Q. What is the definition of the excitation energy ? Is it the relative energy from the SAC state (closed-shell singlet state) or the lowest state in each spin-symmetry?

 

A. The result of the diagonalization of the SAC-CI Hamiltonian matrix would be printed out as follows.

 

###   1-st  ###           ---   1st state in this spin multiplicity ---

     This state is being used for optimizations.

     Total energy       in au =    -137.984448

     Correlation energy in au =      -0.211509

     Excitation energy  in au =       0.067464    in eV =       1.835777

   *SINGLE EXCITATION

        8    9     0.95882         8   13    -0.20786

        7    9    -0.05952         4    9    -0.03690

 

Here, “Excitation energy” is the relative energy from the SAC state.  The same is for the other spin multiplicities. On the other hand, you would have the result for the transition property of the singlet states as followings.

 

 Transition dipole moment of   singlet state from SAC ground state

 -------------------------------------------------------------------------------

 Symmetry  Solution Excitation     Transition dipole moment (au)      Osc.

                    energy (eV)       X           Y           Z       strength

 -------------------------------------------------------------------------------

    A1         0      0.0          Excitations are from this state.

    A1         1     10.7545      0.0000      0.0000      0.6593      0.1145

    A1         2     19.1017      0.0000      0.0000     -0.7882      0.2907

    A2         1     10.7291      0.0000      0.0000      0.0000      0.0000

    A2         2     26.5243      0.0000      0.0000      0.0000      0.0000

    B1         1      8.5939      0.2738      0.0000      0.0000      0.0158

    B1         2     24.9801      0.0961      0.0000      0.0000      0.0056

    B2         1     13.2224      0.0000     -0.6270      0.0000      0.1273

    B2         2     15.9912      0.0000      1.1672      0.0000      0.5337

 -------------------------------------------------------------------------------

 

As you see in the output, the excitation energy is calculated as the relative energy from the SAC ground state.  However, for the other spin-multiplicities, the excitation energy is calculated from the energy of the lowest state in each spin-multiplicity. See an example shown below. The excitation energies of the double ionized states are calculated from the 12B1 state which the lowest state within the SAC-CI result.

 

Transition dipole moment of   ionized state from symmetry B1     1-th state

 -------------------------------------------------------------------------------

 Symmetry  Solution Excitation     Transition dipole moment (au)      Osc.

                    energy (eV)       X           Y           Z       strength

 -------------------------------------------------------------------------------

    A1         1      1.7771     -0.1919      0.0000      0.0000      0.0016

    A1         2     22.9129      0.2647      0.0000      0.0000      0.0393

    A1         3     27.5008      0.1943      0.0000      0.0000      0.0254

    B1         1      0.0          Excitations are from this state.

    B2         1      7.1924      0.0000      0.0000      0.0000      0.0000

 -------------------------------------------------------------------------------