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The Ritz variational principle, ordinarily written as a functional of the ground-state wavefunction, is rewritten
in such a way that only one-electron functions are included as variables. Three different such variational
formulas are derived explicitly based on the formula given by Hohenberg and Kohn. They constitute
variational expressions of the integrated Hellmann—Feynman theorem, integral Hellmann—Feynman
theorem, and virial theorem. These variational formulas are exact within the Born-Oppenheimer
approximation, and when applied, they give the same results as does the conventional Ritz variational
principle. However, they still have the defect that they require knowledge of the correct density function
associated with a suitably chosen reference potential. Some applications are given for one-electron

systems. A new formula for the kinetic energy plus electron—electron repulsion energy is obtained from

the integrated Hellmann Feynman theorem.

1. INTRODUCTION

Electron density, which describes the three dimen-
sional distribution of electrons in a system, is one of
the most fundamental observables in quantum mechan-
ics. Because of its physical perspicuity, it is highly
desirable to try to use this quantity as a basic variable
in quantum chemistry. The statistical models of atomic
and molecular structures, such as the Thomas—Fermi
model and its various extensions,‘ belong to this kind of
approach. However, they are crude approximations
for the actual atomic and molecular electronic struc-
tures. >3

The ordinary Ritz variational principle states that the
exact ground-state energy E is always a lower bound
for the energy functional of a trial wavefunction ¥/; E
< E[¥]. For the density approach, the first question
concerns the existence of a variational principle as a
functional of electron density; E< E[p’]. A decade ago,
Hohenberg and Kohn* showed formally that such varia-
tional principles exist, but they did not give any explicit
operational formula. The purpose of the present paper
is to give explicitly several exact operational formulas
for such variational principles.

There already exist three relations between the exact
energy and exact density functions (electron density,
transition density, etc.), the integrated form of the
Hellmann- Feynman theorem® [ or the integrated Hell-
mann- Feynman (IdHF) theorem®], the integral Hell-
mann- Feynman (IHF) theorem,” and the virial theorem. ®
However, the energies given by these theorems are not
stationary to small variations in the density functions
involved.

We first briefly develop the idea of Hohenberg and
Kohn.* Then we derive, using the energy and density
relations given by the IdHF, IHF, and virial theorems,
three different exact variational formulas which include
only one-electron functions as variables. We show that
when these formulas are applied, they give the same
results as does the ordinary Ritz variational principle.
Finally we make some general remarks.
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Il. VARIATIONAL PRINCIPLES

We consider a nondegenerate ground state of an N-
electron system within the Born-Oppenheimer approxi-
mation., The electronic Hamiltonian is written as

IC=T + Ve + Upg() 1)

where T is the electron kinetic operator, 7= 2’: -1/
2)a,, and v, the electron-electron repulsion opera-
tor, Vee=Z2 3¢ 1/7,,. The term,,(a) represents the
external potential composed of one-electron operators.
It defines the system under consideration, i.e., all of
the necessary information about the system is included
in the functional form of v and a set of parameters a
={a,} in the expression

N
V(@)=Y v(r,;0) . )
"
For atomic and molecular systems, v denotes the

electrostatic electron—nuclear attraction potential

v(l'; a)=v(l';RA,Ra,... yR"ZA’ZB’Q.. ,Zu)

M
==Y"2Z,/|r-R,| , 3)
A

and the parameters {a, } represent the nuclear coordi-
nates R, and atomic numbers Z,. The Schrddinger
equation, JC(a)¥(a)= E(a)¥(a), defines the ground state
¥(a) and the exact energy E(a). The electron density
of the state is defined by

plr;a)=N [ ¥ xs, ..., Xy; )
XW(X, X3, o0. , Xy; @)dBdx,*** dXy

=N¥(a)|¥(a)) . “)

The variable x denotes both spin (8) and space (r) coor-
dinates.

Now, we introduce an N-electron reference Hamil-
tonian 3¢’

307(B)=T+Vye+Vhe(B) (5)
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which differs from the exact Hamiltonian 3 of Eq. (1)
only in the external potential term,
N
Vie(B)=3 v'(x,; B) . 8)
“
We refer to U.,(B) and v’(r; B) as reference potentials.
The associated ground-state wavefunction and electron

density are denoted by ¥’/(8) and p’(r; B). From the
Ritz variational principle, we obtain

1| w)= (¥ [sc| ¥’y

= (W' 30" + 0 (@) = VLe(B) | ¥') )
or
E(a)< E(B)
£'(@)+ [ drp'(; Bv@mi @) -0’ B)] . (®)

where E () is the approximate energy for the exact
Hamiltonian, E(B)= (¥’'13¢|¥’), and E’(p) is the correct
energy associated with the reference Hamiltonian J¢’( B).
If we denote the sum of the kinetic and electron-electron
repulsion energies for 3¢'(8) as F’(8), Eq. (8) may be
rewritten as

E()= E(8)=F'(B)+ [ drp'(; plox: @) ()
We will soon understand that some of the parameters
B= { B,} are essentially the variational parameters.

Equations (8) and (9) were first derived by Hohenberg
and Kohn and used to prove the existence of the varia-
tional principle as a functional of electron density. *
Their claim is correct and it can be realized and ex-
tended more explicitly., Since the energy E’(B) is de-
fined as the correct energy associated with the reference
potential v/, we can use the IdHF, IHF, and virial the-
orems for E’(B) and express the variational formula
(8) explicitly in a form which includes only one-electron
functions as variables.

A. Variational IdHF formula

The integrated Hellmann- Feynman (IdHF) theorem®
is given by®

dv(r; a)

da'| drp(r; o) vy

AE(a):fc

0

, (10)

where AE(a)=E(a)- E(a,). This means that if we know
the electron density along the isoelectronic path ay- a
we can calculate the exact energy difference AE(a).
When we write all the nuclear charges as Z,=2Z, and
consider the hypothetical change from z=0to z=1, Eq.
(10) reduces to the Wilson formula,'® which gives the
absolute energy of the system!!'!?
bu(r; @)

E(a)= 8z

1

dz f drp(r; a) ) (11)
220

Integrating the IdHF formula by parts with respect to
da, we can derive a new separate formula for the change
in kinetic energy plus electron-electron repulsion en-

ergy, F=T+V,, as
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AF=- f da' f dr 20 & 8"(’ 2o @ 12)
%o
This corresponds to an explicit expression of the func-
tional F[p] introduced by Hohenberg and Kohn. When
we take nuclear coordinates as a, this equation will
provide a new picture of chemical bond formation. The
concepts of electron-cloud following and preceding,“
which were pointed out previously to be very useful for
understanding molecular structure, molecular vibra-
tions, and chemical reactions,'*!® are concepts re-

lated with the derivative, 8p/8a.

Now we derive the variational expression of the IdHF
formula, First, we assume that the reference potential
v’(r; B8) coincides with the exact potential »(r; &) at some
appropriately chosen initial states 8, and ¢,

v'(r; Bo)=v(r; o) . (13)

Then E(ag)=E’(B,). Inserting the IdHF formula for the
reference energy into Eq. (8), we obtain

8v'(r; p)

AE(a)= aE(p)= f, " ap [ arp'(e; 8> 5
0

" f drp’(r: p)v(r; @) -v'(r; B)] . (14)
Similarly, from Eqs. (9) and (12), we obtain
sE@=E(p)=- [ * ap'f ar R v )
+fdrp’(r: Bv(r; a)
- [ drprtes po)vie o) (15)

Equations (14) and (15) are equivalent and constitute
the variational expression of the IdHF formula. They
include only one-electron functions as variables. In
these equations, the choice of the reference potential
v’ is arbitrary except for Eq. (13). Its arbitrariness
may guarantee the arbitrariness of the associated den-
sity p’. The correspondence between v’ and p' is unique
as shown by Hohenberg and Kohn, The exact energy
AE(a) is always a lower bound for any associated varia-
tions in v’ and p’. When applied to actual systems,
these variational formulas give the same results as
does the ordinary Ritz variational principle (see exam-
ples). For v’ =v, these formulas reduce to the original
IdHF formulas (10) and (12). In Eq. (15), the first term
corresponds to the sum of the kinetic and electron-
electron repulsion energies and the last two terms to
the electron—nuclear attraction energy, but in Eq. (14),
such a correspondence does not exist. We may suppose
that the trial density p’ is N-representable!® in this
formulation,

Although the variational formulas (14) and (15) are
formally exact, they still have a defect in general ap-
plicability. We have to know the correct density p’ as-
sociated with the reference potential v’. However, we
don’t have available any way, at present, to calculate
p’ except by solving the Schrédinger equation for the
reference Hamiltonian % ’(3)! The reference Hamil-
tonian 3¢’(B) includes the same two-electron interaction

No. 3, 1 August 1975



1114 H. Nakatsuji and R. G. Parr: Variational principles

part U,, as does the exact Hamiltonian 3¢(a), and a pos-
sible simplification in the one-electron potential v’ does
not necessarily help much the solution of the Schré-
dinger equation for the reference Hamiltonian, It can
be as hard as solving the exact Schrodinger equation,
Jo(a)¥(a)=E(a)¥(a).

An important exception to this is the case of the har—
monic reference potential. Kestner and Sinanoglu have
shown that the Schrédinger equation for the two-electron
model Hamiltonian

3'(B)= - $(&y+ Bg)+ B0 F+73)+ Vg (18)

can be solved exactly and studied the electron-correla-
tion effect in this model system.

B. Variational IHF formula
The integral Hellmann-Feynman (IHF) theorem’ is
written as
AE(@)- [ drrirag,a)[v(r 0)-vir a0 . (A7)
where 7(r; ay, @) is the normalized transition density,

defined by

N .
7(r; @, @)= g (¥lag) [ ¥(@)) . (18)
The quantity S is the overlap integral between the initial
(a,) and final (@) states,

S= (¥(ag) [ ¥(a) . (19)
The nature of the IHF theorem has been well investi-
gated, ®7

In order to calculate the absolute energy of the system
from the IHF formula, we may use the wavefunction for
the state in which v(r; ag}= 0, i.e., the zero-energy
state

H(0)¥(0)=0 , (20)
where H(0) is given by
H(0)=T+7,, . (21)

'For one-electron systems, ¥(0) may be written in un-
normalized form as

¥(0)=1 , (22)

while for two-electron systems, it may be written as

¥(0)=3 rf/nt(ns )l . (23)

n=0
Both Eqs. (22) and (23) satisfy Eq. (20).°

E(@=E(8)=3 [ drlat)o’e, = Blen D Ry [ arortri ) 2555

where p’(r; 8) and p’(r, r’; 8) are the correct density
functions associated with the reference potential v/,

and the quantities R4 are the nuclear coordinates chosen
in the reference potential v’.

The variational expression of the IHF theorem may
be derived by a method similar to that used for the IdHF
case. We again assume Eq. (13) and obtain the result

AE(a)< Ai(ﬁ)zfdrf’(r; Bo. B)v'(x; B) - v(r; ag)]

—fdrp'(r:B)[v'(r: B -v(r;a)] . (24)

Here, 7’ is the correct transition density associated with
the reference potential v’. In contrast with the IdHF
case, this formula does not require knowledge of p’ over
the whole range (- 3, but it does require the two quan-
tities, p’ and 7/, at the final state 8. In use of Eq. (24),
the point = 3, must be excluded from the variational
domain. since ¥(0) is not square integrable,

C. Variational virial formula

The quantum-mechanical virial theorem also provides
a relationship between the energy and the density func-
tion of the system. However, this theorem is restric-
tive in that all the potentials of the system are pre-
sumed to have the form of the electrostatic Coulomb
potential, i.e., to be linear in the inverses of the in-
terparticle distances. For polyatomic molecules, the
theorem may be written®

8E
8R,

2T+V,,+V,,,+ZRA' (25)
A

where the derivative 8E/8R, means a vector

(BE 8E 8E )
98X, ' 8Y, "’ 8Z, :

Using the Hellmann- Feynman theorem

8v(r a)

fdr (r; @) —2—~> | (26)

and the relation E=T+V .+ V,,, we can rewrite the vi-
rial theorem in the form

E(e)=} [ drla@)ote, 5’ lens

- 5 R f drotes @) 252 el (21)

where p(r, r’; @) is the first-order density matrix,'® Its
diagonal element is the electron density, p(r; a). This
theorem requires knowledge of both p(r; @) and p(r,

r’; a).

The variational expression associated with the virial
theorem is found to be

ov'(r; B) jdrp'(r; B)v(r; a)- v'(r; 8 , (28)

Note that in the variational formula (28), the choice
of the reference potential is not quite arbitrary but is
restricted to have the form of an electrostatic potential.
In comparison with the IdHF and IHF cases, the varia-
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tional virial formula therefore is more limited in ap-
plicability.

I, ILLUSTRATIVE APPLICATIONS

In this section, we give some applications of the vari-
ational formulas given above. Owing to the difficulties
already stated, we limit ourselves to one-electron
problems. They are the Z dependence of the electron
density of one-electron atom, and the single Gaussian
orbital approximations for one-electron atoms and for

2.

A. Z dependence

The electron density of the ground state of the one-
electron atom with nuclear charge Z is given by the
formula

plr; Z)=(2%/7) exp(- 227) . (20)

The associated potential is
v(r;2)=-2/r . (30)

We suppose that we don’t know the Z dependence of the
electron density, and we choose as a trial density

p'(r; Z,n)=Nexp(-2Z"r) , (31)

wherenis a variational parameter. From the normaliza-

tion condition, N=Z /7.  The reference potential as-

sociated with p’(r; Z,n) is ‘
v'(r;Z,n)==-2"/r . (32)

As an initial state, we could choose Z,=0, Z,=1, or
ny=1; all of these states satisfy Eq. (13). Here we
choose Zy=0 as our initial state. Hence E(Z=0)=0.

First we apply the variational expression of the IdHF
energy. Inserting the above quantities into Eqs. (14)
and (15), we obtain

E(Z) <E(z,n)= % fo az’ f drZ"*" exp(- 22'"r a—;—, (_ ir'_")

+g-s—tfdr[-%+—z;"-]exp(-zz”r) ,

m
and e
E(Z)=E(Z,n)= _117[0‘ dz'fd" (‘ %)
o etz B )t
(34)

respectively. After integration, both i‘educe to

E(z, n)=%22" -Z™1, !’;E%iL (22" - z™Y)10gz . (35)
The condition 8E(Z,n)/#n=0 gives Z=1 or n=1. The
former corresponds to the hydrogen atom case and the
latter gives the correct Z dependence as seen in Eq.
(29). The best energy is thus £(n=1)=-(1/2)Z%, which
is the exact energy of the one-electron atom. Note that
the first integral of the rhs of Eq. (34) gives the exact
kinetic energy (1/2)2% when n=1, as it should.

Secondly, 'we apply the variational IHF formula (24).
The transition density 7’ is obtained from Eq. (22) as

Zan
1'(r;0,Z)=Tﬂ-exp(-Z"r) . (36)
Thus Eq. (24) becomes

EsE‘(n):EI; Z”‘fdr(—z"/r)exp(—z"r)

-117 z3" | dr(-2"/r +Z/7) exp(-2Z"r)

=3z -z™ ., (37)
This is identical with Eq. (35). The minimum condition

therefore gives the same correct Z dependence, n=1,
and the exact energy, -(1/2)Z2.

Lastly, we test the variational virial formula. The
quantity p’ (r,r’; 8) is written down as

ote, 52,m)= () expl= 2707 7] (38

The second term of the rhs of Eq. (28) vanishes for this
system. Then, Eq. (28) becomes, after some manipula-
tions,

ESE(n)=-z—;1fdr (z3"/2 = Z"/7) expl~2Z"r)

+z1:—"fdr(-z/r+z"/r) exp(-2Z™r)

=4zin-z™ | (39)
This is again identical with Eq. (35). The minimum

condition gives the correct Z dependence, n=1, and the
exact energy, -(1/2)Z".

Note that the integrands of Eqs. (33), (34), (37), and
(39) are all different even when n=1. These integrands
might be called “energy densities,” since their integra-
tion over the whole three dimensional space gives the
energy of the system. A similar ambiguity of the en-
ergy density will also be seen in the applications below.

B. Single Gaussian orbital-harmonic potential

We may approximate the ground state of a one-elec-
tron atom by a single Gaussian orbital

¥’ =(8/n)* M exp(- § %) . (40)
Since ¥’ is an eigenfunction for the harmonic potential
v'(r, B)= %pzrz ’ (41)

this approximation corresponds to taking a harmonic
potential as a reference potential. Note that the varia-
tional virial formula cannot be applied to this model,
because the potential (41) is not an electrostatic poten-

" tial.

First, we apply the variational IdHF formula. As an
initial state, we choose the state ;=0 for the refer-
ence potential and Zy=0 for the exact potential, so that
they satisfy Eq. (13). The trial density is just the
square of Eq. (40). The variational formula (15) thus
becomes

m
X [B:alz exp(— ﬁ"" z)J
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+ (—3- )"2 f dr (- Z/7) exp(= Br?)

s

B 1/2
38~ z(;) z. (42)
The minimum condition gives the best values of g8 as
Buest = (16/97) Z2 and the best variational energy as
E(Byeot) = — (4/37) Z2= ~0.424 Z®. This is 85% of the ex-
act energy, ~(1/2)Z%=-0.5 Z%. The second derivative
of £(B) shows that this corresponds to the true mini-
mum. Note that the first term of Eq. (42), which is the
kinetic energy part, gives the value (4/37)Z%. Thus the
virial theorem holds. These results are identical with
those of the conventional Ritz variational principle.®

Next, we use the variational IHF formula. The nor-
malized transition density is obtained as

8/2
7'(r;0, B) = (2%) exp(-$87%) . (43)
Then, Eq. (24) becomes

E=8e=(£)" [arts st ) exl- 487

]

..(g)uzfdr(% B2r2+2/r)exp(~B7r?)

s g 1/2
=:8-2(-) z, (44)

which is identical with Eq. (42). Thus, both of the vari-
ational IdHF and IHF formulas give the same answer as
does the ordinary Ritz variational principle.

C. Harmonic potential as a model of H*,

Here, we approximate the ground state of the hydro-
gen molecule-ion by the single Gaussian orbital [Eq.
(40)] centered at the origin of coordinates. The refer-
ence potential is the harmonic potential given by Eq.
(41). The two protons are placed along the x axis apart
by distance R from the origin, 2R being the internu-
clear distance. The exact potential is then given by

vlr;Z,R)=-2/|r-R| -2Z/|r+R|, (45)
where R=(R,0,0).

First, we apply the variational IdHF formula. As in
a preceding example, Eq. (15) is rewritten as

s=8gR)-~(1)" )] g [artiorry Lo e et ) S ol ol | emi-ry, o

which reduces to'?
E<E(8R)=18-ZertrVE), (47)

where erf(t) stands for the error function

erf(t)r:T;— j;‘exp(—u‘)du X (48)

The total energy of the system is the sum of the elec-
tronic energy and the nuclear—nuclear repulsion ener-

gy:
W=W(8,R)=3 ﬂ— el'f(R\/?)+ . (49)
The best value of g and the theoretical estimate of the

internuclear distance 2R, are calculated from the con-
ditions

aW(8, R) _ -0; 8W(B, R) _
1] SR 0,

which gives Byes=0.635, 2Rg=1.932 a.u.2® The ex-
perimental distance is 2.00 a.u. The variational en-
ergy at R =R, is 84% of the experimental value (-0.603
a.u.) and the calculated dissociation energy is 79% of
the experimental value (-0.1026 a.u.). The variational
IHF formula and the ordinary Ritz variational method?
also give the same results.

(50)

IV. CONCLUDING REMARKS

In this paper we have sought to express the variation-
al principle as a functional of only one-electron func-
tions. Based on a formula given by Hohenberg and
Kohn, three explicit expressions of such variational

|
formulas have been derived from the energy and density
relationships provided by the IdHF, IHF, and virial
theorems. They are exact within the Born-Oppenheim-
er approximation, and when applied, they give the same
results as does the conventional Ritz variational meth-
od. Although the original IdHF, IHF, and virial energy
formulas are not stationary to small changes in the one-
electron functions included, the equations we have given
are stationary to such changes. For exact one-elec-
tron functions, they reduce to the original IdHF, IHF,
and virial theorems.

The problem of the present variational formulas is
that they require the correct density functions associ-
ated with an arbitrarily chosen reference potential.
This is impossible to have, in general, for many-elec-
tron systems, except for some harmonic potentials.!?
If we had a method for obtaining the potential v’ as-
sociated with an arbitrarily chosen trial density p’, we
could eliminate the reference potential »’ from our ex-
pressions. Although there is no such method available,
at present, 2 even an approximate method could be very
helpful. In developing an approximate method, it would
be necessary to pay due attention to the problem of N-
representability.!® Trial density functions should be re-
stricted to those which are N-representable.
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