List of Publications

(last update: Sep. 25, 2024)

427) Exact Theory Applied to the Lithium Atom, Hiroshi Nakatsuji and Hiroyuki Nakashima, J. Chem. Theory Comput., 20, 8001-8009, (2024); doi.org/10.1021/acs.jctc.4c00884

426) Accurate Scaling Functions of the Scaled Schrödinger Equation. II.Variational Examination of the Correct Scaling Functions with the Free Complement Theory Applied to the Helium Atom, Hiroshi Nakatsuji and Hiroyuki Nakashima, J. Chem. Theory Comput., 20 (9), 3749-3765, (2024); doi.org/10.1021/acs.jctc.4c00263

425) Potential Energy Curves of the Low-Lying Five 1Σ+ and 1Π States of a CH+ Molecule Based on the Free Complement – Local Schrödinger Equation Theory and the Chemical Formula Theory, Hiroyuki Nakashima and Hiroshi Nakatsuji, J. Chem. Theory Comput., 19, 6733–6744, (2023); doi.org/10.1021/acs.jctc.3c00645

424) Gaussian functions with odd power of r produced by the free complement theory, Y. I. Kurokawa and H. Nakatsuji, J. Chem. Phys., 159, 024103 (2023); doi: 10.1063/5.0155105

423) Solving the Schrödinger equation of a planar model H4 molecule, H. Nakashima, H. Nakatsuji, Chem. Phys. Lett., 815, 140359 (2023), 10.1016/j.cplett.2023.140359

422) Direct local sampling method for solving the Schrödinger equation with the free complement – local Schrödinger equation theory, H. Nakatsuji, H. Nakashima, Chem. Phys. Lett. 806, 140002 (2022), doi: 10.1016/j.cplett.2022.140002

421) X-ray photoelectron spectroscopy of Thymine and 5-Bromouracil studied by Symmetry-Adapted- Cluster Configuration-Interaction (SAC-CI) theory, Y. I. Kurokawa, H. Nakatsuji, M. Hirato, A. Yokoya, Chem. Phys. Lett. 805, 139957 (2022), doi: 10.1016/j.cplett.2022.139957 (Supporting Information)

420) Potential curves of the lower nine states of Li2 molecule: Accurate calculations with the free complement theory and the comparisons with the SAC/SAC-CI results, Hiroshi Nakatsuji and Hiroyuki Nakashima, J. Chem. Phys. 157, 094109 (2022), doi:10.1063/5.0101315 (Supporting Information)

419) Accurate scaling functions of the scaled Schrödinger equation, Hiroshi Nakatsuji, Hiroyuki Nakashima, and Yusaku I. Kurokawa, J. Chem. Phys. 156, 014113 (2022); doi: 10.1063/5.0077495

418) Free complement sij-assisted rij theory: Variational calculation of the quintet state of a carbon atom, H. Nakashima, and H. Nakatsuji, Phys. Rev. A., 102, 052835-1 (2020).

417) Solving the Schrödinger Equation of Hydrogen Molecule with the Free-Complement Variational Theory: Essentially Exact Potential Curves and Vibrational Levels of the Ground and Excited States of Π symmetry, Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Chem. Chem. Phys., 22, 13489-13497 (2020)

416) Solving the Schrödinger equation of atoms and molecules using one- and two-electron integrals only, Hiroshi Nakatsuji, Hiroyuki Nakashima, and Yusaku I. Kurokawa, Phys. Rev. A. 101, 062508 (2020)

415) Inverse Hamiltonian method assisted by the complex scaling technique for solving the Dirac-Coulomb equation: Helium isoelectronic atoms, Hiroyuki Nakashima, Hiroshi Nakatsuji, Chem. Phys. Lett. 749, 137447 (2020)

414) Solving the Schrödinger Equation of Hydrogen Molecule with the Free-Complement Variational Theory: Essentially Exact Potential Curves and Vibrational Levels of the Ground and Excited States of Σ symmetry, Y. I. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Chem. Chem. Phys., 21, 6327-6340 (2019)

413) Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study, Tomoo Miyahara and Hiroshi Nakatsuji, J. Phys. Chem. A, 123(9), pp.1766-1784 (2019), DOI: 10.1021/acs.jpca.8b10203

412) Solving the Schrödinger equation with the free-complement chemical-formula theory. Variational study of the ground and excited states of Be and Li atoms , H. Nakatsuji and H. Nakashima, J. Chem. Phys., 150, 044105 (2019)

411) Photoelectron Spectrum of NO2: SAC-CI Gradient Study of Vibrational-Rotational Structures, T. Miyahara, H. Nakatsuji. J. Comput. Chem., 40, 360?374 (2019) (Special Issue: Festschrift in Memory of Keiji Morokuma), DOI: 10.1002/jcc.25608 (Supporting Information)

410) Solving the Schrödinger equation of hydrogen molecule with the free complement-local Schrödinger equation method: Potential energy curves of the ground and singly excited singlet and triplet states, Σ, Π, Δ, and Φ, H. Nakashima, and H. Nakatsuji, J. Chem. Phys., 149, 244116 (2018)

409) Solving the Schrödinger equation of atoms and molecules with the free-complement chemical-formula theory: First-row atoms and small molecules, Hiroshi Nakatsuji, Hiroyuki Nakashima, and Yusaku I. Kurokawa, J. Chem. Phys., 149, 114106 (2018); doi: 10.1063/1.5040377

408) Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory, Hiroshi Nakatsuji, Hiroyuki Nakashima, and Yusaku I. Kurokawa, J. Chem. Phys., 149, 114105 (2018); doi: 10.1063/1.5040376

407) Accuracy of Td-DFT in the Ultraviolet and Circular Dichroism Spectra of Deoxyguanosine and Uridine, Tomoo Miyahara and Hiroshi Nakatsuji, J. Phys. Chem. A, 122, 100-118 (2018)

406) Similarities and Differences between RNA and DNA Double-Helical Structures in Circular Dichroism Spectroscopy: A SAC-CI Study, Tomoo Miyahara, Hiroshi Nakatsuji and Hiroshi Sugiyama, J. Phys. Chem. A, 120, 9008-9018 (2016)

405) General coalescence conditions for the exact wave functions: Higher-order relations for Coulombic and non-Coulombic systems, Yusaku I. Kurokawa, Hiroyuki Nakashima and Hiroshi Nakatsuji, Advances in Quantum Chemistry, 73, 59-79 (2016)

404) Analytical potential curve from Non-Born-Oppenheimer wave function: Application to hydrogen molecular ion, Hiroyuki Nakashima and Hiroshi Nakatsuji, AIP Conference Proceedings, 1790, 020017-1-4 (2016).

403) Electronic Transitions in Conformationally Controlled Peralkylated Hexasilanes, Yuki Kanazawa, Hayato Tsuji, Masahiro Ehara, Ryoichi Fukuda, Deborah L. Casher, Kohei Tamao, Hiroshi Nakatsuji, and Josef Michl, ChemPhysChem, 17, 3010 ? 3022 (2016)

402) Indicator of the Stacking Interaction in the DNA Double-Helical Structure: ChiraSac Study, Tomoo Miyahara, Hiroshi Nakatsuji, J. Phys. Chem. A, 119, 8269?8278 (2015), DOI: 10.1021/acs.jpca.5b02848.Supporting Information

401) Solving the Schrödinger equation of molecules by relaxing the antisymmetry rule: Inter-exchange theory, Hiroshi Nakatsuji and Hiroyuki Nakashima, J. Chem. Phys., 142, 194101 (2015)

400) Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: Basic theories and features, Hiroshi Nakatsuji and Hiroyuki Nakashima, J. Chem. Phys., 142, 084117 (2015)

399) Electronic excitation spectra of doublet anion radicals of cyanobenzene and nitrobenzene derivatives: SAC-CI theoretical studies, Hiroyuki Nakashima, Yasushi Honda, Tadamasa Shida, and Hiroshi Nakatsuji, Mol. Phys. 113, 1728-1739 (2015). (Special issue for Prof. N. C. Handy)

398) Solving the Schrödinger Equations of Some Organic Molecules with Superparallel Computer TSUBAME, Hiroshi Nakatsuji, and Hiroyuki Nakashima, TSUBAME e-Science J., 11, 8-12, 24-29 (2014). (Click here for the Japanese version.)

397) Electronic Transitions in Conformationally Controlled Tetrasilanes with a Wide Range of SiSiSiSi Dihedral Angles, Hayato Tsuji, Heather A. Fogarty, Masahiro Ehara, Ryoichi Fukuda, Deborah L. Casher, Kohei Tamao, Hiroshi Nakatsuji, and Josef Michl, Chem. Eur. J., 20, 9431-9441 (2014). Supporting Information.

396) General coalescence conditions for the exact wave functions. II. Higher-order relations for many-particle systems,Yusaku I. Kurokawa, Hiroyuki Nakashima, and Hiroshi Nakatsuji, J. Chem. Phys. 140, 214103-1-11(2014).

395) Circular Dichroism Spectra of Uridine Derivatives: ChiraSac Study, Tomoo Miyahara, Hiroshi Nakatsuji, and Takehiko Wada, J. Phys. Chem. A 118, 2931-2941 (2014). Supporting Information.

394) Conformational Dependence of the Circular Dichroism Spectrum of α?Hydroxyphenylacetic Acid: A ChiraSac Study, Tomoo Miyahara and Hiroshi Nakatsuji, J. Phys. Chem. A 117, 14065-14074 (2013). Supporting Information

393) Non-Born-Oppenheimer potential energy curve: Hydrogen molecular ion with highly accurate free complement method, H. Nakashima and H. Nakatsuji, J. Chem. Phys. 139, 074105-1-9 (2013).

392) General coalescence conditions for the exact wave functions: Higher-order relations for two-particle systems,Yusaku I. Kurokawa, Hiroyuki Nakashima, and Hiroshi Nakatsuji, J. Chem. Phys. 139, 044114-1-7 (2013).

391) Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement – local Schrödinger equation method, H. Nakashima and H. Nakatsuji, J. Chem. Phys. 139, 044112-1-16 (2013).

390) Solving the non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion with the free complement method II: Highly-accurate electronic, vibrational, and rotational excited states, H. Nakashima, Y. Hijikata, and H. Nakatsuji, Astrophys. J. 770, 144-1-9 (2013).

389) Helical Structure and Circular Dichroism Spectra of DNA: A Theoretical Study, T. Miyahara, H. Nakatsuji, and H. Sugiyama, J. Phys. Chem. A. 117, 42 (2013).

388) XPS of Oxygen Atoms on Ag(111) and Ag(110) Surfaces: Accurate Study with SAC/SAC-CI Combined with Dipped Adcluster Model, Atsushi Ishikawa* and Hiroshi Nakatsuji, J. Comput. Chem. 34, 1828-1835 (2013).

387) Excitation Spectra of Cation and Anion Radicals of Several Unsaturated Hydrocarbons: Symmetry Adapted Cluster-Configuration Interaction Theoretical Study, Yasushi Honda, Tadamasa Shida, and Hiroshi Nakatsuji, J. Phys. Chem. A. 116, 11833-11845 (2012).

386) Discovery of a General Method of Solving the Schrödinger and Dirac Equations That Opens a Way to Accurately Predictive Quantum Chemistry, H. Nakatsuji, Acc. Chem. Res., 45, 1480-1490 (2012). (DOI: 10.1021/ar200340j). This article is ranked 4 in Most Read Articles in July 2012.

385) Analytical evaluations of exponentially correlated unlinked one-center, three- and four-electron integrals, C.Wang, P.Mei, Y. Kurokawa, H. Nakashima, and H.Nakatsuji, Phys. Rev. A. 85, 042512-1-14 (2012).

384) Electronic excitation spectra of radical anions of cyanoethylenes and cyanobenzenes: Symmetry adapted cluster?configuration interaction study, H.Nakashima, T, Shida, and H.Nakatsuji, J. Chem. Phys. 136, 214306-1-13 (2012).

383) Accurate solutions of the Schrödinger and Dirac equations of H2+, HD+, and HT+:With and without Born?Oppenheimer approximation and under magnetic field, A.Ishikawa, H.Nakashima, H.Nakatsuji, Chem. Phys. 401, 62-72 (2012).

382) Full configuration-interaction calculations with the simplest iterative complement method: Merit of the inverse Hamiltonian, H.Nakatsuji, Phys. Rev. A. 84, 062507-1-7 (2011).

381) Excited-state geometries and vibrational frequencies studied using the analytical energy gradients of the direct symmetry-adapted cluster-configuration interaction method. I. HAX-type molecules, M. Ehara, F. Oyagi, Y. Abe, R. Fukuda, J. Chem. Phys. 135, 044316-1-14 (2011).

380) Photophysical Properties and Vibrational Structure of Ladder-type Pentap-Phenylene and Carbazole Derivatives Based on SAC-CI Calculations, P. Poolmee, M. Ehara, H. Nakatsuji, Theor. Chem. Acc. (Prof. S. Nagase issue) 130, 161-173 (2011).

379) Symmetry and Vibrationally Resolved Absorption Spectra Near the N K Edge ofN2O: Experiment and Theory, M. Ehara, T. Horikawa, R. Fukuda, H. Nakatsuji, T. Tanaka, M. Hoshino, H.Tanaka, R. Feifel, K. Ueda, Phys. Rev. A. 83, 062506-1-12 (2011).

378) Absorption spectra of nucleic acid bases studied by the symmetry-adapted-cluster configuration-interaction (SAC-CI) method, T. Miyahara, and H. Nakatsuji, Collect. Czech. Chem. Commun., 76, 537-552, (2011).

377) Nonequilibrium solvation for vertical photoemission and photoabsorption processes using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model, R. Fukuda, M. Ehara, H. Nakatsuji, and R. Cammi, J. Chem. Phys. 134, 104109-1-11 (2011).

376) Relativistic free complement method for correctly solving the Dirac equation with the applications to hydrogen isoelectronic atoms, H. Nakashima and H. Nakatsuji, Theoret. Chem. Acc. (Pekka Pyykko issue), 129, 567-574(2011).

375) Theoretical Spectroscopy of O 1s and N 1s excited states of N2O, M. Ehara, T. Horikawa, R. Fukuda, H. Nakatsuji, T. Tanaka, M. Hoshino, H. Tanaka, and K. Ueda, J. Phys. Conf. Series, 288, 012024-012034(2011)

374) Solving the Schrodinger and Dirac equations for hydrogen atom in the universe’s strongest magnetic fields with the free complement method, H. Nakashima , H. Nakatsuji, Astrophys. J., 725,528-533(2010)

373) Excited states and electronic spectra of extended tetraazaporphyrins, R. Fukuda, M. Ehara, and H. Nakatsuji, J. Chem. Phys. 133, 144316-1-16 (2010)

372) Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: Theory of the solvent effect on the electronic excitation of molecules in solution, R. Cammi, R. Fukuda, M. Ehara, and H. Nakatsuji, J. Chem. Phys. 133, 024104-024124 (2010)

371) LiH potential energy curves for ground and excited states with the free complement local Schrodinger equation method , A. Bande, H. Nakashima, H. Nakatsuji, Chem. Phys. Lett. 496, 347-350 (2010)

370) Valence ionized states of iron pentacarbonyl and η5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy, R. Fukuda, M. Ehara, H. Nakatsuji, N. Kishimoto, and K. Ohno, J. Chem. Phys. 132, 084302-1-12 (2010)

369) Valence ionization spectra of group six metal hexacarbonyls studied by the symmetry-adapted cluster-configuration interaction (SAC-CI) method”, R. Fukuda, S. Hayaki, and H. Nakatsuji, J. Chem. Phys. 131, 174303-1-10 (2009)

368) A multi-core QM/MM approach for the geometry optimization of chromophore aggregate in protein, Y. Kiyota, J. Hasegawa, K. Fujimoto, B. Swerts, and H. Nakatsuji, J. Comp. Chem. 30, 1351-1359 (2009).

367) Theoretical Spectroscopy of Inner-Shell Electronic Processes and Photochemistry of Fluorescent Molecules, M. Ehara, and H. Nakatsuji, Advances in the Theory of Atomic and Molecular Systems, 20, 103-124 (2009)

366) Free Complement Method for Solving the Schrodinger Equation : How Accurately Can We Solve the Schrodinger Equation, H. Nakatsuji, and H. Nakashima, Advances in the Theory of Atomic and Molecular Systems, 19, 47-60(2009)

365) Circular Dichroism and Absorption Spectroscopy for Three-Membered Ring Compounds Using Symmetry-Adapted Cluster-Configuration Interaction (SAC-CI) Method, T. Miyahara, J. Hasegawa, and H. Nakatsuji, Bull. Chem. Soc. Japan, 82(10), 1215-1226 (2009)

364) Color Tuning Mechanism of Human Red, Green, and Blue Cone Pigments : SAC-CI Theoretical Study, K. Fujimoto, J. Hasegawa, and H. Nakatsuji, Bull. Chem. Soc. Japan, 82(9), 1140-1148 (2009)

363) How Does the Free Complement Wave Function Become Accurate and Exact Finally for the Hydrogen Atom Starting From the Slater and Gaussian Initial Functions and for the Helium Atom on the Cusp Conditions? H. Nakatsuji, H. Nakashima, Intern. J. Quantum Chem. 109, 2248-2262 (2009)

362) Artificial color tuning of firefly luminescence: Theoretical mutation by tuning electrostatic interactions between protein and luciferin N. Nakatani, J. Hasegawa, and H. Nakatsuji, Chem. Phys. Lett. 496, 191-194 (2009)

361) Relativistic effects in K-shell ionizations : SAC-CI general-R study based on the DK2 Hamiltonian, M. Ehara, K.Kuramoto, and H. Nakatsuji, Chem. Phys. 356, 195-198 (2009)

360) Solving non-Born-Oppenheimer Schrodinger equation for hydrogen molecular ion and its isotopomers using the free complement method, Y. Hijikata, H. Nakashima, and H. Nakatsuji, J. Chem. Phys. 130, 024102-1-11 (2009)

359) Possible reaction pathway in methanol dehydrogenation on Pt and Ag surfaces/clusters starting from O-H scission: Dipped adcluster model study, T. Watanabe, M. Ehara, K.Kuramoto, and H. Nakatsuji, Surface Science 603, 641-646 (2009)

358) How Accurately Does the Free Complement Wave Function of a Helium Atom Satisfy the Schrodinger Equation?, H. Nakashima and H. Nakatsuji, Phys. Rev. Letters 101, 240406-1-4 (2008)

357) Solving the Schrodinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method, Y. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Chem. Chem. Phys. 10, 4486-4494 (2008)

356) Electronic transitions in cis- and trans-dichloroethylenes and tetrachloroethylene, S. Arulmozhiraja, M. Ehara, and H. Nakatsuji, J. Chem. Phys. 129, 174506-1-8 (2008)

355) Origin of color turning in human red, green, and blue cone pigments: SAC-CI and QM/MM study, K. Fujimoto, J. Hasegawa, H. Nakatsuji, Chem. Phys. Lett. 462, 318-320 (2008)

354) Geometry relaxations after inner-shell excitations and ionizations, M. Ehara, and H. Nakatsuji, Collection of Czechoslovak Chemical Communications, 73, 771-785 (2008)

353) Solving the electron and electron-nuclear Schrodinger equations for the excited states of helium atom with the free iterative-complement-interaction method, H. Nakashima, Y. Hijikata, and H. Nakatsuji, J. Chem. Phys. 128, 154108-1-10 (2008)

352) Solving the electron-nuclear Schrodinger equations of helium atom and its isoelectronic ions with the free iterative-complement-interaction method, H. Nakashima, and H. Nakatsuji, J. Chem. Phys. 128, 154107-1-7 (2008)

351) Solving the Schrodinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method, A. Ishikawa, H. Nakashima, H. Nakatsuji, J. Chem. Phys. 128, 124103-1-12 (2008)

350) Formulation and implementation of direct algorithm for the symmetry-adapted cluster and symmetry-adapted cluster-configulation interaction method, R. Fukuda, H. Nakatsuji, J. Chem. Phys. 128, 094105-1-14 (2008)

349) Vibration-induced suppression of valence-Rydberg mixing in the O 1s to ns(sigma) Rydberg series in N2O, T. Tanaka, M. Hoshino, H. Kato, M. Ehara, N. Yamada, R. Fukuda, H. Nakatsuji, Y. Tamenori, J. R. Harries, G. Prumper, H. Tanaka, and K. Ueda, Phys. Rev. A, 77, 012709-1-4 (2008)

348) Solving the Schrodinger Equation of Atoms and Molecules without Analytical Integration Based on the Free Iterative-Complement-Interaction Wave Function, H. Nakatsuji, H. Nakashima, Y. Kurokawa, A. Ishikawa, Phys. Rev. Lett. 99, 240402-1-4 (2007)

347) Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method, H. Nakashima, H. Nakatsuji, J. Chem. Phys. 127, 224104-1-14 (2007)

346) Spectroscopy of sodium atom in liquid helium cluster: a symmetry adapted cluster -configuration interaction (SAC-CI) study, B. Saha, R. Fukuda, H. Nakatsuji, P. K. Mukherjee, Theor. Chem. Acc. 118, 437-441 (2007)

345) Coupling between substituents as a function of cage structure. Synthesis and valence ionized states of bridgehead disubstituted parent and hexafluorinated bicyclo[1.1.1]pentane derivatives, C5X6Y2, M. Ehara, S. Fukawa, H. Nakatsuji, D. David, E. Z. Pinkhassik, M. Apostol, J. Michl, Chemistry – An Asian Journal, 2, 1007-1019 (2007)

344) Red Light in Chemiluminescence and Yellow-green Light in Bioluminescence: Color-tuning Mechanism of Firefly, Photinus pyralis, studied by the SAC-CI method, Naoki Nakatani, Jun-ya Hasegawa, Hiroshi Nakatsuji, J. Am. Chem. Soc. 129, 8756-8765 (2007).

343) Excited States of GFP Chromophore and Active Site Studied by the SAC-CI method: Effect of Protein-environment and Mutations, J. Hasegawa, K. Fujimoto, B. Swerts, T. Miyahara, and H. Nakatsuji, J. Comp. Chem. 28, 2443-2452 (2007).

342) SAC-CI Theoretical Study on the Excited States of Lumiflavin: Structure, Excitation Spectrum, and Solvation Effect, J. Hasegawa, S. Bureekaew, and H. Nakatsuji, J. Photochem. Photobiology A: Chemistry, 189, 205-210 (2007).

341) Investigation of the electronic spectra and excited state geometries of poly-para-phenylene vinylene and poly-para-phenylene by symmetry adapted cluster configuration interaction (SAC-CI) method, B. Saha, M. Ehara, H. Nakatsuji, J. Phys. Chem. A. 111, 5473-5481.

340) Ground and Excited States of Singlet, Cation Doublet, and Anion Doublet States of o-Benzoquinone: A Theoretical Study, Y. Honda, M. Hada, M. Ehara, H. Nakatsuji, J. Phys. Chem. A, 2007, 111, 2634-2639.

339) Vibrationally resolved central and terminal nitrogen K-shell photoelectron spectra of the dinitrogen oxide molecule, M. Ehara, R. Tamaki, H. Nakatsuji, R.R. Lucchese, J. Soderstrom, T. Tanaka, M. Hoshino, M. Kitajima, H. Tanaka, A. De Fanis, K. Ueda, Chem. Phys. Lett. 438, 14-19 (2007).

338) Active-space symmetry-adapted-cluster configuration-interaction for high accuracy calculations of potential energy surfaces of radicals, Y. Ohtsuka, P. Piecuch, J.R. Gour, M. Ehara, H. Nakatsuji, J. Chem. Phys. 126, 164111-1-28.

337) SAC(symmetry adapted cluster)/SAC-CI(configuration interaction) methodology extended to giant molecular systems: ring molecular crystals, H. Nakatsuji, T. Miyahara, and R. Fukuda, J. Chem. Phys. 126, 084104-1-18 (2007).

336) Excited and ionized states of ozone studied by the MEG (multi-exponentially generated) / EX(excited)-MEG method, Y. Ohtsuka, J. Hasegawa, and H. Nakatsuji, Chem. Phys. 332, 262-270 (2007).

335) Symmetry and vibrationally resolved absorption spectra near the O K edge of N2O: experiment and theory, T. Tanaka, R. Feifel, H. Tanaka, M. Hoshino, M. Kitajima, L. Karlsson, K. Ueda, M. Ehara, R. Fukuda, R. Tamaki, H. Nakatsuji, Chem. Phys. Lett. 435, 182-187 (2007).

334) Electronic excitations of fluoroethylene, S. Arulmozhiraja, M. Ehara, H. Nakatsuji, J. Chem. Phys. 126, 044306-1-10 (2007).

333) Theoretical Studies on the Color-Tuning Mechanism in Retinal Proteins, K. Fujimoto, S. Hayashi, J. Hasegawa, and H. Nakatsuji, J. Chem. Theory Comput. 3, 605-618 (2007).

332) Vibrationally resolved C and O1s photoelectron spectra of carbon dioxide, T. Hatamoto, M. Matsumoto, X.-J. Liu, K. Ueda, M. Hoshino, K. Nakagawa, T. Tanaka, H. Tanaka, M. Ehara, R. Tamaki, H. Nakatsuji,, J. Electron Spectrosc. Relat. Pheonom. 155, 54-57, (2007).

331) SAC and SAC-CI Calculations of Excitation and Circular Dichroism Spectra of Straight-Chain and Cyclic Dichalcogens, J. Seino, Y. Honda, M. Hada, and H. Nakatsuji, J. Phys. Chem. A 110, 10053-10062 (2006).

330) On the color-tuning mechanism of Human-Blue visual pigment: SAC-CI and QM/MM study, K. Fujimoto, J. Hasegawa, S. Hayashi, and H. Nakatsuji, Chem. Phys. Lett. 432, 252-256 (2006)

329) C4Cl: Bent or linear?, S. Arulmozhiraja, M. Ehara, H. Nakatsuji, J. Chem. Phys., 125, 194314-1-7 (2006).

328) On the O2 binding of Fe-porphyrin, Fe-porphycene, and Fe-corrphycene complexes, H. Nakashima, J. Hasegawa, H. Nakatsuji, J. Comp. Chem., 27, 1363-1372 (2006).

327) Electronic Circular Dichroism Spectrum of Uridine Studied by the SAC-CI method, S. Bureekaew, J. Hasegawa, H. Nakatsuji, Chem. Phys. Lett. 425, 367-371 (2006).

326) High resolution O 1s photoelectron satellite spectrum of H2O, R. Sankari, M. Ehara, H. Nakatsuji, A. De Fanis, S. Aksela, S. L. Sorensen, M. N. Piancastelli, K. Ueda, Chem. Phys. Lett. 422, 51-57 (2006).

325) C1s and O1s photoelectron satellite spectra of CO with the symmetry-dependent vibrational excitations, M. Ehara, K. Kuramoto, H. Nakatsuji, M. Hoshino, T. Tanaka, M. Kitajima, H. Tanaka, Y. Tamenori, A. De Fanis, K. Ueda, J. Chem. Phys. 125, 114304-1-10 (2006).

324) Singly and doubly excited states of butadiene, acrolein, and glyoxal: Geometries and electronic spectra, B. Saha, M. Ehara, H. Nakatsuji, J. Chem. Phys. 125, 014316-1-14 (2006).

323) Symmetry-dependent vibrational excitation in N 1s photoionization of N2: experiment and theory, M. Ehara, H. Nakatsuji, M. Matsumoto, T. Hatamoto, X.-J. Liu, T. Lischke, G. Pruemper, T. Tanaka, C. Makochekanwa, M. Hoshino, H. Tanaka, J. R. Harries, Y. Tamenori, K. Ueda, J. Chem. Phys. 124, 124311-1-8, (2006).

322) Inner-Shell Ionizations and Satellites Studied by the Open-Shell Reference Symmetry-Adapted Cluster/Symmetry-Adapted Cluster Configuration-Interaction Method, Y. Ohtsuka and H. Nakatsuji, J. Chem. Phys. 124, 054110-1-5 (2006).

321) Electronic Spectra and Photodissociation of Vinyl Chloride – A SAC-CI study, S. Arulmozhiraja, R. Fukuda, M. Ehara, and H. Nakatsuji, J. Chem. Phys. 124, 034312-1-6 (2006).

320) Vibrationally Resolved C and O 1s Photoelectron Spectra of Carbon Monoxide, M. Matsumoto, K. Ueda, E. Kukk, H. Yoshida, T. Tanaka, M. Kitajima, H. Tanaka, Y. Tamenori, K. Kuramoto, M. Ehara and H. Nakatsuji, Chem. Phys. Lett. 417, 89-93 (2006).

319) On the reversible O2 binding of the Fe-porphyrin complex, H. Nakashima, J. Hasegawa, and H. Nakatsuji, J. Comp. Chem., 27, 426-433 (2006).

318) Valence Ionized States with Low-lying Satellites: n-p* and p-p* Transitions in 4p- Electron Molecules, M. Ehara, M. Nakata, H. Nakatsuji, Mol. Phys.104, 971-982 (2006).

317) Free ICI (Iterative Complement Interaction) Calculations of Hydrogen Molecule, Y. Kurokawa, H. Nakashima, and H. Nakatsuji, Phys. Rev. A, 72, 062502 (2005).

316) General Method of Solving the Schrodinger Equation of Atoms and Molecules, H. Nakatsuji, Phys. Rev. A, 72, 062110 (2005).

315) Theoretical Studies on Magnetic Circular Dichroism by the Finite Perturbation Method and Relativistic Corrections, Y. Honda, M. Hada, M. Ehara, H. Nakatsuji, J. Michl, J. Chem. Phys. 123, 164113-1-9 (2005).

314) Quasi-Relativistic Theory for the Magnetic Shielding Constant. III. Quasi-Relativistic Second-Order M?ller Plesset Perturbation Theory and its Application to Tellurium Compounds, R. Fukuda and H. Nakatsuji, J. Chem. Phys. 123, 044101-1-10 (2005).

313) Mechanism of Color-Tuning in Retinal Proteins: SAC-CI and QM/MM Study, K. Fujimoto, J. Hasegawa, S. Hayashi, S. Kato, H. Nakatsuji, Chem. Phys. Lett., 414, 239-242 (2005).

312) Generalization of the Projection Space Improves the SAC-SD (symmetry-adapted cluster – singles and doubles) Method in Bond-Breaking Systems, Jun-ya Hasegawa and Hiroshi Nakatsuji, Chem. Letters. 34, 1356-1357 (2005).

311) Excited States and Electron-transfer Mechanism in the Photosynthetic Reaction Center of Rhodobactor sphaeroides: SAC-CI Theoretical Study, J. Hasegawa and H. Nakatsuji, Chemistry Letters. 34, 1242-1243 (2005).

310) Structure of phytochromobilin in the Pr and Pfr forms: SAC-CI theoretical study, J. Hasegawa, M. Isshiki, K. Fujimoto, and H. Nakatsuji, Chem. Phys. Lett., 410, 90-93 (2005).

309) SAC-CI Theoretical Investigation on Electronic Structure of Fluorene-Thiophene Oligomers, P. Poolmee, M. Ehara, S. Hannongbua, H. Nakatsuji, Polymer, 46, 6474-6481 (2005).

308) Theoretical Fine Spectroscopy with SAC-CI Method: Outer- and Inner-Valence Ionization Spectra of Furan, Pyrrole, and Thiophene, M. Ehara, Y. Ohtsuka, H. Nakatsuji, M. Takahashi, Y. Udagawa, J. Chem. Phys. 122, 234319-1-10 (2005).

307) Outer- and inner-valence ionization spectra of CO and N2: SAC-CI general-R study, M. Ehara, M. Ishida, H. Nakatsuji, Collection of Czechoslovak Chemical Communications, 70, 881-904 (2005). (Paldus Volume)

306) Symmetry-Resolved Vibrational Spectra of Carbon K-shell Photoelectron Satellites in Carbon Monoxide: Experiment and Theory, K. Ueda, M. Hoshino, T. Tanaka, M. Kitajima, H. Tanaka, A. De Fanis, Y. Tamenori, M. Ehara, F. Oyagi, K. Kuramoto, H. Nakatsuji, Phys. Rev. Lett., 94, 243004 1-4 (2005).

305) Theoretical Surface Spectroscopy of NO on Pt (111) Surface with the DAM (Dipped Adcluster Model) and SAC-CI (Symmetry-Adapted-Cluster Configuration-Interaction) Method, H. Nakatsuji, N. Matsumune, and K. Kuramoto, J. Chem. Theor. Comp. 1, 239-247 (2005).

304) Excited States of Porphyrin Isomers and Porphycene Derivatives: A SAC-CI Study, J. Hasegawa, K. Takata, T. Miyahara, S. Neya, M. J. Frisch, and H. Nakatsuji, J. Phys. Chem. A, 109(14), 3187-3200 (2005).

303) Aza-substitution Effect on the Q-band Excitations of Free-base Porphin, Chlorin, and Bacteriochlorin: SAC-CI Theoretical Study, J. Hasegawa, T. Kimura, and H. Nakatsuji, J. Por. Phtha., 9, 305 (2005).

302) Theoretical Fine Spectroscopy with SAC-CI General-R Method: First-row K-shell Ionizations and Their Satellites, K. Kuramoto, M. Ehara, H. Nakatsuji, J. Chem. Phys. 122, 014304-1-7 (2005).

301) Relativistic Configuration Interaction and Coupled Cluster Methods Using Four-Component Spinors: Magnetic Shielding Constants of HX and CH3X (X = F, Cl, Br, I) M. Kato, M. Hada, R. Fukuda, H. Nakatsuji, Chem. Phys. Lett., 408, 150-156 (2005)

300) C1s and O1s Photoelectron Spectra of Formaldehyde with Satellites: Theory and Experiment, K. Kuramoto, M. Ehara, H. Nakatsuji, M. Kitajima, H. Tanaka, A. De Fanis, Y. Tamenori, K. Ueda, J. Electron Spectrosc. Relat. Pheonom. 142, 253-259 (2005). (Kimura Issue)

299) Iterative CI General Singles and Doubles (ICIGSD) Method for Calculating the Exact Wave Functions of the Ground and Excited States of Molecules H. Nakatsuji, M. Ehara, J Chem. Phys, 122, 194108 1-7 (2005)

298) Analytically Solving Relativistic Dirac-Coulomb Equation for Atoms and Molecules, H. Nakatsuji and H. Nakashima, Phys. Rev. Lett., 95, 050407 (2005).

297) Theoretical Study of the Singlet and Triplet Vertical Electronic Transitions of Styrene by the Symmetry Adapted Cluster-Configuration Interaction Method, J. Wan, H. Nakatsuji, Chem. Phys., 302, 125-134 (2004).

296) Generalized-UHF theory for the magnetic properties with quasi-relativistic Hamiltonian, R. Fukuda, M. Hada, and H. Nakatsuji, In Recent advances in computational chemistry ?Vol.5, RECENT ADVANCES IN RELATIVISTIC MOLECULAR THEORY,
edited by K. Hirao and Y. Ishikawa (World Scientific, Singapore, 2004) pp. 191-220.(2004).

295) Scaled Schrodinger Equation and the Exact Wave Function, H. Nakatsuji, Phys. Rev. Lett. 93, 030403 (2004).

294) Analytical Energy Gradient of the Symmetry-Adapted-Cluster Configuration-Interaction General-R Method for Singlet to Septet Ground and Excited States, M. Ishida, K. Toyota and M. Ehara, M.J. Frisch, and H. Nakatsuji, J. Chem. Phys., 120, 2593-2605 (2004).

293) Experimental Study and Ab Initio Molecular Orbital Calculation on the Photolysis of n-butyrophenone Included within the Alkali Metal Cation-exchanged ZSM-5 Zeolite, H. Yamashita, S. Takada, M. Hada, and H. Nakatsuji, M. Anpo, J. Photochem. Photobio. A, 160, 37-42 (2003).

292) Density Matrix Variational Theory: Strength of Weinhold-Wilson Inequalities, M. Nakata, M. Ehara and H. Nakatsuji, Fund. Worl. Quat. Chem., I, 543-557 (2003).

291) Electronic Excitations of the Green Fluorescent Protein Chromophone in its Protoonation States: SAC/SAC-CI Study, A.K. Das, J. Hasegawa, T. Miyahara, M. Ehara and H. Nakatsuji, J. Comp. Chem., 24, 1421-1431 (2003).

290) Vibrationally Resolved O 1s Photoelectron Spectrum of Water, R. Sankari, M. Ehara, H. Nakatsuji, Y. Senba, K. Hosokawa, H. Yoshida, A. De Fanis, Y. Tamenori, S. Aksela, K. Ueda, Chem. Phys. Lett. 380, 647 (2003).

289) Theoretical Investigation on the Valance Ionization Spectra of Cl2O, ClOOCl, and F2O by Correlation-Based Configuration Interaction Methods, P. Tomasello, M. Ehara, and H. Nakatusji, J. Chem. Phys., 118, 5811-5820 (2003).

288) Fine Theoretical Spectroscopy Using SAC-CI General-R Method: Outer- and Inner-Valence Ionization Spectra of N2O and HN3, M. Ehara, S. Yasuda and H. Nakatsuji, Z. Phys. Chem., 217, 161-176 (2003).

287) Singularity-Free Analytical Energy Gradients for the SAC/SAC-CI Method: Coupled Perturbed Minimum Orbital-Deformation (CPMOD) Approach, K. Toyota, M. Ishida, M. Ehara, M. J. Frisch, H. Nakatsuji, Chem. Phys. Lett., 367, 730-736 (2003).

286) Energetics of the Electron Transfer from Bacteriophephytin to Ubiquinone in the Photosynthetic Reaction Center of Rhosopseudomonas Viridis: Theoretical Study, J. Hasegawa, M. Ishida, and H. Nakatsuji, J. Phys. Chem. B, 107, 838-847 (2003).

285) Quasi-Relativistic Theory for the Magnetic Shielding Constant. II. Gauge-Including Atomic Orbitals and Applications to Molecules, R. Fukuda, M. Hada, and H. Nakatsuji, J. Chem. Phys., 118, 1027-1035 (2003).

284) Quasi-Relativistic Theory for the Magnetic Shielding Constant. I. Formulation of Douglass- Kroll-Hess Transformation for the Magnetic Filed and Its Application to Atomic Systems, R. Fukuda, M. Hada, and H. Nakatsuji, J. Chem. Phys., 118, 1015-1026 (2003).

283) Excited and Ionized States of p-Benzoquione and Its Anion Radical: SAC-CI Theoretical Study, Y. Honda, M. Hada, M. Ehara and H. Nakatsuji, J. Phys. Chem. A., 106, 3838-3849 (2002).

282) Excited States of Na and Al Iso-Electronic Ions: SAC-CI Study, A.K. Das, M. Ehara, H. Nakatsuji, Intern. J. Quantum Chem., 87, 81-88 (2002).

281) Ground and Excited States of Linked and Fused Zinc Porphyrin Dimers: SAC-CI Study, T. Miyahara. H. Nakatsuji, and J. Hasegawa A. Osuka, N. Aratani, and A. Tsuda, J. Chem. Phys., 117, 11196-11207 (2002).

280) Density Functional Study on Geometry and Electronic Structure of Nitrile Hydratase Active Site Model, W. Nowak, Y. Ohtsuka, J. Hasegawa, H. Nakatsuji, Intern. J. Quantum. Chem., 90, 1174-1187 (2002).

279) Peralkylated Tetrasilanes: Conformational Dependence of the Photoelectron Spectrum, H. A. Forgarty, H. Tsuji, D. E. David, C.-H. Ottosson, M. Ehara, H. Nakatsuji, K. Tamao, J. Michl, J. Phys. Chem. A 106, 2369-2373 (2002).

278) Ionized and Excited States of Ferrocene: Symmetry Adapted Cluster – Configuration Interaction Study, K. Ishimura, M. Hada, and H. Nakatsuji, J. Chem. Phys., 117, 6533-6537 (2002).

277) Elimination of Singularities in Molecular Orbital Derivatives: Minimum Orbital-Deformation (MOD) Method, K. Toyota, M. Ehara, H. Nakatsuji, Chem. Phys. Lett., 356, 1-6 (2002).

276) Fine Theoretical Spectroscopy Using SAC-CI General-R Method: Outer- and Inner-Valance Ionization Spectra of CS2 and OCS, M. Ehara, M. Ishida, and H. Nakatsuji, J. Chem. Phys., 117, 3248-3255 (2002).

275) Excited and Ionized States of Aniline: SAC-CI Theoretical Study, Y. Honda, M. Hada, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 117, 2045-2052 (2002).

274) Structure of the Exact Wave Function. V. Iterative Configuration Interaction Method for Molecular Systems within Finite Basis, H. Nakatsuji and M. Ehara, J. Chem. Phys., 117, 9-12 (2002).

273) Density Matrix Variational Theory: Application to the Potential Energy Surfaces and Strongly Correlated Systems, M. Nakata, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 116, 5432-5439 (2002).

272) Molecular Structure and Excited States of CpM(CO)2 (Cp= -C5H5; M = Rh, Ir) and [Cl2Rh(CO)2]. Theoretical Evidence for a Competitive Charge Transfer Mechanism, Z. Hu, R. J. Boyd, and H. Nakatsuji, J. Am. Chem. Soc., 124, 2664-2671 (2002).

271) Electronic Excitation Spectra of Cl2O, ClOOCl, and F2O: A SAC-CI Study, P. Tomasello, M. Ehara and H. Nakatsuji, J. Chem. Phys., 116, 2425-2432 (2002).

270) Outer- and Inner-Valance Ionization Spectra of NH3, PH3, and AsH3: SAC-CI General-R Study, M. Ishida, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 116, 1934-1943 (2002).

269) Relativistic Effects on Magnetic Circular Dichroism Studied by GUHF/SECI Method, Y. Honda, M. Hada, M. Ehara, H. Nakatsuji, J. Downing, J. Michl, Chem. Phys. Lett., 355, 219-225 (2002).

268) Ab Initio Study of Lower Energy Phenol-Water1 ≤ n ≤ 4 Complexes: Interpretation of Two Distinct Infrared Patterns in Spectra of Phenol-Water Tetramer, Eugene S. Kryachko and Hiroshi Nakatsuji, J. Phys. Chem. A ,106, 731 (2002).

267) Inverse Schrodinger Equation and the Exact Wave Function, H. Nakatsuji, Phys. Rev. A 65, 052122-1-15 (2002).

266) Structure of the Exact Wave Function. IV. Excited Sates from Exponential Ansatz and Comparative Calculations by the Iterative Configuration Interaction and Extended Coupled Cluster Theories, H. Nakatsuji, J. Chem. Phys., 116, 1811-1824 (2002)

265) Theoretical Study on the Outer- and Inner-Valence Ionization Spectra of H2O, H2S and H2Se Using the SAC-CI General-R Method, M. Ehara, M. Ishida, and H. Nakatsuji, J. Chem. Phys., 114, 8990-8999 (2001).

264) Variational Calculations of Fermion Second-Order Reduced Density Matrices by Semidefinite Programming Algorithm, M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, J. Chem. Phys., 114, 8282-8292 (2001).

263) Quasi-relativistic Study of 125Te Nuclear Magnetic Shielding Constants and Chemical Shifts, M. Hada, J. Wan, R. Fukuda, H. Nakatsuji, J. Comp. Chem., 22, 1502-1508 (2001).

262) Effect of Ion-Exchanged Alkali Metal Cations on the Photolysis of 2-Pentanone Included within ZSM-5 Zeolite Cavities: A Study of Ab Initio Molecular Orbital Calculations, H. Yamashita, M. Nishimura, H. Bessho, S. Takada, T. Nakajima, M. Hada, H. Nakatsuji, M. Anpo, Res. Chem. Intermed., 27(1,2) 89-102 (2001).

261) Relativistic Effects and the Halogen Dependencies in the 13C Chemical Shifts of CH4-nIn, CH4-nBrn, CCl4-nIn, and CBr4-nIn (n=0-4), S. Fukawa, M. Hada, R. Fukuda, S. Tanaka, H. Nakatsuji, J. Comp. Chem., 22(5), 528-536 (2001).

260) Quasi-Relativistic Study of 199Hg Nuclear Magnetic Shielding Constants of Dimethylmercury, Disilylmercury and and Digermylmercury, J. Wan, R. Fukuda, M. Hada, and H. Nakatsuji, J. Phys. Chem. A, 105, 128-133 (2001).

259) Analytical Energy Gradient of High-Spin Multiplet State Calculated by the SAC-CI Method, M. Ishida, K. Toyota, M. Ehara, H. Nakatsuji, Chem. Phys., Lett. 350, 351-358 (2001).

258) Analytical Energy Gradients of the Excited, Ionized and Electron-Attached States Calculated by the SAC-CI General-R Method, M. Ishida, K. Toyota, M. Ehara, H. Nakatsuji, Chem. Phys. Lett., 347, 493-498 (2001).

257) SAC/SAC-CI Study of the Ground, Excited, and Ionized States of Cytochromes P450CO, T. Miyahara, Y. Tokita, and H. Nakatsuji, J. Phys. Chem. B, 105, 7341-7352 (2001).

256) Excited States of Ne Isoelectronic Ions: SAC-CI study, A. K. Das, M. Ehara, and H. Nakatsuji, Eur. Phys. J. D 13, 195-200 (2001).

255) Excited States of Four Hemes in C-Type Cytochrome Subunit of the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: SAC-CI Calculations, K. Ohkawa, M. Hada, and H. Nakatsuji, J. Porphyrins and Phthalocyanines, 5, 256-266 (2001).

254) Electron Excitation of Thiophene Studied by SAC-CI Method, J. Wan. M. Hada, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 114, 842-850 (2001).

253) Electron Transfer in the C-Type Cytochrome Subunit of the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: Ab Initio Theoretical Study, Y. Ohtsuka, K. Ohkawa, H. Nakatsuji, J. Comp. Chem., 22, 521-527 (2001).

252) The Role of Proteins in the Electron Transfer in the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: Bacteriopheophytin to Ubiquinone, H. Ito and H. Nakatsuji, J. Comp. Chem., 22, 265-272 (2001).

251) Electronic Excitation and Ionization Spectra of Azabenzenes: Pyridine Revisited by the SAC-CI Method, J. Wan, M. Hada, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 114, 5117-5123 (2001).

250) Structure of the Exact Wave Function. III. Exponential Ansatz, H. Nakatsuji, J. Chem. Phys., 115, 2465-2475 (2001).

249) Structure of the Exact Wave Function. II. Iterative Configuration Interaction Method, H. Nakatsuji and E. R. Davidson, J. Chem. Phys. 115, 2000-2006 (2001).

248) Direct Determination of Second-Order Density Matrix Using Density Equation: Open-Shell System and Excited State, M. Nakata, M. Ehara, K. Yasuda, and H. Nakatsuji, J. Chem. Phys., 112, 8772-8778 (2000).

247) Dirac-Fock Calculations of the Magnetic Shielding Constants of Protons and Heavy Nuclei in XH2 (X=O,S,Se, and Te): A Comparison with Quasi-Relativistic Calculations, M. Hada, R. Fukuda, and H. Nakatsuji, Chem. Phys. Lett., 321, 452-458 (2000).

246) Mechanism of Methanol Synthesis on Cu(100) and Zn/Cu(100) Surfaces: Comparative Dipped Adcluster Model Study, H. Nakatsuji and Zhen-Ming Hu, Intern. J. Quantum Chem., 77, 341-349 (2000).

245) Electronic Excitation Spectra of Furan and Pyrolle: Revisited by the SAC-CI Method, J. Wan, J. Meller, M. Hada, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 113(18), 7853-7866 (2000).

244) Electronic Excitation and Ionization Spectra of Cyclopentadiene: Revisited by the SAC-CI Method, J. Wan, M. Ehara, M. Hada, and H. Nakatsuji, J. Chem. Phys., 113, 5245-5252 (2000).

243) Structure of the Exact Wave Function, H. Nakatsuji, J. Chem. Phys., 113, 2949-2956 (2000)

242) CASSCF Study of Bonding in NiCO and FeCO, X. Xu, X. Lu, N. Q. Wang, Q. E. Zhang, M. Ehara, H. Nakatsuji, Intern. J. Quantum Chem., 72, 221-231 (1999).

241) Direct Determination of the Density Matrix Using the Density Equation: Potential Energy Curves of HF, CH4, BH3, NH3, and H2O, M. Ehara, M. Nakata, H. Kou, K. Yasuda, H. Nakatsuji, Chem. Phys. Lett., 305 (5,6), 483-488 (1999).

240) Mechanism of the Hydrogenation of CO2 to Methanol on a Cu(100) Surface: Dipped Adcluster Model Study, Z. M. Hu, K. Takahashi, and H. Nakatsuji, Sur. Sci., 442,(1), 90-106 (1999).

239) Cluster Modeling of Metal Oxides: Case Study of MgO and the CO/MgO Adsorption System, X. Xu, H. Nakatsuji, X. Lu, M. Ehara, Y. Cai, N.Q. Wang and Q.E. Zhang, Theoret. Chem. Accounts, 102, 170-179 (1999).

238) Active Sites for Methanol Synthesis on a Zn/Cu(100) Catalyst, Z. M. Hu, and H. Nakatsuji, Chem. Phys. Lett., 313 (1,2), 14-18 (1999).

237) Dirac-Fock Calculations of Magnetic Shielding Constants: Hydrogen Molecule and Hydrogen Halides, M. Hada, Y. Ishikawa, J. Nakatani, and H. Nakatsuji, Chem. Phys. Lett., 310 (3,4), 342-346 (1999).

236) Theoretical Study of the Decomposition of HCOOH on an MgO(100) Surface, M. Lintuluoto, H. Nakatsuji, M. Hada, and H. Kanai, Surf. Sci., 429 (1-3), 133-142 (1999).

235) Adsorption and Disproportionation Reaction of OH on Ag Surfaces: Dipped Adcluster Model Study, Z. M. Hu and H. Nakatsuji, Surf. Sci., 425 (2-3), 296-312 (1999).

234) Heterolytic Adsorption of H2 on ZnO(1010) Surface: An Ab Initio SPC Cluster Model Study, X. Lu, X. Xu, N. Wang, Q. Zhang, M. Ehara, and H. Nakatsuji, J. Phys. Chem. B, 103, 2689-2695 (1999).

233) Mechanism of the Oxidation of Acetylene on a Ag Surface: Dipped Adcluster Model Study, Z. M. Hu, H. Ito, S. Hara, and H. Nakatsuji, J. Mol. Struct. (Theochem), 461-462, 29-40 (1999).

232) SAC-CI General-R Study of the Ionization Spectrum of HCl, M. Ehara, P. Tomasello, J. Hasegawa, and H. Nakatsuji, Theor. Chem. Acc., 102 (1-6), 161-164 (1999).

231) Energy Gradient Method for the Ground, Excited, Ionized, and Electron-Attached States Calculated by the SAC-CI Method, T. Nakajima, and H. Nakatsuji, Chem. Phys., 242, 177-193 (1999).

230) Ionization Spectrum of CO2 Studied by the SAC-CI General-R Method, M. Ehara and H. Nakatsuji, Spectrochim. Acta (A) 55, 487-493 (1999).

229) Equation for the Direct Determination of the Density Matrix: Time -Dependent Density Equation and Perturbation Theory, H. Nakatsuji, Theor. Chem. Acc. 102(1-6), 97-104 (1999)

228) Force Concept for Predicting the Geometries of Molecules in an External Electric Field, Y. Honda and H. Nakatsuji, Chem. Phys. Lett., 293, 230-238 (1998).

227) SPC Cluster Modeling of Metal Oxides: Ways of Determining the Values of Point Charges in the Embedded Cluster Model, X. Xu, H. Nakatsuji, M. Ehara, X. Lu, N. Q. Wang, and Q. E. Zhang, Science in China (Series B), 41 (2), 113-121 (1998).

226) SPC Cluster Modeling Method of Metal Oxides – Charge-Consistency of the Embedded Cluster, X. Xu, H. Nakatsuji, M. Ehara, X. Lu, N. Q. Wang, and Q. E. Zhang, Science in China (Series B), 28(1), (1998).

225) Self-Condensation Reaction of Lithium (Alkoxy)silylenoid: A Model Study by ab Initio Calculation, Y. Tanaka, M. Hada, A. Kawachi, K. Tamao, and H. Nakatsuji, Organometallics, 17 (21), 4573-4577 (1998).

224) Cluster Modeling of Metal Oxides: the Influence of the Surrounding Point Charges on the Embedded Cluster, X. Xu, H. Nakatsuji, M. Ehara, X. Lu, N. Q. Wang, and Q. E. Zhang, Chem. Phys. Lett., 292(3), 282-288 (1998).

223) Cluster Modeling of Metal Oxides: How to Cut Out a Cluster?, X. Lu, X. Xu, N. Wang, Q. Zhang, M. Ehara, and H. Nakatsuji, Chem. Phys. Lett., 291(3,4), 445-452 (1998).

222) Oxidation Mechanism of Propylene on an Ag Surface: Dipped Adcluster Model Study, Z. Hu, H. Nakai, and H. Nakatsuji, Surf. Sci., 401(3), 371-391 (1998).

221) First-Principles Molecular Dynamics Study of CO Adsorption on the Si(001) Surface, Y. Imamura, N. Matsui, Y. Morikawa, M. Hada, T. Kubo, M. Nishijima, and H. Nakatsuji, Chem. Phys. Lett., 287(1,2), 131-136 (1998).

220) Theoretical Study on the Decomposition of HCOOH on a ZnO(1010) Surface, M. Yoshimoto, S. Takagi, Y. Umemura, M. Hada, and H. Nakatsuji, J. Catal., 173, 53-63 (1998).

219) Relativistic Theory of the Magnetic Shielding Constant: A Dirac-Fock Finite Perturbation Study, Y. Ishikawa, T. Nakajima, M. Hada, and H. Nakatsuji, Chem. Phys. Lett., 283(1,2), 119-124 (1998).

218) Second-order Perturbative Approximation to the SAC/SAC-CI Method, T. Nakajima and H. Nakatsuji, Chem. Phys. Lett., 300 (1), 1-8 (1998).

217) Mechanism and Unidirectionality of the Electron Transfer in the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: SAC-CI Theoretical Study, J. Hasegawa and H. Nakatsuji, J. Phys. Chem. B, 102 (50), 10420-10430 (1998).

216) Excited States of the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: SAC-CI Study, J. Hasegawa, K. Ohkawa, H. Nakatsuji, J. Phys. Chem. B, 102 (50), 10410 – 10419 (1998).

215) Excited States and Electron Transfer Mechanism in the Photosynthetic Reaction Cente of Rhodopseudomonas Viridis: SAC-CI Study, H. Nakatsuji, J. Hasegawa, and K. Ohkawa, Chem. Phys. Lett., 296 (5,6), 499-504 (1998).

214) Theoretical Study on the Ionized States of Ethylene by the SAC-CI (general-R) Method, J. Hasegawa, M. Ehara, and H. Nakatsuji, Chem. Phys., 230(1), 23-30 (1998).

213) Electronic Structures of MoF6 and MoOF4 in the Ground and Excited States: A SAC-CI and Frozen-Orbital-Analysis Study, H. Nakai, H. Morita, P. Tomasello, and H. Nakatsuji, J. Phys. Chem. A, 102 (11), 2033-2043 (1998).

212) SAC-CI Study on the Excited and Ionized States of Free-Base Porphin: Rydberg Excited States and Effect of Polarization and Rydberg Functions, Y. Tokita, J. Hasegawa, and H. Nakatsuji, J. Phys. Chem. A, 102(10), 1843-1849 (1998).

211) The Outer Valence Ionization Energies of Thiazyl Cyanide, P. Tomasello, J. Hasegawa, and H. Nakatsuji, Europhys. Lett., 41(6), 611-616 (1998).

210) Ionization Spectra of XONO2 (X=F,Cl,Br,I) Studied by the SAC-CI Method, M. Ehara, Y. Ohtsuka, and H. Nakatsuji, Chem. Phys., 226 (1,2), 113-123 (1998).

209) Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin a, and Chlorophyll a by the SAC/SAC-CI Method, J. Hasegawa, Y. Ozeki, K. Ohkawa, M. Hada, and H. Nakatsuji, J. Phys. Chem. B, 102 (7), 1320-1326 (1998).

208) Outer- and Inner-Valence Ionization Spectra of N2 and CO: SAC-CI (general-R) Spectra Compared with the Full-CI One, M. Ehara and H. Nakatsuji, Chem. Phys. Lett., 282(5,6) 347-354 (1998).

207) Direct Determination of the Quantum-Mechanical Density Matrix Using the Density Equation. II., K. Yasuda and H. Nakatsuji, Phys. Rev. A 56, 2648-2657 (1997).

206) Electron Transfer and Back-Transfer in the Partial Oxidation of Ethylene on an Ag Surface: Dipped Adcluster Model Study, H. Nakatsuji, K. Takahashi, and Z.M Hu, Chem. Phys. Lett., 277(5,6), 551-557 (1997).

205) Spin-Orbit Effect on the Magnetic Shielding Constant: Niobium Hexahalides and Titanium Tetrahalides, H. Nakatsuji, Z. M. Hu, T. Nakajima, Chem. Phys. Lett. 275, 429-436 (1997).

204) Photochemistry of Alkyl Ketones Included within the Zeolite Cavities: The Effect of Ion-Exchanged Alkali Metal Cations and Types of Zeolites, H. Yamashita, N. Sato, M. Anpo, T. Nakajima, M. Hada and H. Nakatsuji, H. Chon, S. K. Ihm and Y. S. Uh, Studies in Surface Science and Catalysis, 105 A 1141-1148 (1997).

203) Theoretical Studies on the Catalytic Activity of Ag Surface for the Oxidation of Olefins, H. Nakatsuji, Z. M. Hu, and H. Nakai, Intern. J. Quantum Chem., 65, 839-855 (1997).

202) Activation of O2 on Cu, Ag, and Au Surfaces for the Epoxidation of Ethylene: Dipped Adcluster Model Study, H. Nakatsuji, Z. M. Hu, H. Nakai and K. Ikeda, Surf. Sci., 387 328-341 (1997).

201) Cluster Quantum-Chemical MINDO/3 Study of HCOOH Interactions with Nonpolar (1010) Surface of ZnO, N. U. Zhanpeisov, H. Nakatsuji, M. Hada, and M. Yoshimoto, J. Mol. Catalysis, A 118(1), 69-77 (1997).

200) Mechanism of the Partial Oxidation of Ethylene on an Ag Surface: Dipped Adcluster Model Study, H. Nakatsuji, K. Ikeda, Y. Yamamoto, and H. Nakai, Surf. Sci., 384, 315-333 (1997).

199) Ab Initio Molecular Orbital Model of Scanning Tunneling Microscopy. Benzene and Benzene Adsorbed on a Ag Surface, M. Hidaka, T. Fujita, H. Nakai, and H. Nakatsuji, Chem. Phys. Lett., 264(3,4), 371-375 (1997).

198) Theoretical Study on the Thermal and Photochemical Isomerization Reactions of Dicyanoacetylene Complex of Platinum Pt(PH3)2(C4N2), H. Nakai, S. Fukada, and H. Nakatsuji, J. Phys. Chem. A101 (6), 973-980 (1997).

197) Analytical Energy Gradient of the Ground, Excited, Ionized and Electron-Attached States Calculated by the SAC/SAC-CI Method, T. Nakajima, and H. Nakatsuji, Chem. Phys. Lett., 280 (1,2) 79-84 (1997).

196) Electronic Structures of the Ground and Excited States of Mo(CO)6: SAC-CI Calculation and Frozen Orbital Analysis, H. Morita, H. Nakai, H. Hanada, and H. Nakatsuji, Mol. Phys., 92 (3) 523-534 (1997).

195) Ground and Excited States of Hemoglobin CO and Horseradish Peroxidase CO: SAC/SAC-CI Study, Y. Tokita and H. Nakatsuji, J. Phys. Chem. B, 101 (16) p. 3281-3289 (1997).

194) Excited States of Free Base Phthalocyanine Studied by the SAC-CI Method, K. Toyota, J. Hasegawa, and H. Nakatsuji, J. Phys. Chem., 101(4), 446-451 (1997).

193) Direct Determination of the Quantum-mechanical Density Matrix Using the Density Equation, H. Nakatsuji and K. Yasuda, Phys. Rev. Lett., 76, 1039-1042 (1996).

192) Topology of Density Difference and Force Analysis. I. Homopolar Bond Formation, S. J. Zheng, M. Hada, and H. Nakatsuji, Theoret. Chim. Acta, 93, 67-78 (1996).

191) Relativistic Study of Nuclear Magnetic Shielding Constants: Tungsten Hexahalides and Tetraoxide, M. Hada, H. Kaneko, and H. Nakatsuji, Chem. Phys. Lett., 261(1,2) 7-12 (1996).

190) CO and NO Adsorptions on the Copper-Containing Zeolite Catalyst. Ab initio Study, N. U. Zhanpeisov, H. Nakatsuji, M. Hada, H. Nakai, and M. Anpo, Catalysis Lett., 42, 173-176 (1996).

189) Cluster Quantum-Chemical MINDO/3 Study of the Nature of Hydroxyl Groups on a Calcium Oxide Surface, N. U. Zhanpeisov, H. Nakatsuji, and M. Hada, J. Mol. Catalysis, A. 112, 63-67 (1996).

188) Relativistic Study of Nuclear Magnetic Shielding Constants: Mercury Dihalides, H. Nakatsuji, M. Hada, H. Kaneko, and C. C. Ballard, Chem. Phys. Lett., 255, 195-202 (1996).

187) Relativistic Study of Nuclear Magnetic Shielding Constants: Hydrogen Halides, C. C. Ballard, M. Hada, H. Kaneko, and H. Nakatsuji, Chem. Phys. Lett., 254, 170-178 (1996).

186) Repulsive Interaction in CO+ on Pt Surface Derived from Very-Low-Energy Ion Scattering, Y. Murata, K. Fukutani, and H. Nakatsuji, Surf. Sci., 363, 112-120 (1996).

185) Theoretical Study on Metal NMR Chemical Shifts. Electronic Mechanism of the Xe Chemical Shift, S. Tanaka, M. Sugimoto, H. Takashima, M. Hada, and H. Nakatsuji, Bull. Chem. Soc. Jap., 69, 953-959 (1996).

184) Spin-orbit Effect on the Magnetic Shielding Constant Using the ab initio UHF Method: Tin Tetrahalides, H. Kaneko, M. Hada, T. Nakajima, and H. Nakatsuji, Chem. Phys. Lett., 261, 1-6 (1996).

183) Spin-orbit Effect on the Magnetic Shielding Constant Using ab initio UHF Method: Aluminum Compounds, AlX4(X=H, F, Cl, Br, and I), H. Nakatsuji, M. Hada, T. Tejima, and T. Nakajima, Chem. Phys. Lett., 249, 284-289 (1996).

182) Ab initio Molecular Orbital Model of Scanning Tunneling Microscopy, T. Fujita, H. Nakai, and H. Nakatsuji, J. Chem. Phys., 104(6), 2410-2417 (1996).

181) Excited and Ionized States of Free Base Porphin Studied by the SAC-CI Method, H. Nakatsuji, J. Hasegawa, and M. Hada, J. Chem. Phys., 104(6), 2321-2329 (1996).

180) Theoretical Study on the Photostimulated Desorption of CO from a Pt Surface, H. Nakatsuji, H. Morita, H. Nakai, Y. Murata, and K. Fukutani, J. Chem. Phys. 104(2), 714-726 (1996).

179) Basis Set Dependence of Magnetic Shielding Constant Calculated by the Hartree-Fock/Finite Perturbation Method, T. Higashioji, M. Hada, M. Sugimoto, and H. Nakatsuji, Chem. Phys., 203, 159-175 (1996).

178) Theoretical Study on the Chemisorption and the Surface Reaction of HCOOH on a ZnO(1010) Surface, H. Hakatsuji, M. Yoshimoto, Y. Umemura, S. Takagi and M. Hada, J. Phys. Chem., 100, 694-700 (1996).

177) The Electronic Spectra of Ethylene, C. C. Ballard, M. Hada, and H. Nakatsuji, Bull. Chem. Soc. Jap., 69(7), 1901-1906 (1996).

176) Theoretical Study on the Ionized Electronic Structure of the Octahedral Complex MoF6, H. Morita, H. Nakai, P. Tomasello, and H. Nakatsuji, Bull. Chem. Soc. Jap., 69(7), 1893-1899 (1996).

175) Frozen-orbital Analysis of the Excited States of Metal Complexes in High Symmetry Oh Case, H. Nakai, H. Morita and H. Nakatsuji, J. Phys. Chem., 100(39) 15753-15759 (1996).

174) Ground and Excited States of Carboxyheme: A SAC/SAC-CI Study, H. Nakatsuji, Y. Tokita, J. Hasegawa, M. Hada, Chem. Phys. Lett., 256(1,2), 220-228 (1996).

173) SAC-CI Study of the Excited States of Free Base Tetrazaporphin, K. Toyota, J. Hasegawa, and H. Nakatsuji, Chem. Phys. Lett., 250(5,6), 437-442 (1996).

172) Ground and Excited States of Mg Porphin Studied by the SAC/SAC-CI Method, J. Hasegawa, M. Hada, M. Nonoguchi, and H. Nakatsuji, Chem. Phys. Lett., 250(2), 159-164 (1996).

171) Ground and Excited States of Oxyheme: SAC/SAC-CI Study, H. Nakatsuji, J. Hasegawa, H. Ueda, and M. Hada, Chem. Phys. Lett., 250(3,4), 379-386 (1996).

170) Spin-orbit Effect on the Magnetic Shielding Constant Using ab initio UHF Method: Silicon Tetrahalides, H. Nakatsuji, T. Nakajima, M. Hada, H. Takashima, and S. Tanaka, Chem. Phys. Lett., 247, 418-424 (1995).

169) First-principles Molecular Dynamics Study of Acetylene Adsorption on the Si(001) Surface, Y. Imamura, Y. Morikawa, T. Yamasaki, and H. Nakatsuji, Surf. Sci. Comm., 341, L1091-L1095 (1995).

168) Electronic Mechanism of the Surface Enhanced Raman Scattering, H. Nakai and H. Nakatsuji, J. Chem. Phys., 103(6), 2286-2294 (1995).

167) Spin-Orbit Effect on the Magnetic Shielding Constant Using Ab Initio UHF Method. Gallium and Indium Tetrahalide, H. Takashima, M. Hada, H.Nakatsuji, Chem. Phys. Lett., 235, 13-16 (1995).

166) Spin-Orbit Effect on the Magnetic Shielding Constant Using Ab Initio UHF Method, H. Nakatsuji, H. Takashima, M. Hada, Chem. Phys. Lett., 233, 95-101 (1995).

165) Theoretical Study on Metal Chemical Shifts. Arsenic and Antimony Compounds, H. Takashima, M. Hada, and H. Nakatsuji, J. Phys. Chem., 99(20), 7951-7957 (1995).

164) Theoretical Study on the Photochemical Decomposition Reaction of Permanganate Ion, MnO4, H. Nakai, Y. Ohmori, and H. Nakatsuji, J. Phys. Chem., 99(21), 8550-8555 (1995).

163) Theoretical Study on the Chemisorption and Surface Reaction of HCOOH on an MgO(001) Surface, H. Nakatsuji, M. Yoshimoto, M. Hada, K. Domen and C. Hirose, Surf. Sci., 336, 232-244 (1995).

162) Gauge-Invariant Basis Sets for Magnetic Property Calculations, M. Sugimoto and H. Nakatsuji, J. Chem. Phys., 102(1), 285-293 (1995).

161) Theoretical Study of the Vacuum-Ultraviolet Spectra of SnH4 and Sn(CH3)4, K. Yasuda, N. Kishimoto, and H. Nakatsuji, J. Phys. Chem. 99, 12501-12506 (1995).

160) Theoretical Study on the Electronic Spectrum of TcO4, J. Hasegawa, K. Toyota, M. Hada, H Nakai and H. Nakatsuji, Theoret. Chim. Acta, 92, 351-359 (1995).

159) Theoretical Study on the Excitation Spectrum and the Photofragmentation Reaction of Ni(CO)4, M. Hada, Y. Imai, M. Hidaka, and H. Nakatsuji, J. Chem. Phys., 103(16), 6993-6998 (1995).

158) Theoretical Study of the Transition Energies of the Visible Absorption Spectra of [RhCl6]3- and [RhCl5(H2O)]2- Complexes, K. Endo, M. Saikawa, M. Sugimoto, M. Hada, and H. Nakatsuji, Bull. Chem. Soc. Jap., 68, 1601-1605 (1995).

157) Collision Induced Absorptions Spectra and Line Broadening of CsRg System (Rg=Xe, Kr, Ar, Ne) Studied by the SAC-CI Method, H. Nakatsuji and M. Ehara, J. Chem. Phys., 102(17), 6822-6830 (1995).

156) Theoretical Study on the Molecular and Dissociative Adsorption of H2 on a ZrO2 Surface, H. Nakatsuji, M. Hada, H. Ogawa, K. Nagata, and K. Domen, J. Phys. Chem., 98(46), 11840-11845 (1994).

155) Theoretical Study on the Reaction Mechanism and Regioselectivity in Silastanation of Acetylenes by a Palladium Catalyst, M. Hada, Y. Tanaka, M. Ito, M. Murakami, H. Amii, Y. Ito, and H. Nakatsuji, J. Am. Chem. Soc., 116(19), 8754-8765 (1994).

154) Mechanism of Photochemical Reaction of Permanganate Ion, H. Nakai and H. Nakatsuji, J. Mol. Struc. (Theochem), 311, 141-151 (1994).

153) Cluster Model Study on GaAs Epitaxial Crystal Growth by Arsenic Molecular Beam. III, As4 Molecular Beam, Y. Fukunishi and H. Nakatsuji, Surf. Sci., 316, 168-180 (1994).

152) Theoretical Study on Metal NMR Chemical Shifts. Germanium Compounds, H. Nakatsuji and T. Nakao, Intern. J. Quantum Chem., 49, 279-290 (1994).

151) Symmetry Adapted Cluster-Configuration Interaction Study on the Excited ans Ionized States of TiBr4 and TiI4, H. Nakatsuji and M. Ehara, J. Chem. Phys., 101(9), 7658-7671 (1994).

150) Theoretical Study on the Ground and Excited States of the Chromate Anion CrO42-, S. Jitsuhiro, H. Nakai, M. Hada and H. Nakatsuji, J. Chem. Phys., 101(2), 1029-1036 (1994).

149) Hyperfine Splitting Constants Studied by the SAC-CI Method, H. Nakatsuji, M. Ehara, and T. Momose, J. Chem. Phys., 100(8), 5821-5828 (1994).

148) Spectral Analysis of the XPS Core and Valence Energy Levels of Polyvinyl Alcohol by an Ab Initio MO Method Using the 1,3,5-Hexanetriol Molecule, K. Endo, C. Inoue, N. Kobayashi, T. Higashioji, and H. Nakatsuji, Bull. Chem. Soc. Jap., 66(11) 3241-3244 (1993).

147) Theoretical Study of Metal NMR Chemical Shifts. Selenium Compounds, H. Nakatsuji, T. Higashioji, and M. Sugimoto, Bull. Chem. Soc. Jap., 66(11), 3235-3240 (1993).

146) Highly Coordinate Germanium and Tin Co plexes in the Allylation Reactions of Aldehydes, M. Hada, H. Nakatsuji, J. Ushio, M. Izawa and H. Yokono, Organometal., 12(9), 3398-3404 (1993).

145) Cluster Model Study on GaAs Epitaxial Crystal Growth by As2 Molecular Beam. II. Mechanism Involving GaAs2 Intermediate, Y. Fukunishi and H. Nakatsuji, Surf. Sci., 291, 281-290 (1993).

144) Cluster Model Study on GaAs Epitaxial Crystal Growth by As2 Molecular Beam. I. As2 Adsorption on GaAs Surface, Y. Fukunishi and H. Nakatsuji, Surf. Sci. 291, 271-280 (1993).

143) Electronic Structure and Mechanism in Surface-Molecule Interacting System, H. Nakatsuji, in New Functionality Materials, Vol. C. Synthetic Process and Control of Functionality Materials Ed. by T. Tsuruta, M. Doyama and M. Seno, pp. 15-26 (1993).

142) Dipped Adcluster Model and SAC-CI Method Applied to Harpooning, Chemiluminescence, and Electron Emission in Halogen Chemisorption on Alkali Metal Surface, H. Nakatsuji, R. Kuwano, H. Morita and H. Nakai, J. Mol. Catalysis, 82, 211-228 (1993). (Proceeding of the IVth International Symposium-Theoretical Approach to Catalysis at Interfaces Cracow, Poland. July 27-31, 1992).

141) Theoretical Study on Metal NMR Chemical Shifts. Gallium Compounds, M. Sugimoto, M. Kanayama and H. Nakatsuji, J. Phys. Chem., 97(22), 5868-5874 (1993).

140) Theoretical Study on the Methane Activation Reactions by Pt, Pt+, and Pt Atoms, M. Hada, H. Nakatsuji, H. Nakai, S. Gyobu, and S. Miki, J. Molec. Struc. (THEOCHEM), 281(2,3), 207-212 (1993).

139) Dipped Adcluster Model Study for Molecular and Dissociative Chemisorption of O2 on an Ag Surface, H. Nakatsuji and H. Nakai, J. Chem. Phys. 98(3), 2423-2436 (1993).

138) EGCI Method Applied to High-Spin Multiplicity, H. Nakatsuji and M. Ehara, J. Chem. Phys., 99(3), 1952-1961 (1993).

137) Theoretical Study of the Visible and Ultraviolet Spectra of Chromyl Chloride CrO2Cl2, K. Yasuda and H. Nakatsuji, J. Chem. Phys. 99(3), 1945-1951 (1993).

136) SAC-CI Method Applied to High-Spin Multiplicity, H. Nakatsuji and M. Ehara, J. Chem. Phys., 98(9), 7179-7184 (1993).

135) Modifications for Ab Initio Calculations of the Moderately Large Embedded Cluster Model. Hydrogen Adsorption on a Lithium Surface, Y. Fukunishi and H. Nakatsuji, J. Chem. Phys., 97(9), 6535-6543 (1992).

134) Theoretical Study on Metal NMR Chemical Shifts. Electronic Mechanism of the Sn Chemical Shits, H. Nakatsuji, T. Inoue and T. Nakao, J. Phys. Chem., 96(20), 7953-7958 (1992).

133) Does the Schrock-Type Metal-Silylene Complex Exist?, H. Nakatsuji, M. Hada, and K. Kondo, Chem. Phys. Lett.,196(5), 404-409 (1992).

132) Theoretical Study on Metal NMR Chemical Shifts. Niobium Complexes, M. Sugimoto, M. Kanayama, and H. Nakatsuji, J. Phys. Chem., 96(11),4375-4381 (1992).

131) Electronic Structures of Dative Metal-Metal Bonds; Ab initio Molecular Orbital Calculations of (OC)5Os-M(CO)5 (M=W, Cr) in Comparison with (OC)5M-M(CO)5 (M=Re, Mn), H. Nakatsuji, M. Hada, and A. Kawashima, Inorg. Chem., 31(10), 1740-1744 (1992).

130) Dipped Adcluster Model Study for the End-on Chemisorption of O2 on an Ag Surface, H. Nakatsuji and H. Nakai, Can. J. Chem., 70, 404-408 (1992).

129) Theoretical Study of the Hydrogen Chemisorption on a ZnO Surface, H. Nakatsuji and Y. Fukunishi, Intern. J. Quantum Chem., 42, 1101-1114 (1992).

128) Multiphoton Ionization of Rb2 in the Wavelength Range 620-670 nm, H. Suemitsu, H. Kitaura, R. Yokoyama, M. Ehara, and H. Nakatsuji, J. Phys. B: At. Mol. Opt. Phys., 25, 4507-4517 (1992).

127) Potential Energy Curves of Dioxygen Anion Species: O2 and O22-, H. Nakatsuji and H. Nakai, Chem. Phys. Lett., 197(4,5), 339-345 (1992).

126) Theoretical Study on the Excited and Ionized States of Titanium Tetrachloride, H. Nakatsuji, M. Ehara, M. H. Palmer and M. F. Guest, J. Chem. Phys., 97(4), 2561-2570 (1992).

125) Calculation of the Hyperfine Splitting Constants for the Ground and Excited States of NH2 Radical, H. Nakatsuji and M. Izawa, J. Chem. Phys., 97(1), 435-439 (1992).

124) Theoretical Model Studies for Surface-Molecule Interacting Systems, H. Nakatsuji, Intern. J. Quantum Chem., Symp.26, 725-736 (1992)

123) Synthesis and Property of [6]-1, 4-Cyclophaneanthraquinone: A Novel Anthraquinone Derivative Undergoing Photovalence Isomerization, S. Miki, R. Shimizu, and H. Nakatsuji, Tetrahedron Lett., 33(7), 953 (1992).

122) Magnetic Properties in Charge-Transfer Complexes of High-Symmetry Organic Acceptors, T. Sugimoto, E. Murahashi, K. Ikeda, Z. Yoshida, H. Nakatsuji, J. Yamauchi, Y. Kai, and N. Kasai, Mat. Res. Sco. Symp. Proc., 247, 417 (1992).

121) Synthesis and Photoreaction of 1,2,3,4-tetra-t-Butylnapthalene: A Highly Crowded Naphthalene Derivative and its Valence Isomers, S. Miki, T. Ema, R. Shimizu, H. Nakatsuji, and Z. Yoshida, Tetrahedron Lett. 33(12), 1619 (1992).

120) Electronic Structures of Ground, Excited, Ionized, and Anion States Studied by the SAC/SAC-CI Theory, H. Nakatsuji, Acta Chimica Hungarica, Models in Chemistry, 129(5), pp.719-776 (1992)

119) Ab Initio MO Calculations of Model Molecules for Ribozyme Reaction Including an Mg2+ Ion, Y. Mizukami, H. Nakatsuji, M. Hada, M. Sasaki, and N. Sugimoto, Chem. Lett., 2119-2122 (1991).

118) Theoretical Study on the Ground and Excited States of MnO4, H. Nakai, Y. Ohmori, and H. Nakatsuji, J. Chem. Phys., 95(11), 8287 (1991).

117) Dipped Adcluster Model for Chemisorptions and Catalytic Reactions on a Metal Surface: Image Force Correction and Applications to Pd-O2 Adclusters, H. Nakatsuji, H. Nakai, and Y. Fukunishi, J. Chem. Phys., 95(1), 640-647 (1991).

116) Potential Energy Curves of the Ground, Excited and Ionized States of Kr2 Studied by the SAC-CI Theory, Y. Mizukami and H. Nakatsuji, J. Molec. Struct. (THEOCHEM), 234, 469 (1991).

115) SAC-CI and Full CI Calculations for the Singlet and Triplet Excited States of H2O, H. Nakatsuji, K. Hirao, and Y. Mizukami, Chem. Phys. Lett., 179(5,6), 555-558 (1991).

114) Excited and Ionized States of RuO4 and OsO4 Studied by SAC and SAC-CI Theories, H. Nakatsuji and S. Saito, Intern. J. Quantum Chem., 39, 93-113 (1991).

113) Mixed-Exponentially Generated Wave Function Method for Ground, Excited, Ionized, and Electron Attached States of a Molecule, H. Nakatsuji, J. Chem. Phys., 95(6), 4296-4305 (1991)

112) Exponentially Generated Configuration Interaction Theory. Descriptions of Excited, Ionized, and Electron Attached States, H. Nakatsuji, J. Chem. Phys., 94(10), 6716-6727 (1991)

111) Description of Two- and Many-Electron Processes by the SAC-CI Method, H. Nakatsuji, Chem. Phys. Lett., 177(3), 331-337 (1991)

110) Theoretical Study on Molecular and Dissociative Chemisorptions of an O2 Molecule on an Ag Surface: Dipped Adcluster Model Combined with SAC-CI Method, H. Nakatsuji and H. Nakai, Chem. Phys. Lett., 174(3,4), 283 (1990).

109) Electronic Origin of 95Mo-NMR Chemical Shift in Some Molybdenum Complexes. Relationship between Excitation Energy and Chemical Shift, H. Nakatsuji, M. Sugimoto and S. Saito, Inorg. Chem., 29(17), 3095-3097 (1990).

108) Theoretical Study on Metal NMR Chemical Shifts. Titanium Complexes, H. Nakatsuji and T. Nakao, Chem. Phys. Lett., 167(6), 571-574 (1990).

107) Theoretical Study on Metal NMR Chemical Shifts. Tin Complexes, H. Nakatsuji, T. Inoue and T. Nakao, Chem. Phys. Lett., 167(1,2), 111-114 (1990).

106) Theoretical Study on the Metal NMR Chemical Shift. Molybdenum Complexes, H. Nakatsuji and M. Sugimoto, Inorg. Chem., 29(6), 1221-1225 (1990).

105) Collision Induced Absorption Spectra of CeXe System Studied by the SAC-CI Theory, H. Nakatsuji and M. Ehara, Chem. Phys. Lett., 172(3,4), 261-264 (1990).

104) Theoretical Study for the Excited States of MoO4-nSn2- (n = 0 – 4) and MoSe42-, H. Nakatsuji and S. Saito, J. Chem. Phys., 93(3), 1865-1875 (1990).

103) Potential Energy Curves of the Ground, Excited and Ionized States of Ar2 Studied by the SAC-CI Theory, Y. Mizukami and H. Nakatsuji, J. Chem. Phys., 92, 6084 (1990).

102) Calculation of Hyperfine Splitting Constants with Slater-Type Cusp Basis by the SAC-CI Theory, H. Nakatsuji and M. Izawa, J. Chem. Phys., 91(9), 6205-6214 (1989).

101) Ab Initio Theoretical Study on the Reactions of a Hydrogen Molecule with Small Platinum Clusters – A Model for Chemisorption on a Pt Surface -, H. Nakatsuji, Y. Matsuzaki, and T. Yonezawa, J. Chem. Phys., 88(9), 5759-5769 (1988).

100) Calculation of Isotropic Hyperfine Coupling Constants by the SAC-CI Theory, T. Momose, H. Nakatsuji, and T. Shida, J. Chem. Phys., 89(7), 4185-4192 (1988).

99) Cluster Expansion of the Wavefunction. Valence Excitations and Ionizations of Pyridine, O. Kitao and H. Nakatsuji, J. Chem. Phys., 88(8), 4913-4925 (1988).

98) Cluster Expansion of the Wavefunction. Valence and Rydberg Excitations of trans- and cis-Butadiene, O. Kitao and H. Nakatsuji, Chem. Phys. Lett., 143(6), 528-534 (1988).

97) Theoretical Study on the Catalytic Activity of Palladium for the Hydrogenation of Acetylene, H. Nakatsuji, M. Hada, and T. Yonezawa, Surf. Sci., 185(1), 319-342 (1987).

96) Theoretical Study on the Chemisorption of Hydrogen Molecule on Palladium, H. Nakatsuji, M. Hada, and T. Yonezawa, J. Am. Chem. Soc., 109(7), 1902-1912 (1987).

95) Electronic Mechanisms in the Cadmium Chemical Shift, H. Nakatsuji, T. Nakao, and K. Kanda, Chem. Phys., 118(1), 25-32 (1987).

94) Cluster Expansion of the Wavefunction. Ionizations and Some Low-Energy Excitations of Naphthalene, H. Nakatsuji, M. Komori, and O. Kitao, Chem. Phys. Lett., 142(6), 446-450 (1987).

93) Frozen Core and Virtual Orbitals in the MC-SCF Theory, M. Hada, H. Yokono, nd H. Nakatsuji, Chem. Phys. Lett., 141(4), 339-345 (1987).

92) Cluster Expansion of the Wavefunction. Valence and Rydberg Excitations and Ionizations of Benzene, O. Kitao and H. Nakatsuji, J. Chem. Phys., 87(2), 1169-1182 (1987).

91) Exponentially Generated Wave Functions and Excited States of Benzene, H. Nakatsuji, Theoret. Chim. Acta., 71(2,3), 201-229 (1987). (Proceeding of the Symposium on Computational Quantum Chemistry and Parallel Processors, July, 1986, Edmonton, Canada.)

90) Dipped Adcluster Model for Chemisorptions and Catalytic Reactions on a Metal Surface, H. Nakatsuji, J. Chem. Phys., 87(8), 4995-5001 (1987)

89) Geometries and Energies of the Excited States of Pyridazine Studied by SAC and SAC-CI Calculations, M. Terazima, S. Yamauchi, N. Hirota, O. Kitao, and H. Nakatsuji, Chem. Phys., 107, 81-87 (1986).

88) Cluster Expansion of the Wavefunction. Potential Energy Curves of the Ground and Excited States of CO, O. Kitao and H. Nakatsuji, Proc. Indian Acad. Sci., 96, 155-166 (1986). (Dedicated to Professor Sadhan Basu on the Occasion of his 65th Birth Anniversary.)

87) Multi-Reference Cluster Expansion Theory and an Interaction of Hydrogen Molecule with Palladium, H. Nakatsuji and M. Hada, in Proceeding of the Nobel Laureate Symposium on Applied Quantum Chemistry, V. H. Smith, Jr., Ed. (Reidel, Dordrecht) 93-109 (1986).

86) Correlation between Metal NMR Physical Quantities and Structures of Metal Complexes. I. 109Ag NMR Spectroscopy of Aqueous Silver Ions Coordinated with Nitroxide Radical, K. Endo, K. Yamamoto, K. Matsushita, K. Deguchi, K. Kanda, and H. Nakatsuji, J. Magn. Reson., 65, 268-281 (1985).

85) Interaction of Hydrogen Molecule with Palladium, H. Nakatsuji and M. Hada, J. Am. Chem. Soc., 107, 8264 (1985).

84) Cluster Expansion of the Wavefunction. Valence and Rydberg Excitations and Ionizations of Pyrrole, Furan, and Cyclopentadiene, H. Nakatsuji, O. Kitao, and T. Yonezawa, J. Chem. Phys., 83, 723 (1985).

83) Cluster Expansion of the Wavefunction. Potential Energy Curves of the Ground, Excited, and Ionized States of Li2, H. Nakatsuji, J. Ushio, and T. Yonezawa, Can. J. Chem., 63, 1857 (1985). (Dedicated to Professor Camille Sandorfy for his 65th Birthday.).

82) Exponentially Generated Wave Functions, H. Nakatsuji, J. Chem. Phys., 83(11), 5743 (1985)

81) Multireference Cluster Expansion Theory: MR-SAC Theory, H. Nakatsuji, J. Chem. Phys., 83, 713-722 (1985)

80) Interaction of Hydrogen Molecule with Palladium Atom. Force Theoretic Study, H. Nakatsuji and M. Hada, Croatica Chemica Acta, 57, 1371 (1984). (Special Subject Issue, Conceptual Quantum Chemistry. Models and Applications).

79) Electronic Structures and Reactivities of Metal-Carbon Multiple Bonds; Schrock-Type Metal-Carbene Complex and Metal-Carbyne Complex, J. Ushio, H. Nakatsuji, and T. Yonezawa, J. Am. Chem. Soc., 106, 5892 (1984).

78) Theoretical Study of the Metal Chemical Shift in Nuclear Magnetic Resonance Spectroscopy. Mn Complexes, K. Kanda, H. Nakatsuji, and T. Yonezawa, J. Am. Chem. Soc., 106, 5888 (1984).

77) Theoretical Study of the Metal Chemical Shift in Nuclear Magnetic Resonance. Ag, Cd, Cu, and Zn Complexes, H. Nakatsuji, K. Kanda, K. Endo, and T. Yonezawa, J. Am. Chem. Soc., 106, 4653 (1984).

76) Cluster Expansion of the Wavefunction. Valence and Rydberg Excitations and Ionizations of Ethylene, H. Nakatsuji, J. Chem. Phys., 80, 3703 (1984)

75) Force in SCF Theories. Combination with the Effective-Core Potential Method, H. Nakatsuji, M. Hada, and T. Yonezawa, Chem. Phys. Lett., 95, 573 (1983).

74) Force in SCF Theories. First and Second Derivatives of the Potential Energy Hypersurface of Chemical Reaction Systems, H. Nakatsuji, M. Hada, K. Kanda, and T. Yonezawa, Intern. J. Quantum Chem., 23, 387 (1983).

73) Reply to “Comment: ‘Force in SCF Theories'”, H. Nakatsuji, K. Kanda, M. Hada, and T. Yonezawa, J. Chem. Phys., 79, 2493 (1983).

72) Does a Silylene-Metal Complex Exist?, H. Nakatsuji, J. Ushio, and T. Yonezawa, J. Organometal. Chem., 258, C1-C4 (1983).

71) Ab Initio Electronic Structures of the Rh-Rh Bond in Dirhodium Tetracarboxylate Complexes and Their Cations, H. Nakatsuji, Y. Onishi, J. Ushio, and T. Yonezawa, Inorg. Chem., 22, 1623 (1983).

70) Ab Initio Electronic Structures and Reactivities of Metal Carbene Complexes: Fischer-Type Compounds, (CO)5Cr=CH(OH) and (CO)4Fe=CH(OH), H. Nakatsuji, J. Ushio, S. Han, and T. Yonezawa, J. Am. Chem. Soc., 105, 426 (1983).

69) Cluster Expansion of the Wavefunction Spin and Electron Correlations in Doublet Radicals Studied by the SAC and SAC-CI Theories, H. Nakatsuji, K. Ohta, and T. Yonezawa, J. Phys. Chem., 87, 3068 (1983).

68) Experimental and Theoretical Study on Cation Radicals of Cyclopropane, Cyclobutane, and Cyclopentane, K. Ohta, H. Nakatsuji, H. Kubodera, and T. Shida, Chem. Phys., 76, 271-281 (1983).

67) Cluster Expansion of the Wavefunction. Ionization and Excitation Spectra of NO Radical Studied by the SAC and SAC-CI Theory, H. Nakatsuji, Intern. J. Quantum Chem., Symp. 17, 241 (1983)

66) Cluster Expansion of the Wavefunction. Outer- and Inner-Valence Ionization Spectra of CS2 and COS, H. Nakatsuji, Chem. Phys., 76, 283 (1983)

65) Cluster Expansion of the Wavefunction. Valence and Rydberg Excitations, Ionizations, and Inner-Valence Ionizations of CO2 and N2O Studied by the SAC and SAC-CI Theories, H. Nakatsuji, Chem. Phys., 75, 425 (1983)

64) Force in SCF Theories. Test of the New Method, H. Nakatsuji, K. Kanda, M. Hada, and T. Yonezawa, J. Chem. Phys., 77, 3109 (1982).

63) Force in SCF Theories. Second Derivative of Potential Energy, H. Nakatsuji, K. Kanda, and T. Yonezawa, J. Chem. Phys., 77, 1961 (1982).

62) Cluster Expansion of the Wavefunction. Satellite Peaks of the Inner-Valence Ionization of H2O Studied by the SAC and SAC-CI Theories, H. Nakatsuji and T. Yonezawa, Chem. Phys. Lett., 87, 426 (1982).

61) Ab Initio Calculation of the Geometries and Hfs Constants of CH3, SiH3, and GeH3 Radicals, K. Ohta, H. Nakatsuji, I. Maeda, and T. Yonezawa, Chem. Phys., 67, 49-58 (1982).

60) A Generalization of the Davidson’s Method to the Large Nonsymmetric Eigenvalue Problems, K. Hirao and H. Nakatsuji, J. Comp. Phys., 45, 246 (1982).

59) Molecules in an Electric Field. Model for Molecular Geometry, H. Nakatsuji, T. Hayakawa, and T. Yonezawa, J. Am. Chem. Soc., 103(25), 7426 (1981).

58) Force in SCF Theories. MC-SCF and Open-Shell RHF Theories, H. Nakatsuji, T. Hayakawa, and M. Hada, Chem. Phys. Lett., 80(1), 94 (1981).

57) Electronic Structure of Dirhodium Tetracarboxylate Complexes by Ab Initio SCF MO Method, H. Nakatsuji, J. Ushio, K. Kanda, Y. Onishi, T. Kawamura, and T. Yonezawa, Chem. Phys. Lett., 79(2), 299 (1981).

56) Cluster Expansion of the Wavefunction. Electron Correlations in the Ground State, Valence and Rydberg Excited States, Ionized States, and Electron Attached States of Formaldehyde by SAC and SAC-CI Theories, H. Nakatsuji, K. Ohta, and K. Hirao, J. Chem. Phys., 75(6), 2952 (1981).

55) Cluster Expansion of the Wavefunction. Electron Correlations in Singlet and Triplet Excited States, Ionized States, and Electron Attached States by SAC and SAC-CI Theories, H. Nakatsuji and K. Hirao, Intern. J. Quantum Chem., 20(6), 1301 (1981).

54) Cluster Expansion of the Wavefunction. Symmetry-Adapted-Cluster (SAC) Theory for Excited States, K. Hirao and H. Nakatsuji, Chem. Phys. Lett., 79, 292 (1981).

53) Force in SCF Theories, H. Nakatsuji, K. Kanda, and T. Yonezawa, Chem. Phys. Lett., 75(2), 340 (1980).

52) Force and Density Study on the Chemical Reaction Process OH2 + H+ ? OH3+, T. Koga, H. Nakatsuji, and T. Yonezawa, Mol. Phys., 39(1), 239 (1980).

51) Ab Initio Calculation of Hyperfine Splitting Constants of Molecules, K. Ohta, H. Nakatsuji, K. Hirao, and T. Yonezawa, J. Chem. Phys., 73(4), 1770 (1980).

50) Cluster Expansion of the Wavefunction. Calculation of Electron Correlations in Ground and Excited States by SAC and SAC-CI Theories, H. Nakatsuji, Chem. Phys. Lett., 67(2,3), 334 (1979)

49) Cluster Expansion of the Wavefunction. Electron Correlations in Ground and Excited States by SAC (Symmetry-Adapted-Cluster) and SAC-CI Theories, H. Nakatsuji, Chem. Phys. Lett., 67(2,3), 329 (1979)

48) Cluster Expansion Methods for the Study of Electron Correlations in Open Shell and Excited States, H. Nakatsuji, The Symposium on Many-Body Theoretical Approaches to Electron Correlation in Molecules, p. 35 (1979)

47) Electrostatic Force Theory for a Molecule and Interacting Molecules 7. Ab Initio Verification of the Force Concepts Based on the Floating Wave Functions of NH3, CH3+, and NH3+, H. Nakatsuji, S. Kanayama, S. Harada, and T. Yonezawa, J. Am. Chem. Soc., 100(24), 7528 (1978).

46) Generalized Berlin Diagram for Polyatomic Molecules, T. Koga, H. Nakatsuji, and T. Yonezawa, J. Am. Chem. Soc., 100(24), 7522 (1978).

45) Electrostatic Force Study with Floating Wavefunction. Comparative Study of the Origins of the Molecular Shapes of CH3+ and NH3, H. Nakatsuji, K. Matsuda, and T. Yonezawa, Bull. Chem. Soc. Japan, 51(5), 1315 (1978).

44) Electrostatic Force Study with Floating Wavefunction. Shape of H2O Molecule, H. Nakatsuji, K. Matsuda, and T. Yonezawa, Chem. Phys. Lett., 54(2), 347 (1978).

43) Force and Density Study on the Chemical Reaction Process NH2 + H ? NH3, H. Nakatsuji, T. Koga, K. Kondo, and T. Yonezawa, J. Am. Chem. Soc., 100(4), 1029 (1978).

42) Cluster Expansion of the Wavefunction. The Open-Shell Orbital Theory Including Electron Correlation, K. Hirao and H. Nakatsuji, J. Chem. Phys., 69(10), 4548 (1978).

41) Cluster Expansion of the Wavefunction. Structure of the Closed-Shell Orbital Theory, K. Hirao and H. Nakatsuji, J. Chem. Phys., 69(10), 4535 (1978).

40) Cluster Expansion of the Wavefunction. Pseudo-Orbital Theory Based on the SAC Expansion and Its Application to the Spin Density of Open-Shell Systems, H. Nakatsuji and K. Hirao, J. Chem. Phys., 68(9), 4279 (1978).

39) Cluster Expansion of the Wavefunction. Excited States, H. Nakatsuji, Chem. Phys. Lett., 59(2), 362 (1978)

38) Cluster Expansion of the Wavefunction. Symmetry-Adapted-Cluster Expansion, Its Variational Determination, and Extension of Open-Shell Orbital Theory, H. Nakatsuji and K. Hirao, J. Chem. Phys., 68(5), 2053 (1978).

37) Cluster Expansion of the Wavefunction. Pseudo-Orbital Theory Applied to Spin Correlation, H. Nakatsuji and K. Hirao, Chem. Phys. Lett., 47(3), 569 (1977).

36) Hidden Potentials in Classical Theorems, H. Nakatsuji, J. Chem. Phys., 67(4), 1312 (1977).

35) Relative Coordinate Representation for Long-Range Interactions, T. Koga and H. Nakatsuji, Chem. Phys., 16, 189 (1976).

34) The Hellmann-Feynman Theorem Applied to Long-Range Forces, T. Koga and H. Nakatsuji, Theoret. Chim. Acta (Berl.), 41, 119 (1976).

33) Equation for the Direct Determination of the Density Matrix, H. Nakatsuji, Phys. Rev., A14, 41 (1976)

32) Variational Principles Which are Functionals of Electron Density, H. Nakatsuji and R.G. Parr, J. Chem. Phys., 63(3), 1112 (1975).

31) Electrostatic Force Theory for a Molecule and Interacting Molecules IV. Long-Range Forces between Two Atoms, H. Nakatsuji and T. Koga, J. Am. Chem. Soc., 96(19), 6000 (1974).

30) Geometric Double-Perturbation Expansion of the Coupled Hartree-Fock Second-Order Energy, H. Nakatsuji and J. I. Musher, J. Chem. Phys., 61(9), 3737 (1974).

29) What is the Best Expression of the Second-Order Sum-Over-State Perturbation Energy Based on the Hartree-Fock Wave Function?, H. Nakatsuji, J. Chem. Phys., 61(9), 3728 (1974). (Dedicated to the Memory of the Late Professor Jeremy Israel Musher)

28) Effects of Outer-Shell Orbitals on the Hartree-Fock Energies, H. Nakatsuji and J. I. Musher, Chem. Phys. Lett., 24(1), 77 (1974).

27) Electron-Cloud Following and Preceding and the Shapes of Molecules, H. Nakatsuji, J. Am. Chem. Soc., 96(1), 30 (1974)

26) Common Natures of the Electron Cloud of the System Undergoing Change in Nuclear Configuration, H. Nakatsuji, J. Am. Chem. Soc., 96(1), 24 (1974).

25) Electrostatic Force Treatment Based on Extended H?ckel Molecular Orbitals. Structure and Reaction of Simple Hydrocarbons, H. Nakatsuji, T. Kuwata, and A. Yoshida, J. Am. Chem. Soc., 95(21), 6894 (1973).

24) Theoretical Study of the Fluorine-Fluorine Nuclear Spin Coupling Constants II. Stereochemical Dependences, K. Hirao, H. Nakatsuji, and H. Kato, J. Am. Chem. Soc., 95(1), 31 (1973).

23) General SCF Operator Satisfying Correct Variational Condition, K. Hirao and H. Nakatsuji, J. Chem. Phys., 59(3), 1457 (1973).

22) MC-SCF Wave Functions for the Fermi-Contact Hyperfine Structure of Lithium Atom, K. Ishida and H. Nakatsuji, Chem. Phys. Lett., 19(2), 268 (1973).

21) Electrostatic Force Theory for a Molecule and Interacting Molecules III. Overlap Effect on the Atomic Dipole and Exchange Forces, Orbital Following and Preceding, and the Shapes of XmABYn Molecules, H. Nakatsuji, J. Am. Chem. Soc., 95(7), 2084 (1973)

20) Electrostatic Force Theory for a Molecule and Interacting Molecules II. Shapes of the Ground- and Excited-State Molecules, H. Nakatsuji, J. Am. Chem. Soc., 95(2), 354 (1973).

19) Electrostatic Force Theory for a Molecule and Interacting Molecules I. Concept and Illustrative Applications, H. Nakatsuji, J. Am. Chem. Soc., 95(2), 345 (1973).

18) On the Orbital Theories in the Spin-Correlation Problems. II. Unrestricted and Spin-Extended Hartree-Fock Theories, H. Nakatsuji, J. Chem. Phys., 59(5), 2586 (1973).

17) Theoretical Study of the Fluorine-Fluorine Nuclear Spin Coupling Constants I. The Importance of Orbital and Spin Dipolar Terms, K. Hirao, H. Nakatsuji, H. Kato, and T. Yonezawa, J. Am. Chem. Soc., 94(12), 4078 (1972).

16) An MO Interpretation of the Chemical Shifts of the Binding Energies of Inner-Shell Electrons II. A Study of Intramolecular Shifts, K. Ishida, H. Kato, H. Nakatsuji, and T. Yonezawa, Bull. Chem. Soc. Japan, 45(5), 1574 (1972).

15) An MO Interpretation of the Chemical Shifts of Inner-Shell Electrons, H. Kato, K. Ishida, H. Nakatsuji, and T. Yonezawa, Bull. Chem. Soc. Japan, 44(10), 2587 (1971).

14) Anisotropy of the Indirect Nuclear Spin-Spin Coupling Constants III. Problems in the Structure Determination of the Molecule Dissolved in a Nematic Solvent, H. Nakatsuji, I. Morishima, H. Kato, and T. Yonezawa, Bull. Chem. Soc. Japan, 44(8), 2010 (1971).

13) Anisotropy of the Indirect Nuclear Spin-Spin Coupling Constant II. Treatment by the Finite Perturbation Method, H. Nakatsuji, K. Hirao, H. Kato, and T. Yonezawa, Chem. Phys. Lett., 6(5), 541 (1970).

12) Anisotropy of the Indirect Nuclear Spin-Spin Coupling Constant, H. Nakatsuji, H. Kato, I. Morishima, and T. Yonezawa, Chem. Phys. Lett., 4(10), 607 (1970).

11) Calculation of Force Constants of Ethylene by a Semi-empirical ASMO-SCF Method, K. Machida, H. Nakatsuji, H. Kato, and T. Yonezawa, J. Chem. Phys., 53(4), 1305 (1970).

10) Semi-Empirical Unrestricted SCF-MO Treatment for Valence Electron Systems II. Angular Dependence of the Methyl Group hfs Constants, H. Nakatsuji, H. Kato, and T. Yonezawa, Bull. Chem. Soc. Japan, 43(3), 698 (1970).

9) Semi-Empirical Unrestricted SCF-MO Treatment for Valence Electron Systems I. Application to Small Doublet Radicals, T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Bull. Chem. Soc. Japan, 42(9), 2437 (1969).

8 ) On the Unrestricted Hartree-Fock Wavefunction, H. Nakatsuji, H. Kato, and T. Yonezawa, J. Chem. Phys., 51(8), 3175 (1969).

7) Spin Polarization and Spin Delocalization in Unrestricted Hartree-Fock Method, T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, J. Chem. Phys., 51(2), 669 (1969).

6) The Electronic Structure of Carbonium Ions. Alkyl Cations and Protonated Hydrocarbons, T. Yonezawa, H. Nakatsuji, and H. Kato, J. Am. Chem. Soc., 90(5), 1239 (1968).

5) Spin Polarization and Spin Delocalization in Unrestricted Hartree-Fock Method, T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Chem. Phys. Lett., 2(7), 454 (1968).

4) Notes on the E.S.R. Spectrum of Hydrogenated Pyridine, T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Mol. Phys., 13(6), 589 (1967).

3) Structure and Reactivity of a, b-Unsaturated Ethers. The Acid-Catalyzed Hydrolysis of Alkenyl Alkyl Ethers, T. Okuyama, T. Fueno, H. Nakatsuji, and J. Furukawa, J. Am. Chem. Soc., 89(23), 5826 (1967).

2) A Semi-Empirical Unrestricted SCF-MO Method for Valence Electron Systems, T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Bull. Chem. Soc. Japan, 40(9), 2211 (1967).

1) The p-Type Conjugation in the Cyclopropylmethyl Cation, T. Yonezawa, H. Nakatsuji, and H. Kato, Bull. Chem. Soc. Japan, 39(12), 2788 (1966).

REVIEW ARTICLES

49) Circular Dichroism Spectroscopy with the SAC-CI methodology: A ChiraSac Study, Tomoo Miyahara and Hiroshi Nakatsuji , in Frontiers of Quantum Chemistry, pp.21-47 (Springer Singapore, 2018)

48) SAC/SAC-CI法による励起スペクトルの研究例, 中辻 博, 宮原友夫, 光アライアンス (Optical Alliance), vol. 26, No. 6, p.22 (2015) [In Japanese].

47) シュレーディンガー精度のシミュレーションを目指して, 中辻 博, シミュレーション, vol. 32(1), pp.39-47 (2013) [In Japanese], (Toward Simulations in Schrödinger Accuracy, H. Nakatsuji, Simulation, vol. 32(1), pp. 39-47 (2013))

46) 計算科学の超精密化と巨大化, 中辻 博, 分子研レターズ 64, 49-52 (2011) [In Japanese].

45) 色覚を司る錐体視物質におけるカラー・チューニング機構の解明:高精度量子化学計算による理論的研究, 長谷川淳也, 藤本和宏, 中辻 博, 京大計算機センター広報 vol. 8, No2, pp. 5-6 (2009). [In Japanese].

44) 光合成・視覚・生物発光の初期過程:SAC-CI法による研究,  長谷川淳也, 中辻 博, 個体物理(839), 147, (2008). [In Japanese].

43) Exploring Photo-Biology and Bio-Spectroscopy with the SAC-CI (Symmetry-Adapted Cluster-Configuration Interaction) Method, J. Hasegawa and H. Nakatsuji, in “Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis”, Ed., by M. Shukla and J. Leszczynsk, (Springer, 2008) Chapter 4, 93-124 (2008).

42) Deepening and Extending the Quantum Principles in Chemistry, H. Nakatsuji, Bull. Chem. Soc. Jap, 78 (10), 1705 (2005).

41) Quantum Chemistry of Photosynthetic Bacteria: SAC-CI Study, H. Nakatsuji, Kouhou, Faculty of Science, Kyoto Univ. 170, 1-3 (2005). [In Japanese].

40) SAC-CI Method Applied to Molecular Spectroscopy, M. Ehara, J. Hasegawa, H. Nakatsuji in “Theory and Applications of Computational Chemistry: The First 40 Years, A Volume of Technical and Historical Perspectives”, Ed. by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria, pp. 1099-1141, (Elsevier, Oxford, 2005).

39) SAC-CI General-R Method: Theory and Applications to the Multi-Electron Processes, M. Ehara, M. Ishida, K. Toyota, H. Nakatsuji, in “Reviews in Modern Quantum Chemistry (A tribute to Professor Robert G. Parr)”, Ed., by K. D. Sen, pp. 293-319, (World Scientific, Singapore, 2003).

38) Partial Oxidation of Olefins, H. Nakatsuji, K. Kuramoto, Catalysis (Shyokubai), 45, 2-4(2003) [in Japanese].

37) 光合成反応中心の励起状態と電子移動 ?SAC-CI 理論による研究– , 中辻博, 長谷川淳也, 大川和史, 蛋白質核酸酵素vol45,587 (2000) [in Japanese]

36) Excited States and Electron Transfer in the Photosynthetic Reaction Center of Bacteria, H. Nakatsuji, J. Hasegawa, and K. Ohkawa, Protein-Nucleic Acid-Enzyme (Tanpakushitsu-Kakusan-Kohso), 45(4), 587-594 (2000) [in Japanese].

35) Density Equation Theory in Chemical Physics, H. Nakatsuji, in “Many-Electron Densities and Reduc d Density Matrices”, Ed. by J. Cioslowski, pp. 85-116, (Kluwer Academic/Plenum Publishers, 2000)

34) Mechanism of Partial Oxidation of Olefins on a Silver Surface: Dipped Adcluster Model Study, H. Nakatsuji, Z-M. Hu, Surface (Hyoumen), Vol. 37, No.2, p.26-34 (1999) [in Japanese].

33) Dipped Adcluster Model for Chemisorption and Catalytic Reactions, H. Nakatsuji, in “Progress in Surface Science”, Vol. 54, p. 1-68 (1997)

32) SAC-CI Method: Theoretical Aspects and Some Recent Topics, H. Nakatsuji, in “Computational Chemistry – Reviews of Current Trends”, Vol. 2, p. 62-124 (1997).

31) Dipped Adcluster Model Study of Surface Reactions, H. Nakatsuji, in “Elementary Processes in Excitations and Reactions on Solid Surfaces”, Eds. A. Okiji, H. Kasai and K. Makoshi, Springer Series in Solid-State Sciences, Vol. 121, p. 36-44 (1996).

30) New Frontiers of the Theory of Excited States, H. Nakatsuji, Institute of Organosynthetic Chemistry, Lecture No. 10, pp. 68-82 (1996) [in Japanese].

29) Adsorption and Reaction of Hydrogen on Metal and Metal Oxide Surface, H. Nakatsuji, M. Hada, Metallurgy Reports, Vol. 34, No. 2, pp. 106-114 (1995) [in Japanese].

28) Reaction Mechanism of Organometallic Reactions, H. Nakatsuji, M. Hada, Y. Itoh, M. Murakami, Institute of Organosynthetic Chemistry, Lecture No. 9, pp. 57-65 (1995) [in Japanese].

27) Quantum Theory of Surface Photochemistry, H. Nakatsuji, H. Nakai, Institute of Organosysnthetic Chemistry, Lecture No.8, pp. 92-100 (1994) [in Japanese]

26) Quantum Chemistry of Surface Catalysis, H. Nakatsuji, M. Hada, H. Nakai, Y. Fukunishi, Catalysis (Shyokubai), Vol. 36, No. 1, pp. 33-40 (1994) [in Japanese].

25) Electronic Mechanisms of Metal Chemical Shifts from Ab Initio Theory, H. Nakatsuji, in “Nuclear Magnetic Shielding and Molecular Structure”, Ed. by J. A. Tossell, NATO ASI Series, C386, 263-278 (Reidel, Dordrecht,1993)

24) Electronic Theory of Chemisorption and Catalysis on a Metal Surfaces, H. Nakatsuji, M. Hada, H. Nakai, Surface Science (Hyomen-Kagaku)AVol. 14, No. 10, pp. 603-609 (1993) [in Japanese].

23) Electronic Structure and Mechanism of NMR Metal Chemical Shifts of Transition-Metal Complexes, M. Sugimoto, H. Nakatsuji, Organometallic News, 1992 No. 2, pp. 63-69 (1992) [in Japanese].

22) Catalytic Reactions of Transition Metal Clusters and Surfaces from Ab Initio Theory – Cluster and Dipped Adcluster Model Studies Combined with the SAC/SAC-CI Method -, H. Nakatsuji, H. Nakai, and M. Hada in “Metal-Ligand Interactions: From Atoms, to Clusters, to Surfaces”, Ed. by D. R. Salahub and N. Russo, NATO ASI Series, C378, pp. 251-285 (Reidel, Dordrecht, 1992).

21) Electronic Structures of Ground, Excited, Ionized, and Anion States Studied by the SAC/SAC-CI Theory, H. Nakatsuji, Acta Chimica Hungarica, Models in Chemistry, 129(5), pp.719-776 (1992).

20) Hydrogen Chemisorption and Adsorption of Metal Surface, Y. Fukunishi, M. Hada, and H. Nakatsuji, Catalysis (Shyokubai), Vol. 33, No. 4, pp. 270-277 (1991) [in Japanese].

19) Chemisorption and Catalysis on a Metal Surface: Theoretical Study, H. Nakatsuji, H. Nakai, Y. Fukunishi, Chemistry Review (Kagaku Sousetu), No.13, “Inorganic Quantum Chemis ry” pp. 158-178, Chemical Society of Japan Publication (1991) [in Japanese].

18) SAC-CI Calculations of the Excited and Ionized States of Conjugated Molecules, H. Nakatsuji, O. Kitao, and M. Komori, Proceedings of the Workshop-Cum-Symposium on “Aspects of Many-Body Effects in Molecules and Extended Systems”, February 1-10, 1988, Calcutta, India (ed. by D. Mukherjee, Lecture Notes in Chemistry-50, Springer-Verlag, Berlin, pp.101-122, 1989).

17) Quantum Chemistry of Catalysis – Surface-Molecule Interaction System H. Nakatsuji, Mathematical Science (Suuri Kagaku), No. 304, pp. 46 – 58 (1988) [in Japanese].

16) Excited States of Conjugated Molecules, O. Kitao, M. Komori, and H. Nakatsuji, Super-Computer Workshop Report, No. 6, pp. 75 – 90, Institute for Molecular Science (1988) [in Japanese].

15) Mechanism of NMR Chemical Shifts, H. Nakatsuji, Contemporary Chemistry (Gendai Kagaku) Supplement No. 11, De. by H. Saito, I. Morishima, pp. 237 – 245, (1987) [in Japanese].

14) SAC-CI Program System for Molecular Ground, Excited, Ionized, and Electron-Attached States, H. Nakatsuji, Reports of Kyoto University Data Processing Center, Vol. 19, No. 4, pp. 290 – 304 (1986); IMS Super-Computer Workshop Report, No. 5, pp. 27 – 45, Institute for Molecular Science (1987) [in Japanese].

13) Theoretical Study on the Catalytic Activities of Palladium for the Hydrogenation Reaction of Acetylene, H. Nakatsuji and M. Hada, in “Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry”, Ed. by A. Veillard, NATO ASI Series, pp.477-487, (Reidel, Dordrecht, 1986).

12) Metal Chemical Shift in NMR Spectroscopy – Ab Initio Calculations and Predictive Models, H. Nakatsuji, in “Comparisons of Ab Initio Quantum Chemistry with Experiment for Small Molecules: State-of-the-Art”, Ed. by R.J.Bartlett, pp. 409-437 (Reidel, Dordrecht, 1985).

11) Force Concept in Chemistry – Roles of Electron Density, H. Nakatsuji, Chemistry (Kagaku), Supplement, No. 106, pp. 41 – 52 (1985) [in Japanese].

10) Accurate Hellmann-Feynman Force Method for the Studies of the First and Second Derivatives of Potential Energy Hypersurface, H. Nakatsuji and K. Kanda, in “Local Density Approximations in Quantum Chemistry and Solid State Physics, Ed. by J. P. Dahl and J. Avery, pp. 771-784, (Plenum Press, New York, 1984).

9) Electronic Structure and Reactions of Metal Clusters and Complexes, J. Ushio, H. Nakatsuji, Chemistry (Kagaku), 38, 666-668 (1983) [in Japanese].

8 ) Present Status and Prospect of Theoretical Chemistry. I. Theory, H. Nakatsuji, Chemistry (Kagaku), 37, 24-26 (1982) [in Japanese].

7) Theoretical Study on the Electronic Structure of Multi-Nuclear Metal Complexes, H. Nakatsuji, Chemistry (Kagaku), 36, 151-153 (1981) [in Japanese].

6) Force Models for Molecular Geometry, H. Nakatsuji and T. Koga, in “The Force Concept in Chemistry”, Ed. by B. M. Deb, Chap.3, pp. 137-217, (Van Nostrand Reinhold, New York,1981).

5) Cluster Expansion Methods for the Study of Electron Correlations in Open Shell and Excited States, H. Nakatsuji, The Symposium on Many-Body Theoretical Approaches to Electron Correlation in Molecules (Calcutta), p. 35 (1979).

4) Dynamic Behavior of Electron Density: Molecular Structure and Chemical Reaction, H. Nakatsuji, Chemistry Field (Kagaku-no-Ryouiki), 30, 881-891 (1976) [in Japanese].

3) Force Concept in Chemistry. II, H. Nakatsuji, Chemistry (Kagaku), 28, 108-119 (1973) [in Japanese].

2) Force Concept in Chemistry. I, H. Nakatsuji, Chemistry (Kagaku), 28, 17-27 (1973) [in Japanese].

1) Quantum Chemistry of Molecular Excited States, H. Kato, H. Nakatsuji, Chemistry (Kagaku), 24, 104-116 (1969) [in Japanese].

BOOKS

1) Frontiers of Quantum Chemistry, edited by Marek J. Wójcik, Hiroshi Nakatsuji, Bernard Kirtman, Yukihiro Ozaki, Springer Singapore (2018). DOI:10.1007/978-981-10-5651-2, ISBN:978-981-10-5650-5

OTHER PUBLICATIONS

7) Robert Ghormley Parr: September 22, 1921 – March 27, 2017, Paul W. Ayers., Pratim K Chattaraj, Shubin Liu, Klaus Ruedenberg, and Weitao Yang, Resonance, 28, 1011 (2023)

6) Solving the Schrödinger equations of organic and inorganic molecules by the K computer, Hiroshi Nakatsuji, Hiroyuki Nakashima, Yusaku I. Kurokawa, Tomoo Miyahara , HPCI Research Report, 2, 39-45 (2017) [in Japanese]

5) “Keiji Morokuma”, Joel M. Bowman, Jamal Musaev, and Hiroshi Nakatsuji, J. Phys. Chem. A, 122, 880−881 (2018) DOI: 10.1021/acs.jpca.8b00070.

4) Nobel Prize and Chemical Industry, 12, Trends in Theoretical and Computational Chemistry, H. Nakatsuji, J. Hasegawa, M. Ehara, Sanyo Chemicals News, No.417, 14-18 (2003) [in Japanese].

3) Future Fields of Quantum Chemistry, H. Nakatsuji, Frontier Watching, Chemical Society of Japan (2001) [in Japanese].

2) Kenichi Fukui, 4 October 1918 – 9 January 1998, A.D. Buckingham and H. Nakatsuji, Biog. Mems. Fell. R. Soc. Lond. 47, 223-237 (2001).

1) From a Research Life, H. Nakatsuji, CAMM NEWS Vol. 12, p.1-2 (1996) [in Japanese].

PROGRAM CODES PUBLISHED

5) Gaussian03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, W. L. Hase, G. Voth, P. Salvador, J. J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA,2003.

4) SAC/SAC-CI Program System (SAC-CI96) for Calculating Ground, Excited, Ionized, and Electron-Attached States Having Singlet to Septet Spin Multiplicities, H. Nakatsuji, M. Hada, M. Ehara, J. Hasegawa, T. Nakajima, H. Nakai, O. Kitao, and K. Toyota, Computer Center of the Institute for Molecular Science and the Kyoto University Data Processing Center (1996)

3) Program System for the EGWF and EX-EGWF Methods Applied to Molecular Ground, Excited, Ionized, and Electron Attached States, H. Nakatsuji, 1990. (General program for MR-SAC and MR-SAC-CI Methods.)

2) Program System for SAC and SAC-CI Calculations for Ground, Excited, Ionized and Electron-Attached States (SAC-CI85), H. Nakatsuji, Program Library SAC85 (No.1396), Computer Center of the Institute for Molecular Science, Okazaki, 1986.

1) Program System for SAC and SAC-CI Calculations for Ground, Excited, Ionized and Electron-Attached States (SAC-CI85), H. Nakatsuji, Program Library No.146 (Y4/SAC), Data Processing Center of Kyoto University, 1985.

INVITED LECTURES AT THE INTERNATIONAL SYMPOSIA

Hiroshi Nakatsuji

155) Hiroshi Nakatsuji, “Keiji Morokuma: His active life for chemistry and for everything”, Symposium #204, Pacifichem 2021 (The 2021 International Chemical Congress of Pacific Basin Societies), Hawaii, USA, Dec, 16-21 (2021).

154) Hiroshi Nakatsuji, “Recent progress of the free-complement theory for solving the Schrödinger equation”, Symposium #216, Pacifichem 2021 (The 2021 International Chemical Congress of Pacific Basin Societies), Hawaii, USA, Dec, 16-21 (2021).

153) Hiroshi Nakatsuji, “Free-Complement theory for solving the Schrödinger equation of atoms and molecules”, ACS Fall 2021 (Prominent Ideas in Quantum Chemistry), Georgia World Congress Center, Atlanta, USA, Aug, 22-26 (2021).

152) Hiroshi Nakatsuji, and Hiroyuki Nakashima, “Scaled Schrödinger equation and the accurate and efficient methodology for solving the Schrödinger equation formulated therefrom”, Löwdin Lectures ? a 60th Anniversary Celebration (Uppsala Univ.), Dec, 3-4 (2020).

151) Hiroshi Nakatsuji, “Solving the Schrödinger equation for doing chemistry easier”, The University of Utah (Chemistry Department Seminar), Salt Lake City, Utah, USA, Jan, 22 (2019).

150) Hiroshi, Nakatsuji, “Free Complement (FC) Theory as a General Electronic Structure Theory”, Understanding Chemistry and Biochemistry with Conceptual Models (16th ICQC Satellite meeting), Marseille, France, June, 24-29, 2018.

149) Hiroshi Nakatsuji, Special Guest Lecture, Gaussian Workshop “Introduction to Gaussian: Theory and Practice”, Tokyo, Japan, August, 27-31 (2018).

148) Hiroshi Nakatsuji, “Solving the Schrödinger equation of atoms and molecules with the free complement theory, FC-CF theory: exact and variational theories”, 255th American Chemical Society (ACS) National Meeting & Exposition, (New Orleans, LA, USA, Mar 18-22, 2018.)

147) Hiroshi Nakatsuji, “Solving the Schrödinger equation of atoms and molecules with local free complement theory – Two aspects of the theory -“, The eighth Asia-Pacific Conference of Theoretical and Computational Chemistry (APCTCC8), (Victor Menezes Convention Centre, Indian Institute of Technology, Mumbai, India, Dec. 15-17, 2017)

146) (Plenary) Hiroshi Nakatsuji, “Exact general theory for solving Schrödinger equations of atoms and molecules: Free-complement theory and applications”, 11th Triennial Congress of the World Association of Theoretical and Computational Chemists (WATOC2017), (Gasteig Cultural Center, Munich, Germany, Aug. 27- Sep.1, 2017)

145) Hiroshi Nakatsuji, “Compact valence bond wave functions that leads to the exact solution of the Schrödinger equation”, Valence Bond (VB) – Nonorthogonal Configuration Interaction (NonorCI) workshop, (Institute Henri Poincarre, Paris, France, Mar. 27-30, 2017)

144) 中辻 博, 「exactな量子化学理論の構築」, スーパーコンピュータワークショップ2016「これまでの理論・計算科学を振り返り今後を展望する」, (自然科学研究機構, 岡崎コンファレンスセンター, 岡崎, 2017年2月1-2日)

143) Hiroshi Nakatsuji, “Chemistry of the excited states studied by the SAC-CI theoretical methodology”, Japan-France-Spain Joint-Symposium on Theoretical and Computational Science of Complex Systems”, (Fukui Institute for Fundamental Chemistry, Kyoto, Oct. 26-28, 2016)

142) Hiroshi Nakatsuji, “Free-Complement Valence-Bond Theory for Solving the Schrödinger Equation of Molecules”, Workshop on Current Trends and Future Directions in Relativistic Many Electron Theories”, (Tokyo Institute of Technology, Ookayama, Tokyo, Sep. 26-28, 2016)

141) 中辻 博 「量子力学原理と化学概念を融合する正確な予言的量子化学の構築」, 招待講演, 第10回分子科学討論会2016神戸, (神戸ファッションマート, 神戸, 2016年9月13-15日)

140) Hiroshi Nakatsuji, “Formulation of Free-Complement Valence Bond Method for Solving the Schrödinger Equation of Atoms and Molecules”, International Society for Theoretical Chemical Physics (ISTCP) IX 2016, (Alerus Center, Grand Forks, ND, USA, Jul. 17-22, 2016)

139) Hiroshi Nakatsuji, “Possibilities of the free-complement methodology for solving the Schrödinger equation of atoms and molecules”, American Physical Society (APS) March Meeting 2016, (Baltimore Convention Center, Baltimore, MD, USA, Mar. 14-18, 2016)

138) H. Nakatsuji, “Possibilities of the free-complement methodology for solving the Schrödinger equation of atoms and molecules”, The Seventh Asia-Pacific Conference of Theoretical and Computational Chemistry (APCTCC7), (Kaohsiung, Taiwan, Jan. 25-28, 2016)

137) 中辻 博, “Possibilities of the Free-Complement Theory – Local and Transferable Aspects -“, 理論計算分子科学ワークショップ (分子科学研究所, 自然科学研究機構, Oct. 22, 2015)

136) Hiroshi Nakatsuji, “New Possibilities of the Free-Complement Theory”, 6th Japan-Czech-Slovakia International Symposium on Theoretical Chemistry (Smolenice Castle near Bratislava, Slovakia, Oct. 11-15, 2015.)

135) (Plenary Lecture) Hiroshi Nakatsuji, “Possibilities of the Free-Complement Theory”, The 15th International Congress of Quantum Chemistry (Beijing, China, June 8-13, 2015)

134) Hiroshi Nakatsuji, “Aspects of the Free-complement Method”, Recent Advances in Electronic Structure Theory (RAEST 2015), (15th International Congress of Quantum Chemistry Satellite Meeting, Nanjing, China, June 1-6, 2015)

133) 中辻 博,「予言的量子化学にむけて」, 第9回 「革新的量子化学の展開」 シンポジウム, キャンパスプラザ京都(京都), May 3, 2014.

132) H. Nakatsuji, “Constructing quantum chemistry in Schrödinger accuracy” International Workshop on New Frontier of Numerical Methods for Many-Body Correlations ― Methodologies and Algorithms for Fermion Many-Body Problems, The University of Tokyo (Tokyo, Japan, Feb. 18-21, 2015)

131) H. Nakatsuji, “Solving the Schrödinger Equations of Molecules for Doing Chemistry” CRC-SU Joint International Symposium on Chemical Theory for Complex Systems, Stockholm University (Stockholm, Sweden, Oct. 30-31, 2014)

130) H. Nakatsuji, “ChiraSac Study on Chiral Spectroscopy and Photobiology” 2014 International Workshop on Frontiers of Theoretical and Computational Physics and Chemistry (WFTCPC 2014), Sun Island, Nine-Dragon Lake (Quzhou, China, Aug. 21-24, 2014)

129) 中辻 博,「革新的量子化学の展開」, 第8回 「革新的量子化学の展開」 シンポジウム, キャンパスプラザ京都(京都), May 3, 2014.

128) H. Nakatsuji, “Schrödinger Equation and Pauli Principle Governing Chemistry”, CRC-EC Joint International Symposium on Chemical Theory for Complex Systems, Emory University (Atlanta, USA, Jan. 9-10, 2014)

127) H. Nakatsuji, “Solving quantum principles governing chemistry”, 246th ACS National Meeting & Exposition, (Indiana, USA, Sep. 8-12, 2013)

126) H. Nakatsuji, “Quantum Chemistry of Schrödinger Accuracy for Organic Compounds – Nk and iExg Theory for antisymmetrization -“, Sixty-Five Years in Quantum Chemistry: A Celebration of the Work of Prof. Robert G. Parr., Duke University (North Carolina, USA, Sep. 7, 2013)

125) 中辻 博,「革新的量子化学の展開」, 第7回 「革新的量子化学の展開」 シンポジウム – 量子的自然の知と美 -, キャンパスプラザ京都(京都), April 28, 2013.

124) H. Nakatsuji, “Solving three big quantum principles governing complex chemistry”, CRC International Symposium, Chemical Theory for Complex Systems, (Strasbourg, France, Mar. 7-8, 2013).

123) H. Nakatsuji, “Solving the Schrödinger and Dirac equations”, Molecular electronic structure at Troy (MEST), (Troy, Turkey, Sep. 9-13, 2012).

122) H. Nakatsuji, “SAC-CI methodology applied to molecular spectroscopy and photo-biology”, Theory and Applications of Computational Chemistry (TACC2012), (Pavia, Italy, Sep. 2-7, 2012).

121) 中辻 博,「革新的量子化学の展開」, 第6回 「革新的量子化学の展開」 シンポジウム – 量子的自然の知と美 -, キャンパスプラザ京都(京都), April 28, 2012.

120) H. Nakatsuji, “Topics on solving the Schrödinger equation”, Low-scaling and unconventional electronic structure techniques (LUEST) conference, (Telluride, USA, June. 18-22, 2012).

119) H. Nakatsuji, “Helical structure and circular dichroism spectra of DNA: SAC-CI study”, World Association of Theoretical and Computational Chemists (WATOC), (Santiago, Spain, Jul. 17-24, 2011).

118) H. Nakatsuji, “Quantum chemistry in Schrödinger accuracy”, The 7th congress of the International Society for Theoretical Chemical Physics (ISTCP-VII), (Tokyo, Japan,Sep. 2-8, 2011).

117) 中辻 博,「革新的量子化学の展開」, 第5回「革新的量子化学の展開」シンポジウム, キャンパスプラザ京都(京都), April 30, 2011.

116) 中辻 博,「予言的量子化学の基礎とSAC-CI 科学の展開」, スーパーコンピューターワークショップ2011, 自然科学研究機構, 岡崎コンファレンスセンター, January 24-25, 2011.

115) H. Nakatsuji, “Quantum theories for chemical science”, Computational Quantum Chemistry:Theory and Interactions with Experiment, in honor of Hiroshi Nakatsuji, Kimihiko Hirao and Shigeru Nagase, (Pacifichem 2010), Hawaii, USA, December 15-20, 2010.

114) 中辻 博, 「超精密予測と巨大分子設計を実現する革新的量子化学と計算科学基盤技術の構築」, マルチスケール・マルチフィジックス現象の統合シュミレーション, 東洋大学, November 26, 2010.

113) H. Nakatsuji, “Solving the Schrödinger and Dirac-Coulomb equations”, Relativistic Effects in Heavy-Element Chemistry and Physics (The 9th REHE), Beijing, China, September 25-29, 2010.

112) 中辻 博, 「Toward predictive quantum theory with Schrödinger and Dirac-Coulomb accuracy」 物理学会秋季大会シンポジウム「精密電子状態計算の現状と展望」, 大阪府立大学(大阪府堺市), September 23, 2010.

111) H. Nakatsuji, “Recent Development in the Method of Solving the Schrödinger Equation”, XVth Quantum Systems in Chemistry and Physic (QSCP-XV), Cambridge, England, August 31- September 5, 2010.

110) H. Nakatsuji, “Solving the Schrödinger and Dirac-Coulomb equations”, ACS 240th National Meeting, Boston, USA, August 22-26, 2010.

109) H. Nakatsuji, “Toward Accurately Predictive Quantum Chemistry with the Solutions of the Schrödinger and Dirac-Coulomb Equations”, Canadian Symposium on Theoretical Chemistry (CSTC2010), 17th, Edmonton, Canada, July 25-30, 2010.

108) 中辻 博, 「創造的化学理論への挑戦」, 量子化学研究協会・CRESTシンポジウム 「革新的量子化学の展開」, キャンパスプラザ京都(京都), May 1, 2010.

107) H. Nakatsuji, “Solving the Schrödinger and Dirac-coulomb equations” 50th Sanibel Symposium, The King and Prince Golf & Beach Resort on St. Simons Island, Georgia, USA, Feb. 24- Mar. 2, 2010.

106) H. Nakatsuji, “Solving the Schrödinger and Dirac equations”, Recent Advances in Many-Electron Theories, Kolkata, India, Jan. 5-7, 2010.

105) H. Nakatsuji, “Recent Scientific Activities of QCRI”, The Fourth Asian Pacific Conference of Theoretical & Computational Chemistry (APCTCC-4), Port Dickson, Malaysia, Dec. 21-23, 2009.

104) H. Nakatsuji, “Recent development in the general method of solving the Schrödinger equation”, The 14th International Workshop Quantum Systems in Chemistry and Physics (QSCP-XVI), Madrid, Spain, September 13-19, 2009.

103) H. Nakatsuji, “Recent development of the method of solving the Schrödinger equation of atoms and molecules”, The 3-rd Japan-Czech-Slovakia Joint Symposium for Theoretical/Computational Chemistry, Bratislava, Slovakia, September 9-12, 2009.

102) H. Nakatsuji, “Toward accurately predictive quantum chemistry with the solutions of the Schrödinger equation”, 13th International Congress of Quantum Chemistry (ICQC) 2009, Helsinki, Finland, June 23-27, 2009.

101) 中辻 博, 「革新的量子化学の建設」, 量子化学研究協会・CRESTシンポジウム「革新的量子化学の展開」, キャンパスプラザ京都(京都), May 1,2009.

100) H. Nakatsuji, “New trend in quantum chemistry”, The International Conference on Simulation and Dynamics for Nanoscale and Biological Systems, University of Tokyo, Tokyo, Japan, Mar. 4-6, 2009.

99) H. Nakatsuji, “Is it possible to solve the Schrödinger equation of general atoms and molecules with simple mathematics? – Towards accurately predictive quantum chemistry with the solutions of the Schrödinger equation -“, Chemistry Departmental Seminar , National Chiao Tung University , Shinjyu, Taipei China, Dec. 12, 2008.

98) H. Nakatsuji, “Is it possible to solve the Schrödinger equation of general atoms and molecules with simple mathematics ? – Towards accurately predictive quantum chemistry with the solutions of the Schrödinger equation -“, Chemistry Departmental Seminar , Tamkang University, Tamsui, Taipei China, Dec. 10, 2008.

97) 中辻 博, 「超精密予測と巨大分子設計を実現する革新的量子化学と計算科学基盤技術の構築」, マルチスケール・マルチフィジックス現象の統合シミュレーション, 平成20年度CREST公開シンポジウム, 東洋大学 東京, October 20, 2008.

96) 中辻 博, 「革新的量子化学に向けて」近畿化学協会コンピューター化学部会発足20周年記念公開セミナー, 大阪科学技術センター, October 14, 2008.

95) H. Nakatsuji, “Solving the Schrodinger Equation of General Atoms and Molecules: Towards Confidently Predictive Quantum Chemistry” The World Association of Theoretical and Computational Chemists (WATOC) 2008, Sydney, Australia, Sep. 14-19, 2008.

94) H. Nakatsuji, “Towards Accurately Predictive Quantum Chemistry with the Solutions of the Schrödinger Equation”, Chemistry Department Lecture, Univ. British Columbia, Vancouver, Canada, July 25, 2008.

93) H. Nakatsuji, “Solving Schrödinger Equation and Dirac-Coulomb Equation”, International Symposium on Theoretical Chemical Physics (ISTCP)-VI, Univ. British Columbia, Vancouver, Canada, July 19-24, 2008.

92) H. Nakatsuji, “Towards Accurately Predictive Quantum Chemistry with the Solutions of the Schrödinger Equation”, American Conference on Theoretical Chemistry (ACTC) 08, Evanston, USA, July19-24, 2008.

91) H. Nakatsuji, “Some Recent Progress in the General Method of Solving the Schrödinger Equation and in the SAC/SAC-CI Methodology”, QSCP-XIII, Lancing, Michigan, USA July 6-12, 2008.

90) 中辻 博, 「量子化学の超精密化と巨大化?予言学としての量子化学の確立をめざして?」, 日本化学会関東支部群馬地区講演会, 群馬大学, June 24, 2008.

89) H. Nakatsuji, “General method of solving the Schrödinger equation & Color tuning mechanism in human vision cone pigments: SAC-CI study”, NATO ARW 2008 , Kiev, Ukraine, June8-12, 2008.

88) H. Nakatsuji, “Is it possible to solve the Schrödinger equation of general atoms and molecules with simple mathematics? – Towards accurately predictive quantum chemistry with the solutions of the Schrödinger equation -“, Ede Kapuy Memorial Lecture, Eötvös University, Budapest, Hungary, June 5, 2008.

87) 中辻 博, 「革新的量子化学に向けて」, 量子化学研究協会・CRESTシンポジウム「革新的量子化学の展開」, (キャンパスプラザ京都(京都), May 31, 2008.

86) H. Nakatsuji, “General Method for solving the Schrodinger Equation”, Invited Lecture at Nanjing University, Nanjing, China, March19, 2008.

85) H. Nakatsuji, “Is it possible to solve the Schrodinger equation of general atoms and molecules with the simple mathematics? -Towards accurately predictive quantum chemistry with the solutions of the Schrodinger equation-“, Invited Lecture at Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, March13, 2008.

84) H. Nakatsuji, “Force Concept and Solving the Schrodinger Equation”, Series of Invited Lectures, Peking University, Beijing, China, March 10-17, 2008.

83) H. Nakatsuji, “Towards Accurately Predictive Quantum Chemistry with the Solutions of the Schrodinger Equation”, Invited lecture at The 2nd Japan-Czech-Slovakia Joint Symposium for Theoretical/Computational Chemistry, Fukui Institute for Fundamental Chemistry, Kyoto University, Japan, December 7-9, 2007.

82) 中辻博, “超精密予測と巨大分子設計を実現する革新的量子化学と計算科学基盤技術の構築”, マルチスケール・マルチフィジックス現象の統合シュミレーション, 東洋大学, November 8, 2007.

81) H. Nakatsuji, “Towards Accurately Predictive Quantum Chemistry with the Solution of the Schrodinger Equation”, Invited lecture at the Workshop on Nuclei and Mesoscopic Physics, Michigan, USA, October19-22, 2007.

80) 中辻博, 「シュレーディンガー方程式の一般的解析的解法 ? 確固たる予言学を目指して?」, 東北物理化学会, 山形, September 21, 2007.

79) H. Nakatsuji, “Solving the Schrodinger equation of atoms and molecules with the free ICI method “, SAMQCP, Torun, Poland, September 2-6, 2007.

78) H. Nakatsuji, “Some Recent Advances in Solving the Schrodinger Equation and in the SAC/SAC-CI Methodology “, QSCP-XII, Royal Holloway, Univ. of London, England, August 31, 2007.

77) H. Nakatsuji, “Quantum Chemistry for Photo Biology and Giant Molecular System”, 分子系の構造と電子状態-『生物物質科学』を目指して, 理研, April, 4-6, 2007.

76) 中辻博, “量子化学研究の魅力”, 学術創成研究「量子的化学原理の深化と実現」シンポジウム「量子的サイエンスとテクノロジー – 企業と大学の接点 -」, 京都大学桂キャンパス Bクラスター事務管理棟3F会議室, January, 27, 2007.

75) H. Nakatsuji, “Focusing on the Theoretical Chemistry of Ten-Years Ahead”, 13th Theoretical Chemistry Symposium, Hayama, Japan, Sep 14-16, 2006.

74) H. Nakatsuji, QSCP-XI (Quantum Systems in Chemistry and Physics-XI), St.Petersburg, August 20-25, 2006.

73) H. Nakatsuji, 4th WCTCC (World-wide Chinese Theoretical and Computational Chemistry Conference), Kunming, China, August 6-10, 2006.

72) H. Nakatsuji, “Giant SAC/SAC-CI Method Applied to Biological Systems”, ICPP4 (International Conference on Porphyrins and Phthalocyanines, Rome, July 2-7, 2006

71) Chairman of the12th International Congress of Quantum Chemistry, Kyoto, Japan, May 21-16, 2006

70) H. Nakatsuji, “Solving the Schrodinger and Dirac-Coulomb Equations and Developing the Giant SAC/SAC-CI Method”, 231th ACS National Meeting (Parr Symposium) Atlanta, March 26-30, 2006.

69) H. Nakatsuji, “Deepning and Realization of the Quantum Principles in Chemistry”, Czech- Japan Symposium on Theoretical Chemistry, Plague, September 14-16, 2005

68) H. Nakatsuji, “Solving the Schrodinger and Dirac-Coulomb Equations and the Giant SAC/SAC-CI Method”, 40th IUPAC Congress, Beijing, August 14-19, 2005.

67) H. Nakatsuji, “Giant SAC/SAC-CI Method and Solving the Schrodinger and Dirac-Coulomb Equations”, 12th Theoretical Chemistry Symposium, Kyoto University, May 17-19, 2005.

66) H. Nakatsuji, “Solving the Schrodinger and Dirac-Coulomb Equations: Non-Relativistic and Relativistic Analytical Exact Wave Functions of Atoms and Molecules”, 2nd Asian Pacific Conference on Theoretical and Computational Chemistry (APCTCC-2), Bangkok, May 2-5, 2005

65) H. Nakatsuji, “Solving the Schrodinger and Dirac-Coulomb Equations. Analytically for Atoms and Molecules”, 229th ACS National Meeting (John Pople Memorial Symposium), San Diego, March 13-17, 2005.

64) H. Nakatsuji, “How SAC-CI on Gaussian03 Works in Chemistry and Biology”, Plenary Lecture at 93 National Meeting of Chinese Chemical Society, Taichung, Taiwan, November 21, 2004.

63) H. Nakatsuji, “Solving Schrodinger Equation: Analytical Wave Functions of Atoms and Molecules”,13th Conference on Current Trends in Computational Chemistry (CCTCC-13), Jackson Hilton, Mississippi, November 12-13, 2004.

62) H. Nakatsuji, “Photo-Chemistry and Photo-Biology with SAC-CI Method”, Tamaki-Memorial Lecture, Faculty of Science, Kyoto University, October 28, 2004

61) H. Nakatsuji, “Structure of the Exact Wave Function and a Method of Solving the Schrodinger Equation”, 228TH ACS National Meeting Philadelphia, PA., August 22-26, 2004

60) H. Nakatsuji, “How Schrodinger Equation is Solved and How SAC-CI on Gaussian03 Works in Chemistry and Biology”, Plenary Lecture, 8th Annual National Symposium on Computational Science and Engineering, Suranaree University of Technology, Thailand, July 21-23, 2004.

59) H. Nakatsuji, “Surface Spectroscopy of the Adsorbate on a Metal Surface with DAM plus SAC-CI on Gaussian03”, Keynote Lecture, 10th International Conference on Theoretical Aspects of Catalysis (X-ICTAC), Tropea, Italy, June 25-30, 2004.

58) Two IOCB Lectures, “Photochemistry with SAC-CI Method: From Fine Spectroscopy to Molecular Biology”, and “Structure of the Exact Wave Function and a Method of Solving the Schrodinger Equation”, April 26, and 28, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, April 26 and 28, 2004

57) H. Nakatsuji, “Quantum Principles in Chemistry – Deepening and Realization”, Theory and Applications of Computational Chemistry (TACC-2004), Gyeongju, Korea, February 15-20, 2004

56) H. Nakatsuji, “Structure of the Exact Wave Function: Progress Report”, ICCMSE 2003, Kastoria, Greece, September 12-16, 2003.

55) H. Nakatsuji, “SAC-CI Method Applied to Photo-chemistry: From Fine Spectroscopy to Molecular Biology”, International Colloquium on Molecular Science, Osaka-City University, Osaka, August 1-2, 2003

54) “SAC-CI Theory: From Fine Spectroscopy to Molecular Biology”, H. Nakatsuji, Trends in Theoretical Chemistry 2002, Indian Association for the Cultivation of Science, Kolkata, India, January 17-19, 2003.

53) Professor Byendu M. Deb on the Occasion of His 60th Birthday, H. Nakatsuji, Trends in Theoretical Chemistry 2002, Indian Association for the Cultivation of Science, Kolkata, India, January 17-19, 2003.

52) “SAC-CI Theory: From Fine Spectroscopy to Molecular Biology”, 10th Korea-Japan Joint Symposium on Theoretical/Computational Chemistry, Pohang University of Science and Technology, Korea, January 12-15, 2003

51) “Contracted Schrodinger Equation Approach and Density Matrix Variational Theory” and “Structure of the Exact Wave Function – Modern Aspects of Many-Electron Theory”, H. Nakatsuji, Bonn, Germany (October 21-24, 2001), Plenary Lecture.

50) “Structure of the Exact Wave Function”, H. Nakatsuji, An International Conference in Honor of Ernest R. Davidson, Washington, USA (July 22-26, 2001).

49) “Structure of the Exact Wave Function”, H. Nakatsuji, 38th Meeting of the International Academy of Quantum Molecular Science, Menton, France (July 7-8, 2001).

48) “Structure of the Exact Wave Function”, H. Nakatsuji, Fifth Girona Seminar on Molecular Similarity, in honor of Professor Haruo Hosoya, Girona, Spain (July 12-20, 2001) Invited Lecture.

47) “Quantum Chemistry of Photosynthetic Bacteria”, H. Nakatsuji, 1st JAIST Interschool Seminar of Computational Science, Kanazawa (March 16-17, 2001)

46) “Quantum Chemistry of Photosynthetic Bacteria”, H. Nakatsuji, First Kyoto COE Symposium on “Elements Science”, Kyoto (January 26-27, 2001), Plenary Lecture.

45) “Toward Singles and Doubles Description of Quantum Chemistry”, H. Nakatsuji, Computational Quantum Chemistry: Experimental and Theoretical Perspectives. Symposium 125 at PACIFICHEM 2000 Congress

44) “Recent Progress in SAC-CI, Density Matrix, and Relativistic Studies in Kyoto”, H. Nakatsuji, Third Congress of the International Society for Theoretical Chemical Physics, Mexico City, Mexico (Nov. 8-13, 1999).

43) “Cultivating Future Fields of Quantum Chemistry”, H. Nakatsuji, International Conference on Small Scales in Space and Time, Golden Jubilee Celebration of National Chemical Laboratory, Pune, India (Nov. 3-5, 1999), Plenary Lecture.

42) “SAC-CI Studies on Molecular Excited States”, H. Nakatsuji, International Conference on Excited States in Molecules and Solids, Tarragona, Spain (Oct. 21-24, 1999), Invited Lecture.

41) “Density Equation. I. II.”, H. Nakatsuji, Workshop on Reduced Density Matrices, Kingston, Ontario, Canada (Aug. 29-31, 1999), Plenary Lecture.

40) “The Spectra and the Electron-Transfer Mechanism of the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: The SAC-CI Study”, H. Nakatsuji, J. Hasegawa, K. Ohkawa, XIX International Conference on Photochemistry, Durham, USA (Aug. 1-6, 1999).

39) “20 years of the SAC/SAC-CI method”, H. Nakatsuji, Frontiers of Chemical Reactions, Emory University Atlanta, USA (May 21-22, 1999). Plenary Lecture

38) “Excited States and Electron Transfer Mechanism of the Photosynthetic Reaction Center: SAC-CI Study”, H. Nakatsuji, Second NIMC International Symposium on Photoreaction Control and Photofunctional Materials (PCPM 99), Tsukuba, Japan, (March 16-17, 1999).

37) “Excited States and Electron Transfer Mechanism in the Photosynthetic Reaction Center of Rhodopseudomonas Viridis: SAC-CI Study”, H. Nakatsuji, 39th Sanibel Symposium, Ponce de Leon Resort, St. Augustine, Florida (Feb. 27 – March 5, 1999). Plenary Lecture

36) “SAC-CI Study of Photosynthetic Reaction Center”, H. Nakatsuji and J. Hasegawa, Symposium on Quantum Chemistry in Honor of Robert G. Parr, 50th Southeastern Regional Meeting of the American Chemical Society, Research Triangle Park, NC, USA, (Nov. 4-7, 1998).

35) “SAC-CI Study of the Photosynthetic Reaction Center”, H. Nakatsuji, 13th Canadian Symposium on Theoretical Chemistry, The University of British Columbia, Vancouver, Canada, (August 2-7, 1998).

34) “SAC-CI method: Theoretical Aspects and Some Recent Topics”, H. Nakatsuji, XII International Conference on Computers in Chemical Research and Education (XII ICCCRE), Dept. of Chemistry, University of Pune, India, (January 5-9, 1998). Plenary Lecture

33) “Spectra and Electron Transfer of the Photosynthetic Reaction Center of Rhodopseudomonas Viridis : SAC-CI Study”, H. Nakatsuji, Sixth Conference on Current Trends in Computational Chemistry, Vicksburg, Mississippi, USA, (November 7-8, 1997). Plenary Lecture

32) “Developing Methods in Theoretical Chemistry: SAC-CI Study on Energy Gradients, Porphyrins, and Photosynthetic Reaction Center; Direct Determination of Density Matrix Using Density Equation”, H. Nakatsuji, 33th Symposium fur Theoretische Chemie, Walberberg, Germany (September 21-25, 1997). Plenary Lecture

31) “Relativistic Effect on NMR Chemical Shift”, H. Nakatsuji, European Research Conference on Relativistic Effects in Heavy-Element Chemistry and Physics, Granada, Spain (March 8-13, 1997: ESF 197-061). Plenary Lecture

30) “SAC-CI Study of the Excited States of Porphyrins”, H. Nakatsuji, J. Hasegawa, and M. Hada, 2nd International Congress on Theoretical Chemical Physics, New Orleans, April 9-13, 1996.

29) “Dipped Adcluster Model Study of Surface Reaction”, H. Nakatsuji, Elementary Processes in Excitations and Reactions on Solid Surfaces (18th Taniguchi Symposium), Kashikojima, Japan (Jan 23 – 26, 1996). Plenary Talk

28) “Relativistic Study on the NMR Chemical Shifts of the Molecules Containing Heavy Elements”, H. Nakatsuji, Workshop on Calculation of NMR Parameters, The REHE Programme of the European Science Foundation, Helsinki, Finland (December 11-14), 1995. Invited Lectures

27 “Theoretical Study on the Partial Oxidation of Ethylene on a Silver Surface”, H. Nakatsuji, Workshop on Environmental Catalysis, The Role of IB Metals, Osaka National Research Institute, Ikeda, Osaka, Japan (November 2-3, 1995).

26) “SAC-CI Study on the Spectroscopy and the Surface Reaction”, H. Nakatsuji, Symposium on Recent Progress and Future Prospects of Molecular Electronic Spectroscopy (Nagakura Symposium), Hayama, Kanagawa, Japan, (October 22-25, 1995).

25) “Direct Determination of Density Matrix Using Density Equation, and SAC-CI Study of Porphyrins”, H. Nakatsuji, Molecular Quantum Mechanics: Methods and Applications (Boys-Shavitt Symposium), Cambridge, England (Sept. 3-7, 1995).

24) “SAC-CI Method: Some Recent Results”, H. Nakatsuji, 3rd China-Japan Symposium on Theoretical Chemistry, Xiamen, China (October 9-13, 1994).

23) “Surface-Molecule Interactions and Reactions – Ab initio Approach, H. Nakatsuji”, International Workshop on Electronic Structure Methods for Truly Large Systems: Moving the Frontiers in Quantum Chemistry, Braunlage (Harz), Germany, (August 1-7, 1994). Plenary Lecture

22) “SAC-CI and EGWF Methods: Some Recent Results”, H. Nakatsuji, Symposium on Electron Correlations in Atoms and Molecules: New Methods and Applications, Bratislava, Slovakia (June 15-18, 1994).

21) “Exponentially Generated Wave Functions for Ground, Excited, Ionized, and Anion State”, H. Nakatsuji, 8th International Congress of Quantum Chemistry, Prague, Czech Republic (June 19-23, 1994).

20) “Surface-Molecule Interactions and Reactions – Ab Initio Approach”, H. Nakatsuji, WATOC’93: The Third World Congress of Theoretical Organic Chemists, Toyohashi, Japan (July 18-24, 1993). Plenary Lecture

19) “A Theoretical Study on Halogen Chemisorptions on Alkali Metal Surface”, H. Nakatsuji, Israel-Japan Joint Symposium on Molecular Dynamics and Chemical Reactivity, Okazaki, Japan, (Oct. 12-15, 1992).

18) “Quantum Chemical Approach for Surface-Molecule Electronic Processes”, H. Nakatsuji, CAMSE ’92: Second International Conference on Computer Applications to Materials and Molecular Science and Engineering, Yokohama, Japan, (Sept. 22-25, 1992).

17) “Theoretical Study on Surface-Molecule Interacting Systems”, H. Nakatsuji, The Second Japan-China Symposium on Theoretical Chemistry, Kyoto, Japan, (Sept. 15-18, 1992).

16) “Quantum-Chemical Approach for Excited States and Surface-Molecule Interactions”, H. Nakatsuji, 11th Canadian Symposium on Theoretical Chemistry, Montreal, Canada, (August 2-7, 1992). Plenary Lecture

15) “Ab Initio Theoretical Study on the Catalytic Activity of Complexes and Surfaces”, H. Nakatsuji, IVth International Symposium on Theoretical Approach to Catalysis at Interfaces, Krakow, Poland, (July 27-31, 1992).

14) “Electronic Mechanisms of Metal Chemical Shifts from Ab Initio Theory”, H. Nakatsuji, NATO Conference on Nuclear Magnetic Shielding and M lecular Structure, Washington D.C., USA, (July 20-24, 1992).

13) “Theoretical Model Study on the Catalytic Activity of a Metal Surface”, H. Nakatsuji, The 10th International Conference on Catalysis (New Wave in Chemistry), The Taniguchi Foundation, Sanda, Hyogo, (Sept.16-20, 1991). Invited

12) “Excited States and Ionized States of Aromatic Ring Compounds Studied by SAC/SAC-CI Method”, H. Nakatsuji, ISOC-87 (The Impact of Supercomputers on Chemistry), University of London, London, England (April 13-16, 1987), Plenary Lecture.

11) “Theoretical Study on the Catalytic Activity of Palladium”, H. Nakatsuji, M. Hada, T. Yonezawa, 5th International Symposium on Homogeneous Catalysis, International Conference Center, Kobe, Japan (September 22, 1986).

10) “Exponentially Generated Wave Functions, H. Nakatsuji”, Symposium on Computational Chemistry and Parallel Processors, Dept. of Chemistry, Univ. Alberta, Edmonton, Canada (June 30-July 2, 1986). Invited Lecture

9) “Model Studies on the Catalytic Activities of Palladium for the Hydrogenation Reaction of Acetylene”, H. Nakatsuji, NATO Conference on “Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry”, Strasbourg, France (September 16-20, 1985). Invited Lecture

8 ) “Multi-Reference Cluster Expansion Theory”, H. Nakatsuji, PACICHEM’84, Honolulu, Hawaii, (March 7-12, 1983). Plenary Lecture

7) “SAC and SAC-CI Studies of the Ground, Excited, Ionized, and Electron-attached States of Molecules”, H. Nakatsuji, Sanibel Symposium, Palm Coast, Florida, USA (March 7-12, 1983). Plenary Lecture

6) “Force in SCF theories”, H. Nakatsuji, 4th International Congress of Quantum Chemistry, Uppsala Sweden (1982), Invited

5) “Accurate Hellmann-Feynman Force Method for the Study of the First and Second Derivatives of Potential Energy Hypersurface”, H. Nakatsuji and K. Kanda, Local Density Approximations in Quantum Chemistry and Solid State Theory, Satellite Symposium of 4th International Congress of Quantum Chemistry, Copenhagen (June 10-12, 1982). Invited

4) “Cluster Expansion Methods for the Study of Electron Correlations in Open-Shell and Excited States”, H. Nakatsuji, The Symposium on Many-Body Theoretical Approaches to Electron Correlation in Molecules, Satellite Symposium of Third International Congress of Quantum Chemistry, Kobe, Japan, (Sept. 1979). Invited Lecture

3) “Equation for the Direct Determination of the Density Matrix”, H. Nakatsuji, Sanibel Symposium, Sanibel Island, Florida, USA, (January 16-22, 1977). Invited Lecture

2) “Equation for the Direct Determination of the Density Matrix”, H. Nakatsuji, Oji Conference, Tomakomai, Japan, (September 14-16, 1976). Invited Lecture

1) “An Approach to the Variational Principle as a Functional of Electron Density”, H. Nakatsuji, Sanibel Symposium, Sanibel Island, Florida, USA, (January 20, 1975). Invited Lecture