(Last update: Apr. 14, 2009)

| Japanese | English | Photo |
Curriculum Vitae



名前 中嶋 浩之 (なかしま ひろゆき) (Hiroyuki Nakashima)
生まれ 1979年, 愛知県小牧市, 日本
e-mail h.nakashimaqcri.or.jp
星座 水瓶座
血液型 A型を自負
趣味 猫、スキー、バレーボール、水泳、ビリヤード、旅行、温泉、グルメ、理論的血液型予測
座右の銘 「理想は高く目標は低く」、「幸せは猫ろんで待ちましょう」
最近思うこと 「猫の可愛さは異常」
好きな言葉 exact (形: 正確な、きっちりとした、厳正な)
嫌いな言葉 exact (動: (努力、服従などを)強要する)、泥縄
資格・検定 ソフトウェア開発技術者(情報技術者試験)、血液型検定、猫との暮らし方検定、そろばん2級
リンク Research MapORCIDResearch Gate




1997 愛知県立小牧南高等学校卒業
京都大学工学部工業化学科入学
2001 京都大学工学部工業化学科卒業
2003 京都大学大学院工学研究科合成・生物化学専攻修士課程修了
2006 京都大学大学院工学研究科合成・生物化学専攻博士後期課程修了
学位: 京都大学博士 (工学)
2006 京都大学大学院工学研究科 - 博士研究員
2007 - now 量子化学研究協会研究所 (量化研) - 第四部門 部門長




(last update: Sep. 1, 2011)
50 Exact theory applied to the lithium atom,
H. Nakatsuji and H. Nakashima,
J. Chem. Theory Comput. 20, 8001-8009 (2024).
49 Accurate scaling functions of the scaled Schrödinger equation. II. Variational examination of the correct scaling Functions with the free complement theory applied to the helium atom,
H. Nakatsuji and H. Nakashima,
J. Chem. Theory Comput. 20, 3749-3765 (2024).
48 Potential energy curves of the low-lying five 1Σ+ and 1Π states of a CH+ molecule based on the free complement - local Schrödinger equation theory and the chemical formula theory,
H. Nakashima and H. Nakatsuji,
J. Chem. Theory Comput. 19, 6733-6744 (2023).
47 Solving the Schrödinger equation of a planar model H4 molecule,
H. Nakashima and H. Nakatsuji,
Chem. Phys. Lett. 815, 140359-1-7 (2023).
46 Direct local sampling method for solving the Schrödinger equation with the free complement - local Schrödinger equation theory,
H. Nakatsuji and H. Nakashima,
Chem. Phys. Lett. 806, 140002-1-9 (2022).
45 Potential curves of the lower nine states of Li2 molecule: Accurate calculations with the free complement theory and the comparisons with the SAC/SAC-CI results,
H. Nakatsuji and H. Nakashima,
J. Chem. Phys. 157, 094109-1-14 (2022).
44 Accurate scaling functions of the scaled Schrödinger equation,
H. Nakatsuji, H. Nakashima, and Y. I. Kurokawa,
J. Chem. Phys. 156, 014113-1-14 (2022).
43 Free complement sij-assisted rij theory: Variational calculation of the quintet state of a carbon atom,
H. Nakashima and H. Nakatsuji,
Phys. Rev. A 102, 052835-1-15 (2020).
42 Solving the Schrödinger equation of the hydrogen molecule with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of Π symmetry,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Chem. Chem. Phys. 22, 13489-13497 (2020).
41 Solving the Schrödinger equation of atoms and molecules using one- and two-electron integrals only,
H. Nakatsuji, H. Nakashima, and Y. I. Kurokawa,
Phys. Rev. A 101, 062508-1-10 (2020).
40 Inverse Hamiltonian method assisted by the complex scaling technique for solving the Dirac-Coulomb equation: Helium isoelectronic atoms,
H. Nakashima and H. Nakatsuji,
Chem. Phys. Lett. 749, 137447-1-7 (2020).
39 Solving the Schrödinger equation with the free-complement chemical-formula theory. Variational study of the ground and excited states of Be and Li atoms,
H. Nakatsuji and H. Nakashima,
J. Chem. Phys. 150, 044105-1-24 (2019).
38 Solving the Schrödinger equation of hydrogen molecule with the free-complement variational theory: Essentially exact potential curves and vibrational levels of the ground and excited states of Σ symmetry,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Chem. Chem. Phys. 21, 6327-6340 (2019).
37 Solving the Schrödinger equation of hydrogen molecule with the free complement - local Schrödinger equation method: Potential energy curves of the ground and singly excited singlet and triplet states, Σ, Π, Δ, and Φ,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 149, 244116-1-15 (2018).
36 Solving the Schrödinger equation of atoms and molecules with the free-complement chemical-formula theory: First-row atoms and small molecules,
H. Nakatsuji, H. Nakashima, and Y. I. Kurokawa,
J. Chem. Phys. 149, 114106-1-16 (2018).
35 Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory,
H. Nakatsuji, H. Nakashima, and Y. I. Kurokawa,
J. Chem. Phys. 149, 114105-1-14 (2018).
34 Solving the Schrödinger equations of organic and inorganic molecules by the K computer,
H. Nakatsuji, H. Nakashima, Y. I. Kurokawa, and T. Miyahara,
HPCI Research Report 2, 39-45 (2017).
33 Analytical potential curve from Non-Born-Oppenheimer wave function: Application to hydrogen molecular ion,
H. Nakashima and H. Nakatsuji,
AIP Conf. Proc. 1790, 020017-1-4 (2016).
32 General coalescence conditions for the exact wave functions: Higher-order relations for Coulombic and non-Coulombic systems,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
Adv. In Quantum Chem. 73, 59-79 (2016).
31 Solving the Schrödinger equation of molecules by relaxing the antisymmetry rule: Inter-exchange theory,
H. Nakatsuji and H. Nakashima,
J. Chem. Phys. 142, 194101-1-10 (2015).
30 Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules. Basic theories and features,
H. Nakatsuji and H. Nakashima,
J. Chem. Phys. 142, 084117-1-18 (2015).
29 Electronic excitation spectra of doublet anion radicals of cyanobenzene and nitrobenzene derivatives: SAC-CI theoretical studies,
H. Nakashima, Y. Honda, T. Shida, and H. Nakatsuji,
Mol. Phys. 113, 1728-1739 (2015). (Special issue for Prof. N. C. Handy)
28 General coalescence conditions for the exact wave functions II: Higher-Order relations for many-particle systems,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. 140, 214103-1-11 (2014).
27 Non-Born-Oppenheimer potential energy curve: Hydrogen molecular ion with highly accurate free complement method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 139, 074105-1-9 (2013).
26 General coalescence conditions for the exact wave functions: Higher-order relations for two-particle systems,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. 139, 044114-1-7 (2013).
25 Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement - local Schrödinger equation method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 139, 044112-1-16 (2013).
24 Solving the non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion with the free complement method II: Highly-accurate electronic, vibrational, and rotational excited states,
H. Nakashima, Y. Hijikata, and H. Nakatsuji,
Astrophys. J. 770, 144-1-9 (2013).
23 Solving the Schrödinger and Dirac equations of atoms and molecules with massively parallel super-computer,
H. Nakashima, A. Ishikawa, Y. I. Kurokawa, and H. Nakatsuji,
High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, 1394 (2012).
22 Electronic excitation spectra of radical anions of cyanoethylenes and cyanobenzenes: Symmetry adapted cluster-configuration interaction study,
H. Nakashima, T. Shida, and H. Nakatsuji,
J. Chem. Phys. 136, 214306-1-13 (2012).
21 SAC-CI methodology applied to molecular spectroscopy and photo-biology,
J. Hasegawa, T. Miyahara, H. Nakashima, and H. Nakatsuji,
AIP Conf. Proc. Theory and Applications of Computational Chemistry (TACC) 1456, 101-108 (2012).
20 Solving the Schrödinger equation of hydrogen molecular ion in the magnetic field with the free complement method,
A. Ishikawa, H. Nakashima, and H. Nakatsuji,
Progress in Theoretical Chemistry and Physics (Proceedings of QSCP-XVI), "Quantum Systems in Chemistry and Physics" 26, 255-274 (2012). (Editted by Prof. K. Nishikawa et al.)
19 Analytical evaluations of exponentially correlated unlinked one-center, three- and four-electron integrals,
C. Wang, P. Mei, Y. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Rev. A 85, 042512-1-14 (2012).
18 Accurate solutions of the Schrödinger and Dirac equations of H2+, HD+, and HT+: With and without Born-Oppenheimer approximation and under magnetic field,
A. Ishikawa, H. Nakashima, and H. Nakatsuji,
Chem. Phys. 401, 62-72 (2012). (Special issue for Prof. D. Mukherjee)
17 Relativistic free complement method for correctly solving the Dirac equation with the applications to hydrogen isoelectronic atoms,
H. Nakashima and H. Nakatsuji,
Theor. Chem. Acc. 129, 567-574 (2011). (Special issue for Prof. P. Pyykkö)
16 Solving the Schrödinger and Dirac equations for a hydrogen atom in the universe's strongest magnetic fields with the free complement method,
H. Nakashima and H. Nakatsuji,
Astrophys. J. 725, 528-533 (2010).
15 LiH potential energy curves for ground and excited states with the free complement local Schrödinger equation method,
A. Bande, H. Nakashima, and H. Nakatsuji,
Chem. Phys. Lett. 496, 347-350 (2010).
14 Free complement method for solving the Schrödinger equation: how accurately can we solve the Schrödinger equation,
H. Nakatsuji and H. Nakashima,
Progress in Theoretical Chemistry and Physics (Proceedings of QSCP-XIII), "Advances in the Theory of Atomic and Molecular Systems" 19, 47-60 (2009). (Editted by Prof. P. Piecuch et al.)
13 How does the free complement wave function become accurate and finally exact starting from the Slater and Gaussian initial functions for hydrogen atom?,
H. Nakatsuji and H. Nakashima,
Int. J. Quantum Chem. 109, 2248-2262 (2009). (Special issue for Prof. K. Hirao)
12 Solving non-Born Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method,
Y. Hijikata, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. 130, 024102-1-11 (2009).
11 How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?,
H. Nakashima and H. Nakatsuji,
Phys. Rev. Lett. 101, 240406-1-4 (2008).
10 Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method,
Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Chem. Chem. Phys. 10, 4486-4494 (2008).
9 Solving the electron and electron-nuclear Schrödinger equations for the excited states of helium atom with the free iterative-complement-interaction method,
H. Nakashima, Y. Hijikata, and H. Nakatsuji,
J. Chem. Phys. 128, 154108-1-10 (2008).
8 Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 128, 154107-1-7 (2008).
7 Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method,
A. Ishikawa, H. Nakashima, and H. Nakatsuji,
J. Chem. Phys. 128, 124103-1-12 (2008).
6 Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function,
H. Nakatsuji, H. Nakashima, Y. Kurokawa, and A. Ishikawa,
Phys. Rev. Lett. 99, 240402-1-4 (2007).
5 Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method,
H. Nakashima and H. Nakatsuji,
J. Chem. Phys. 127, 224104-1-14 (2007).
4 On the O2 binding of Fe-porphyrin, Fe-porphycene, and Fe-corrphycene complexes,
H. Nakashima, J. Hasegawa, and H. Nakatsuji,
J. Comput. Chem. 27, 1363-1372 (2006).
3 On the reversible O2 binding of Fe-porphyrin complex,
H. Nakashima, J. Hasegawa, and H. Nakatsuji,
J. Comput. Chem. 27, 426-433 (2006).
2 Free iterative-complement-interaction calculations of the hydrogen molecule,
Y. Kurokawa, H. Nakashima, and H. Nakatsuji,
Phys. Rev. A 72, 062502-1-11 (2005).
1 Analytically solving the relativistic Dirac-Coulomb equation for atoms and molecules,
H. Nakatsuji and H. Nakashima,
Phys. Rev. Lett. 95, 050407-1-4 (2005).




(last update: Oct. 1, 2012)
4 正確なポテンシャル面と反応経路探索,
中嶋 浩之,
IQCE-NEWSフォーラム No. 114, 1 (2024).
3 宇宙化学の躍進: 超精密量子化学への期待と挑戦,
中嶋 浩之,
フロンティア (理論化学会誌) Vol. 6, No. 3, 102-109 (2024).
2 宇宙の物質科学に対するシュレーディンガー・レベルの量子化学計算,
中嶋 浩之,
低温科学 (Low Temperature Science)「宇宙分子進化 (Evolution of Molecules in Space)」特集号 78, 199-209 (2020) (ISSN 1880-7593).
1 超並列計算機TSUBAMEの利用による幾つかの有機化合物のシュレーディンガー解の計算,
H. Nakatsuji and H. Nakashima,
TSUBAME e-Science J. 11, 8-12, 24-29 (2014).




(last update: Sep. 22, 2011)
26 (In progress),
H. Nakashima and H. Nakatsuji,
The 11th Conference of the Asia-Pacific Association of Theoretical and Computational Chemists (APATCC11),
Kobe, Japan,
Apr. 21-25 (2025).
25 Recent highly accurate calculations of small atoms and molecules by solving the Schrödinger equations with the free complement theory,
H. Nakashima and H. Nakatsuji,
The 8th Japan-Czech-Slovakia (JCS) International Symposium on Theoretical Chemistry (JCS8),
Sapporo, Japan,
Jun. 17-21 (2024).
24 正確な量子化学理論の実践と応用-化学研究への実用化を目指して-,
中嶋 浩之, 中辻 博,
化学反応経路探索のニューフロンティア(SRPS2023),
大阪公立大学, 大阪,
Sep. 11 (2023) (In Japanese).
23 正確な量子化学理論の実践と応用-化学研究への実用化を目指して-,
中嶋 浩之, 中辻 博,
第15回革新的量子化学シンポジウム,
キャンパスプラザ京都, 京都,
May. 27 (2023) (In Japanese).
22 Solving Schrödinger equation of small molecules with free complement theory,
H. Nakashima and H. Nakatsuji,
The 10th Asia-Pacific Conference of Theoretical and Computational Chemistry (APCTCC-10),
Quy Nhon, Vietnam,
Feb. 19-23 (2023). (Plenary lecture of Pople Medal 2020)
21 Implementation of Slater-type one-center atomic integrals for accurate variational calculations of small atoms by free complement theory,
H. Nakashima and H. Nakatsuji,
The 9th Asia-Pacific Conference of Theoretical and Computational Chemistry (APCTCC9),
Sydney, Australia,
Sep. 30-Oct. 4 (2019). (Invited Communication)
20 Potential energy curves and nature of chemical bonds studied by the free complement variational (FC-V) theory,
H. Nakashima, Y. I. Kurokawa, and H. Nakatsuji,
7th Japan-Czech-Slovakia Symposium on Theoretical Chemistry (7th JCS),
Prague, Czech,
Jun. 21-24 (2018). (Invited Poster)
19 Solving the Schrödinger equations: Variational and exact calculations of small atoms and molecules by the free complement theory,
H. Nakashima, Y. I. Kurokawa, and H. Nakatsuji,
The 5th International WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers,
Osaka City University, Osaka, Japan,
Mar. 29-30 (2018).
18 Important and interesting message from the exact Non-BO solutions of the Schrödinger equation by the free-complement methodology,
H. Nakashima and H. Nakatsuji,
2nd International Symposium on Quantum Chemistry,
Kwansei Gakuin University, Hyogo, Japan,
Nov. 8 (2017).
17 Solving the BO and Non-BO Schrödinger equations and analytical potential curves of small molecules with the free complement method,
H. Nakashima and H. Nakatsuji,
The 5th Awaji International Workshop on "Electron Spin Science & Technology: Biological and Materials Science Oriented Applications" (5th AWEST 2017),
Awaji-Yumebutai, Hyogo, Japan,
Jun. 18-21 (2017).
16 Solving the Non-BO Schrödinger equations and analytical potential curves of small molecules with the free complement method,
H. Nakashima and H. Nakatsuji,
The 4th OCU International WS on Quantum Chemistry/Quantum Chemical Calculations on Quantum Computers: Quantum Algorithms 2017,
Osaka City University, Osaka, Japan,
Mar. 29-30 (2017).
15 正確なNon-BO計算理論と解析的ポテンシャル面,
中嶋 浩之, 中辻 博,
化学反応経路探索のニューフロンティア2016,
京都教育文化センター, 京都,
Sep. 12 (2016) (In Japanese).
14 Solving the BO and Non-BO Schrödinger equations of small molecules by the free complement method,
H. Nakashima and H. Nakatsuji,
Twenty-first International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXI),
Vancouver, Canada,
Jul. 2-9 (2016).
13 (参加中止) 正確なNon-BO計算と解析的ポテンシャル面,
中嶋 浩之, 中辻 博,
第4回CUTEシンポジウム: コンピュータ化学「京コンピュータと理論化学」,
三重大学, 津,
Jun. 16 (2016) (In Japanese).
12 Solving the Schrödinger equations of interstellar molecules,
H. Nakashima and H. Nakatsuji,
Computational Chemistry (CC) Symposium in 12th International Conference of Computational Methods in Sciences and Engineering (ICCMSE2016),
Athens, Greece,
Mar. 17-20 (2016).
11 Solving the Schrödinger equations of interstellar molecules,
H. Nakashima and H. Nakatsuji,
Kobe Workshop for Material Design on Strongly Correlated Electrons in Molecules and Materials,
RIKEN(AICS), Kobe, Japan,
Feb. 17-18 (2016).
10 超並列計算機による有機・無機化合物のシュレーディンガー解の計算,
中嶋 浩之, 黒川 悠索, 中辻 博,
High Performance Computing Chemistry (HPCC) ワークショップ,
理化学研究所(計算科学研究機構), 神戸,
Dec. 1 (2015) (In Japanese).
9 Solving the Schrödinger equation and constructing accurate database from interstellar molecules to general organic and inorganic molecules,
H. Nakashima and H. Nakatsuji,
6th Japan-Czech-Slovakia International Symposium on Theoretical Chemistry (6th JCS)
Smolenice Castle (near Bratislava), Slovakia,
Oct. 11-15 (2015).
8 星間分子の超精密量子化学計算,
中嶋 浩之, 中辻 博,
国立天文台談話会,
国立天文台, 東京 (三鷹),
Apr. 4 (2014) (In Japanese).
7 星間分子の超精密量子化学計算,
中嶋 浩之, 中辻 博,
「階層と全体」シンポジウム,
名古屋,
Feb. 20-21 (2014) (In Japanese).
6 Solving the Schrödinger equation of general molecule with the from atom to molecule method,
H. Nakashima and H. Nakatsuji,
The 17th Malaysian Chemical Congress (17th MCC),
Kuala Lumpur, Malaysia,
Oct. 15-17 (2012).
5 Solving the Schrödinger and Dirac-Coulomb equations: Applications to a few-electron atoms and molecules,
H. Nakashima and H. Nakatsuji,
The 14th Asian Chemical Congress (14th ACC),
Bangkok, Thailand,
Sep. 5-7 (2011).
4 Recent progress in accurately solving the Schrödinger equations of general atoms and molecules,
H. Nakashima and H. Nakatsuji,
Asian International Symposium - Theoretical and Computational Chemistry,
Kindai University, Osaka, Japan,
Mar. 28 (2010).
3 Recent progress in accurately solving the Schrödinger equations of general atoms and molecules,
H. Nakashima and H. Nakatsuji,
Of Molecules and Materials (A Survey of Recent Concepts),
Kolkata, India,
Dec. 28-29 (2009).
2 Recent development in accurately solving the Schrödinger equations of general atoms and molecules,
H. Nakashima and H. Nakatsuji,
The 13th Asian Chemical Congress (13th ACC),
Shanghai, China,
Sep. 14-16 (2009).
1 正確な予言学としての量子化学の確立にむけて - 少数電子原子・分子系シュレーディンガー方程式の超精密解,
中嶋 浩之, 中辻 博,
QCRI JST-CREST Symposium 「革新的量子化学の展開」,
京都,
May 31 (2008) (In Japanese).




(last update: Sep. 22, 2011)
3 Solving the Schrödinger equations of interstellar molecules,
H. Nakashima and H. Nakatsuji,
The 7th Asia-Pacific Conference of Theoretical and Computational Chemistry (APCTCC7),
Kaohsiung, Taiwan,
Jan. 25-28 (2016).
2 Solving the Schrödinger and Dirac-Coulomb equations with and without magnetic fields,
H. Nakashima and H. Nakatsuji,
XVIth International Workshop on Quantum Systems in Chemistry and Physics (QSCP-XVI),
Kanazawa, Japan,
Sep. 11-17 (2011).
1 Solving the Schrödinger and Dirac-Coulomb equations,
H. Nakashima and H. Nakatsuji,
Pacifichem 2010 (Symposium #10 Computational Quantum Chemistry: Theory and Interactions with Experiment in honor of Hiroshi Nakatsuji, Kimihiko Hirao, and Shigeru Nagase),
Hawaii, USA,
Dec. 15-20 (2010).




(last update: Oct. 1, 2012)
3 2020 Pople Medal,
Dr. Hiroyuki Nakashima received the 2020 Pople Medal, which is the prize on the Asia-Pacific Association of Theoretical & Computational Chemists (APATCC) for an outstanding younger theoretical/computational chemist. See http://www.apatcc.org/awards.html.
Jan. 18 (2020).
2 The 15th International Congress of Quantum Chemistry (The 15th ICQC) (Beijing, China),
Best Poster Awards,
Solving the Schrödinger equations by the FC-LSE method: Application to some organic molecules. I,
H. Nakashima, Y. I. Kurokawa, and H. Nakatsuji,
Jun. 8-13 (2015).
1 京コンピュータシンポジウム2012 (神戸),
ポスターセッション優秀賞,
超並列計算機の利用による原子・分子のシュレーディンガー解の計算,
中嶋 浩之, 石川 敦之, 黒川 悠索, 中辻 博,
Jun. 14,15 (2012).
(2012年11月に米国ユタ州ソルトレイクシティで行われるスーパーコンピューティング国際会議(SC12)に、理化学研究所のチームの一員(SC12レポーター)として派遣され、ポスター発表を行った。)




(last update: Oct. 1, 2012)
8 科研費 基盤研究B (2023-2025)
「量子計算機で解くシュレーディンガー厳密解法の開発」
研究代表者
7 科研費 挑戦的研究(萌芽) (2020-2021)
「シュレーディンガー・レベルの理論原子スペクトルと分子のExact波動関数の構築」
研究代表者
6 科研費 若手研究A (2017-2020)
「Non-BOシュレーディンガー方程式の正確な解:解析的なポテンシャル曲面の導出」
研究代表者
5 科研費 新学術領域「宇宙における分子進化:星間雲から原始惑星系へ」公募研究 (2016-2017)
「実験困難な不安定星間分子種のシュレーディンガー・レベルの精密量子化学計算」
研究代表者
4 科研費 挑戦的萌芽研究 (2015-2016)
「ディラック方程式の正確な解法とその高速化:重元素化学への展開」
研究代表者
3 科研費 新学術領域「宇宙における分子進化:星間雲から原始惑星系へ」公募研究 (2014-2015)
「星間化合物の量子スペクトルのシュレーディンガー・レベルの計算」
研究代表者
2 科研費 挑戦的萌芽研究 (2012-2013)
「超精密量子化学で迫る宇宙と極限の科学」
研究代表者
1 科研費 若手研究B (2010-2011)
「超強磁場下の量子化学」
研究代表者


  (← Click)