV is exactly equivalent to the
coupled HF theory.

APPENDIX B

This appendix shows that the other doubly excited
singlet function which is not included in the coupled HF
scheme does not contribute to the second-order energy
based on the HF ¥, .

Since doubly excited function corresponds to four-spin
case, there are two independent doubly excited singlet
functions. They are written explicitly as

) =zll...minj(afap- appa - BaaB+Bapa)..- || ,
(B1)

V(@) =5l -+ - minj (4B + agpa + Baaf + papa

-2capp-2ppaa).-. || . (B2)

For notational convenience, let us rewrite the single ex-
citation operators given by Eqs. (6) and (7) as Si; and
T,,;(0), respectively, and introduce following two triplet
excitation operators Tj,(1) and Thi(- 1) as

Tmi(=1)=ap5a;, . (B3)

Using these notations, the two independent doubly ex-
cited functions are written as

Tmi(l)=an,a; ,

V77 (1) =85 Sny ¥y (B4)
¥i7(2) = (1/V3) [T (0) Ty (0) + T, (1) Ty(=1)
+Tm((— 1) Tnj(l)]‘l’o. (B5)

When we consider the spin-free perturbation, the
first-order correction ¥, is expressed by the singlet
excitation operator as

T =§_;C,,,‘ Sni ¥y (B6)
m

It can never include the triplet excitation operators be-
cause of spin-conservation. In the second-order cor-
rection ¥ ), the contribution of the doubly excited func-
tion ¥77(1) may be written as §m;Z nj CpuiCpsS miS ms¥o
which is dependent on ¥ ,, given by Eq. (B6). However,
the contribution of the other function ¥T.M2) is independent
of ‘I’m: since the \Ilm given by Eq. (BS)does not include
the term composed of the triplet excitation operators.
When we write the latter contribution as, e.g., Ym;2ny
X GpniGpj Tmy(0 )T;;(0)¥, and apply the variational prin-
ciple to the E(z, given by Eq. (59), we obtain

ZG,., (| H, T, (0) T2, (0) [0y =0 . (B7)
This relation means that the contribution of ¥77'(2) to the
E gy of Eq. (59), TmiZ niGmiGns Ol HyTm:(0)T4;(0)10), van-
ishes identically. Therefore, for the spin-free per-
turbation, the doubly excited function ¥7. 7(2) does not
contribute to the second-order energy E(z, based on the
HFV¥,. This result is closely related to the discussion
given in Ref. 29. For the spin-dependent perturbation,
the roles of the functions (B4) and (B5) are interchanged.
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WL HG 1)+ (¥ | Hy 1977 =0, (A)

where ¥;is the HF ¥,. However, the left-hand-side integrals,
which reduce to electron repulsion integrals, are not generally
zero. This contradiction arises from the restriction of the
zeroth-order function ¥ «, in Eq. (58) to the HF ¥,. In other
words, doubly excited terms as well as other higher terms
are allowed to appear in the first-order correction ¥y, only
when the zeroth-orderwavefunction ¥, is an exact wavefunc-
tion or some over-HF wavefunction which satisfies the gener-
alized Brillouin relation like Eq. (A). However, this is not
the present case. Therefore, the first-order wavefunction
‘flm is written uniquely by the sum of the singly excited con-
figurations, so long as.we choose the HF ¥, as the zeroth or-
der wavefunction ¥, in Eq. (58).
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given by Eq. (59) with respect to C}] leads, as in Ref. 28, to
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wp |ww>+<wo|u'w ™=

which can never be satisfied actually. As discussed in Ref.
28, this contradiction means that the doubly excited second-
order terms free from \Ilm do not occur in the \Ilm of Eq. (59),
so long as we restrict the \Il(o, in Eq. (59) to the HF \Ilo.

This corresponds to the Hylleraas variational principle' of the
second-order energy, which is applicable only when the zeroth
order wavefunction is an eigenfunction of the zeroth-order
Hamiltonian.
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